Properties

Label 378.3.i.a.359.1
Level $378$
Weight $3$
Character 378.359
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(179,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.179"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 359.1
Character \(\chi\) \(=\) 378.359
Dual form 378.3.i.a.179.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} -8.56422i q^{5} +(4.01479 + 5.73423i) q^{7} +2.82843i q^{8} +(6.05582 + 10.4890i) q^{10} +7.05296i q^{11} +(7.43588 + 12.8793i) q^{13} +(-8.97181 - 4.18408i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(12.4500 - 7.18802i) q^{17} +(9.66453 - 16.7395i) q^{19} +(-14.8337 - 8.56422i) q^{20} +(-4.98720 - 8.63808i) q^{22} -39.3708i q^{23} -48.3459 q^{25} +(-18.2141 - 10.5159i) q^{26} +(13.9468 - 1.21960i) q^{28} +(11.7844 + 6.80374i) q^{29} +(12.0515 - 20.8737i) q^{31} +(4.89898 + 2.82843i) q^{32} +(-10.1654 + 17.6070i) q^{34} +(49.1092 - 34.3836i) q^{35} +(17.6184 - 30.5159i) q^{37} +27.3354i q^{38} +24.2233 q^{40} +(-7.79426 + 4.50002i) q^{41} +(32.4531 - 56.2103i) q^{43} +(12.2161 + 7.05296i) q^{44} +(27.8394 + 48.2192i) q^{46} +(-28.9083 + 16.6902i) q^{47} +(-16.7628 + 46.0435i) q^{49} +(59.2113 - 34.1857i) q^{50} +29.7435 q^{52} +(-52.4399 + 30.2762i) q^{53} +60.4031 q^{55} +(-16.2189 + 11.3556i) q^{56} -19.2439 q^{58} +(62.6286 + 36.1586i) q^{59} +(3.99141 + 6.91332i) q^{61} +34.0867i q^{62} -8.00000 q^{64} +(110.301 - 63.6825i) q^{65} +(41.8073 - 72.4124i) q^{67} -28.7521i q^{68} +(-35.8334 + 76.8366i) q^{70} -61.0012i q^{71} +(-9.83762 - 17.0393i) q^{73} +49.8323i q^{74} +(-19.3291 - 33.4789i) q^{76} +(-40.4433 + 28.3162i) q^{77} +(5.09411 + 8.82326i) q^{79} +(-29.6673 + 17.1284i) q^{80} +(6.36399 - 11.0228i) q^{82} +(-15.8646 - 9.15941i) q^{83} +(-61.5598 - 106.625i) q^{85} +91.7911i q^{86} -19.9488 q^{88} +(40.0208 + 23.1060i) q^{89} +(-43.9995 + 94.3469i) q^{91} +(-68.1923 - 39.3708i) q^{92} +(23.6036 - 40.8826i) q^{94} +(-143.360 - 82.7691i) q^{95} +(-49.1454 + 85.1224i) q^{97} +(-12.0275 - 68.2447i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{4} + 2 q^{7} + 10 q^{13} - 36 q^{14} - 64 q^{16} - 54 q^{17} + 28 q^{19} - 160 q^{25} - 72 q^{26} - 4 q^{28} - 36 q^{29} - 8 q^{31} - 90 q^{35} + 22 q^{37} - 72 q^{41} + 16 q^{43} + 72 q^{44}+ \cdots + 288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 8.56422i 1.71284i −0.516277 0.856422i \(-0.672682\pi\)
0.516277 0.856422i \(-0.327318\pi\)
\(6\) 0 0
\(7\) 4.01479 + 5.73423i 0.573542 + 0.819176i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 6.05582 + 10.4890i 0.605582 + 1.04890i
\(11\) 7.05296i 0.641178i 0.947218 + 0.320589i \(0.103881\pi\)
−0.947218 + 0.320589i \(0.896119\pi\)
\(12\) 0 0
\(13\) 7.43588 + 12.8793i 0.571991 + 0.990717i 0.996361 + 0.0852287i \(0.0271621\pi\)
−0.424371 + 0.905489i \(0.639505\pi\)
\(14\) −8.97181 4.18408i −0.640844 0.298863i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 12.4500 7.18802i 0.732354 0.422825i −0.0869287 0.996215i \(-0.527705\pi\)
0.819283 + 0.573390i \(0.194372\pi\)
\(18\) 0 0
\(19\) 9.66453 16.7395i 0.508659 0.881024i −0.491290 0.870996i \(-0.663475\pi\)
0.999950 0.0100280i \(-0.00319207\pi\)
\(20\) −14.8337 8.56422i −0.741683 0.428211i
\(21\) 0 0
\(22\) −4.98720 8.63808i −0.226691 0.392640i
\(23\) 39.3708i 1.71178i −0.517161 0.855888i \(-0.673011\pi\)
0.517161 0.855888i \(-0.326989\pi\)
\(24\) 0 0
\(25\) −48.3459 −1.93383
\(26\) −18.2141 10.5159i −0.700543 0.404459i
\(27\) 0 0
\(28\) 13.9468 1.21960i 0.498099 0.0435570i
\(29\) 11.7844 + 6.80374i 0.406360 + 0.234612i 0.689224 0.724548i \(-0.257951\pi\)
−0.282865 + 0.959160i \(0.591285\pi\)
\(30\) 0 0
\(31\) 12.0515 20.8737i 0.388757 0.673346i −0.603526 0.797343i \(-0.706238\pi\)
0.992283 + 0.123997i \(0.0395714\pi\)
\(32\) 4.89898 + 2.82843i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −10.1654 + 17.6070i −0.298982 + 0.517853i
\(35\) 49.1092 34.3836i 1.40312 0.982388i
\(36\) 0 0
\(37\) 17.6184 30.5159i 0.476172 0.824755i −0.523455 0.852053i \(-0.675357\pi\)
0.999627 + 0.0272985i \(0.00869046\pi\)
\(38\) 27.3354i 0.719353i
\(39\) 0 0
\(40\) 24.2233 0.605582
\(41\) −7.79426 + 4.50002i −0.190104 + 0.109757i −0.592031 0.805915i \(-0.701674\pi\)
0.401927 + 0.915672i \(0.368340\pi\)
\(42\) 0 0
\(43\) 32.4531 56.2103i 0.754722 1.30722i −0.190790 0.981631i \(-0.561105\pi\)
0.945512 0.325586i \(-0.105562\pi\)
\(44\) 12.2161 + 7.05296i 0.277638 + 0.160295i
\(45\) 0 0
\(46\) 27.8394 + 48.2192i 0.605204 + 1.04824i
\(47\) −28.9083 + 16.6902i −0.615071 + 0.355111i −0.774947 0.632026i \(-0.782224\pi\)
0.159876 + 0.987137i \(0.448890\pi\)
\(48\) 0 0
\(49\) −16.7628 + 46.0435i −0.342099 + 0.939664i
\(50\) 59.2113 34.1857i 1.18423 0.683714i
\(51\) 0 0
\(52\) 29.7435 0.571991
\(53\) −52.4399 + 30.2762i −0.989433 + 0.571249i −0.905105 0.425189i \(-0.860208\pi\)
−0.0843280 + 0.996438i \(0.526874\pi\)
\(54\) 0 0
\(55\) 60.4031 1.09824
\(56\) −16.2189 + 11.3556i −0.289622 + 0.202778i
\(57\) 0 0
\(58\) −19.2439 −0.331791
\(59\) 62.6286 + 36.1586i 1.06150 + 0.612858i 0.925847 0.377898i \(-0.123353\pi\)
0.135654 + 0.990756i \(0.456686\pi\)
\(60\) 0 0
\(61\) 3.99141 + 6.91332i 0.0654329 + 0.113333i 0.896886 0.442262i \(-0.145824\pi\)
−0.831453 + 0.555595i \(0.812490\pi\)
\(62\) 34.0867i 0.549785i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 110.301 63.6825i 1.69694 0.979731i
\(66\) 0 0
\(67\) 41.8073 72.4124i 0.623990 1.08078i −0.364745 0.931107i \(-0.618844\pi\)
0.988735 0.149675i \(-0.0478228\pi\)
\(68\) 28.7521i 0.422825i
\(69\) 0 0
\(70\) −35.8334 + 76.8366i −0.511906 + 1.09767i
\(71\) 61.0012i 0.859172i −0.903026 0.429586i \(-0.858660\pi\)
0.903026 0.429586i \(-0.141340\pi\)
\(72\) 0 0
\(73\) −9.83762 17.0393i −0.134762 0.233415i 0.790745 0.612146i \(-0.209694\pi\)
−0.925506 + 0.378732i \(0.876360\pi\)
\(74\) 49.8323i 0.673410i
\(75\) 0 0
\(76\) −19.3291 33.4789i −0.254330 0.440512i
\(77\) −40.4433 + 28.3162i −0.525238 + 0.367743i
\(78\) 0 0
\(79\) 5.09411 + 8.82326i 0.0644824 + 0.111687i 0.896464 0.443116i \(-0.146127\pi\)
−0.831982 + 0.554803i \(0.812794\pi\)
\(80\) −29.6673 + 17.1284i −0.370842 + 0.214105i
\(81\) 0 0
\(82\) 6.36399 11.0228i 0.0776096 0.134424i
\(83\) −15.8646 9.15941i −0.191139 0.110354i 0.401376 0.915913i \(-0.368532\pi\)
−0.592516 + 0.805559i \(0.701865\pi\)
\(84\) 0 0
\(85\) −61.5598 106.625i −0.724233 1.25441i
\(86\) 91.7911i 1.06734i
\(87\) 0 0
\(88\) −19.9488 −0.226691
\(89\) 40.0208 + 23.1060i 0.449672 + 0.259618i 0.707692 0.706522i \(-0.249737\pi\)
−0.258020 + 0.966140i \(0.583070\pi\)
\(90\) 0 0
\(91\) −43.9995 + 94.3469i −0.483511 + 1.03678i
\(92\) −68.1923 39.3708i −0.741221 0.427944i
\(93\) 0 0
\(94\) 23.6036 40.8826i 0.251102 0.434921i
\(95\) −143.360 82.7691i −1.50906 0.871254i
\(96\) 0 0
\(97\) −49.1454 + 85.1224i −0.506654 + 0.877550i 0.493316 + 0.869850i \(0.335784\pi\)
−0.999970 + 0.00770043i \(0.997549\pi\)
\(98\) −12.0275 68.2447i −0.122729 0.696375i
\(99\) 0 0
\(100\) −48.3459 + 83.7375i −0.483459 + 0.837375i
\(101\) 110.793i 1.09696i −0.836164 0.548480i \(-0.815207\pi\)
0.836164 0.548480i \(-0.184793\pi\)
\(102\) 0 0
\(103\) 87.6160 0.850640 0.425320 0.905043i \(-0.360161\pi\)
0.425320 + 0.905043i \(0.360161\pi\)
\(104\) −36.4282 + 21.0318i −0.350271 + 0.202229i
\(105\) 0 0
\(106\) 42.8170 74.1613i 0.403934 0.699635i
\(107\) −22.3256 12.8897i −0.208651 0.120465i 0.392033 0.919951i \(-0.371772\pi\)
−0.600684 + 0.799486i \(0.705105\pi\)
\(108\) 0 0
\(109\) 52.7615 + 91.3856i 0.484050 + 0.838400i 0.999832 0.0183201i \(-0.00583180\pi\)
−0.515782 + 0.856720i \(0.672498\pi\)
\(110\) −73.9784 + 42.7114i −0.672531 + 0.388286i
\(111\) 0 0
\(112\) 11.8344 25.3761i 0.105664 0.226573i
\(113\) −12.7398 + 7.35535i −0.112742 + 0.0650916i −0.555311 0.831643i \(-0.687401\pi\)
0.442569 + 0.896735i \(0.354067\pi\)
\(114\) 0 0
\(115\) −337.181 −2.93200
\(116\) 23.5689 13.6075i 0.203180 0.117306i
\(117\) 0 0
\(118\) −102.272 −0.866712
\(119\) 91.2021 + 42.5329i 0.766404 + 0.357419i
\(120\) 0 0
\(121\) 71.2557 0.588890
\(122\) −9.77691 5.64470i −0.0801386 0.0462681i
\(123\) 0 0
\(124\) −24.1029 41.7475i −0.194378 0.336673i
\(125\) 199.939i 1.59951i
\(126\) 0 0
\(127\) −14.2742 −0.112395 −0.0561976 0.998420i \(-0.517898\pi\)
−0.0561976 + 0.998420i \(0.517898\pi\)
\(128\) 9.79796 5.65685i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −90.0607 + 155.990i −0.692775 + 1.19992i
\(131\) 172.745i 1.31867i 0.751851 + 0.659333i \(0.229161\pi\)
−0.751851 + 0.659333i \(0.770839\pi\)
\(132\) 0 0
\(133\) 134.789 11.7868i 1.01345 0.0886227i
\(134\) 118.249i 0.882455i
\(135\) 0 0
\(136\) 20.3308 + 35.2140i 0.149491 + 0.258926i
\(137\) 162.089i 1.18313i 0.806256 + 0.591567i \(0.201490\pi\)
−0.806256 + 0.591567i \(0.798510\pi\)
\(138\) 0 0
\(139\) −78.4637 135.903i −0.564487 0.977720i −0.997097 0.0761389i \(-0.975741\pi\)
0.432610 0.901581i \(-0.357593\pi\)
\(140\) −10.4449 119.443i −0.0746063 0.853166i
\(141\) 0 0
\(142\) 43.1344 + 74.7109i 0.303763 + 0.526133i
\(143\) −90.8374 + 52.4450i −0.635226 + 0.366748i
\(144\) 0 0
\(145\) 58.2687 100.924i 0.401853 0.696030i
\(146\) 24.0972 + 13.9125i 0.165049 + 0.0952911i
\(147\) 0 0
\(148\) −35.2368 61.0319i −0.238086 0.412377i
\(149\) 248.161i 1.66551i 0.553641 + 0.832755i \(0.313238\pi\)
−0.553641 + 0.832755i \(0.686762\pi\)
\(150\) 0 0
\(151\) −94.4026 −0.625183 −0.312592 0.949888i \(-0.601197\pi\)
−0.312592 + 0.949888i \(0.601197\pi\)
\(152\) 47.3463 + 27.3354i 0.311489 + 0.179838i
\(153\) 0 0
\(154\) 29.5102 63.2779i 0.191625 0.410895i
\(155\) −178.767 103.211i −1.15334 0.665879i
\(156\) 0 0
\(157\) −102.528 + 177.583i −0.653042 + 1.13110i 0.329339 + 0.944212i \(0.393174\pi\)
−0.982381 + 0.186890i \(0.940159\pi\)
\(158\) −12.4780 7.20416i −0.0789745 0.0455960i
\(159\) 0 0
\(160\) 24.2233 41.9559i 0.151395 0.262225i
\(161\) 225.762 158.066i 1.40225 0.981775i
\(162\) 0 0
\(163\) −130.276 + 225.645i −0.799241 + 1.38433i 0.120870 + 0.992668i \(0.461431\pi\)
−0.920111 + 0.391657i \(0.871902\pi\)
\(164\) 18.0001i 0.109757i
\(165\) 0 0
\(166\) 25.9067 0.156065
\(167\) 110.267 63.6624i 0.660279 0.381212i −0.132105 0.991236i \(-0.542173\pi\)
0.792383 + 0.610024i \(0.208840\pi\)
\(168\) 0 0
\(169\) −26.0847 + 45.1800i −0.154347 + 0.267337i
\(170\) 150.790 + 87.0587i 0.887001 + 0.512110i
\(171\) 0 0
\(172\) −64.9061 112.421i −0.377361 0.653609i
\(173\) −5.66762 + 3.27220i −0.0327608 + 0.0189145i −0.516291 0.856413i \(-0.672688\pi\)
0.483530 + 0.875328i \(0.339354\pi\)
\(174\) 0 0
\(175\) −194.099 277.226i −1.10914 1.58415i
\(176\) 24.4322 14.1059i 0.138819 0.0801473i
\(177\) 0 0
\(178\) −65.3537 −0.367155
\(179\) 3.77964 2.18217i 0.0211153 0.0121909i −0.489405 0.872057i \(-0.662786\pi\)
0.510520 + 0.859866i \(0.329453\pi\)
\(180\) 0 0
\(181\) 71.3386 0.394136 0.197068 0.980390i \(-0.436858\pi\)
0.197068 + 0.980390i \(0.436858\pi\)
\(182\) −12.8252 146.663i −0.0704680 0.805842i
\(183\) 0 0
\(184\) 111.358 0.605204
\(185\) −261.345 150.888i −1.41268 0.815609i
\(186\) 0 0
\(187\) 50.6968 + 87.8095i 0.271106 + 0.469570i
\(188\) 66.7609i 0.355111i
\(189\) 0 0
\(190\) 234.106 1.23214
\(191\) 102.594 59.2326i 0.537140 0.310118i −0.206779 0.978388i \(-0.566298\pi\)
0.743919 + 0.668270i \(0.232965\pi\)
\(192\) 0 0
\(193\) 96.1455 166.529i 0.498163 0.862844i −0.501835 0.864964i \(-0.667341\pi\)
0.999998 + 0.00211988i \(0.000674780\pi\)
\(194\) 139.004i 0.716517i
\(195\) 0 0
\(196\) 62.9869 + 75.0776i 0.321362 + 0.383049i
\(197\) 278.566i 1.41404i −0.707193 0.707021i \(-0.750039\pi\)
0.707193 0.707021i \(-0.249961\pi\)
\(198\) 0 0
\(199\) −121.675 210.747i −0.611431 1.05903i −0.990999 0.133866i \(-0.957261\pi\)
0.379568 0.925164i \(-0.376073\pi\)
\(200\) 136.743i 0.683714i
\(201\) 0 0
\(202\) 78.3424 + 135.693i 0.387834 + 0.671748i
\(203\) 8.29781 + 94.8903i 0.0408759 + 0.467440i
\(204\) 0 0
\(205\) 38.5392 + 66.7518i 0.187996 + 0.325618i
\(206\) −107.307 + 61.9538i −0.520909 + 0.300747i
\(207\) 0 0
\(208\) 29.7435 51.5173i 0.142998 0.247679i
\(209\) 118.063 + 68.1635i 0.564893 + 0.326141i
\(210\) 0 0
\(211\) 65.3669 + 113.219i 0.309796 + 0.536582i 0.978318 0.207110i \(-0.0664060\pi\)
−0.668522 + 0.743693i \(0.733073\pi\)
\(212\) 121.105i 0.571249i
\(213\) 0 0
\(214\) 36.4576 0.170363
\(215\) −481.398 277.935i −2.23906 1.29272i
\(216\) 0 0
\(217\) 168.079 14.6979i 0.774557 0.0677322i
\(218\) −129.239 74.6160i −0.592838 0.342275i
\(219\) 0 0
\(220\) 60.4031 104.621i 0.274560 0.475551i
\(221\) 185.154 + 106.899i 0.837800 + 0.483704i
\(222\) 0 0
\(223\) −25.5565 + 44.2652i −0.114603 + 0.198498i −0.917621 0.397456i \(-0.869893\pi\)
0.803018 + 0.595955i \(0.203226\pi\)
\(224\) 3.44954 + 39.4474i 0.0153997 + 0.176105i
\(225\) 0 0
\(226\) 10.4020 18.0169i 0.0460267 0.0797206i
\(227\) 346.919i 1.52828i 0.645052 + 0.764139i \(0.276836\pi\)
−0.645052 + 0.764139i \(0.723164\pi\)
\(228\) 0 0
\(229\) −167.226 −0.730246 −0.365123 0.930959i \(-0.618973\pi\)
−0.365123 + 0.930959i \(0.618973\pi\)
\(230\) 412.960 238.423i 1.79548 1.03662i
\(231\) 0 0
\(232\) −19.2439 + 33.3314i −0.0829478 + 0.143670i
\(233\) −171.970 99.2867i −0.738067 0.426123i 0.0832991 0.996525i \(-0.473454\pi\)
−0.821366 + 0.570401i \(0.806788\pi\)
\(234\) 0 0
\(235\) 142.939 + 247.577i 0.608250 + 1.05352i
\(236\) 125.257 72.3172i 0.530751 0.306429i
\(237\) 0 0
\(238\) −141.775 + 12.3977i −0.595691 + 0.0520911i
\(239\) 248.637 143.551i 1.04032 0.600631i 0.120398 0.992726i \(-0.461583\pi\)
0.919925 + 0.392095i \(0.128249\pi\)
\(240\) 0 0
\(241\) 378.594 1.57093 0.785464 0.618907i \(-0.212424\pi\)
0.785464 + 0.618907i \(0.212424\pi\)
\(242\) −87.2701 + 50.3854i −0.360620 + 0.208204i
\(243\) 0 0
\(244\) 15.9656 0.0654329
\(245\) 394.327 + 143.561i 1.60950 + 0.585962i
\(246\) 0 0
\(247\) 287.457 1.16379
\(248\) 59.0398 + 34.0867i 0.238064 + 0.137446i
\(249\) 0 0
\(250\) −141.378 244.874i −0.565513 0.979497i
\(251\) 98.4672i 0.392300i 0.980574 + 0.196150i \(0.0628439\pi\)
−0.980574 + 0.196150i \(0.937156\pi\)
\(252\) 0 0
\(253\) 277.681 1.09755
\(254\) 17.4823 10.0934i 0.0688278 0.0397377i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 215.281i 0.837670i 0.908062 + 0.418835i \(0.137561\pi\)
−0.908062 + 0.418835i \(0.862439\pi\)
\(258\) 0 0
\(259\) 245.720 21.4873i 0.948724 0.0829625i
\(260\) 254.730i 0.979731i
\(261\) 0 0
\(262\) −122.149 211.569i −0.466219 0.807515i
\(263\) 12.5158i 0.0475886i −0.999717 0.0237943i \(-0.992425\pi\)
0.999717 0.0237943i \(-0.00757468\pi\)
\(264\) 0 0
\(265\) 259.292 + 449.107i 0.978461 + 1.69474i
\(266\) −156.748 + 109.746i −0.589277 + 0.412579i
\(267\) 0 0
\(268\) −83.6147 144.825i −0.311995 0.540391i
\(269\) −150.771 + 87.0476i −0.560487 + 0.323597i −0.753341 0.657630i \(-0.771559\pi\)
0.192854 + 0.981227i \(0.438226\pi\)
\(270\) 0 0
\(271\) −17.5923 + 30.4707i −0.0649161 + 0.112438i −0.896657 0.442726i \(-0.854011\pi\)
0.831741 + 0.555164i \(0.187345\pi\)
\(272\) −49.8001 28.7521i −0.183089 0.105706i
\(273\) 0 0
\(274\) −114.614 198.518i −0.418301 0.724519i
\(275\) 340.981i 1.23993i
\(276\) 0 0
\(277\) −52.5103 −0.189568 −0.0947839 0.995498i \(-0.530216\pi\)
−0.0947839 + 0.995498i \(0.530216\pi\)
\(278\) 192.196 + 110.964i 0.691352 + 0.399152i
\(279\) 0 0
\(280\) 97.2515 + 138.902i 0.347327 + 0.496078i
\(281\) −327.425 189.039i −1.16521 0.672737i −0.212666 0.977125i \(-0.568215\pi\)
−0.952548 + 0.304388i \(0.901548\pi\)
\(282\) 0 0
\(283\) −275.881 + 477.840i −0.974844 + 1.68848i −0.294396 + 0.955684i \(0.595118\pi\)
−0.680448 + 0.732796i \(0.738215\pi\)
\(284\) −105.657 61.0012i −0.372032 0.214793i
\(285\) 0 0
\(286\) 74.1684 128.463i 0.259330 0.449173i
\(287\) −57.0965 26.6275i −0.198943 0.0927786i
\(288\) 0 0
\(289\) −41.1647 + 71.2993i −0.142438 + 0.246710i
\(290\) 164.809i 0.568306i
\(291\) 0 0
\(292\) −39.3505 −0.134762
\(293\) −344.440 + 198.863i −1.17556 + 0.678712i −0.954984 0.296657i \(-0.904128\pi\)
−0.220579 + 0.975369i \(0.570795\pi\)
\(294\) 0 0
\(295\) 309.670 536.365i 1.04973 1.81819i
\(296\) 86.3121 + 49.8323i 0.291595 + 0.168352i
\(297\) 0 0
\(298\) −175.476 303.934i −0.588847 1.01991i
\(299\) 507.070 292.757i 1.69589 0.979120i
\(300\) 0 0
\(301\) 452.616 39.5796i 1.50371 0.131494i
\(302\) 115.619 66.7528i 0.382845 0.221036i
\(303\) 0 0
\(304\) −77.3162 −0.254330
\(305\) 59.2072 34.1833i 0.194122 0.112076i
\(306\) 0 0
\(307\) −295.323 −0.961964 −0.480982 0.876731i \(-0.659720\pi\)
−0.480982 + 0.876731i \(0.659720\pi\)
\(308\) 8.60176 + 98.3661i 0.0279278 + 0.319370i
\(309\) 0 0
\(310\) 291.926 0.941695
\(311\) 241.377 + 139.359i 0.776132 + 0.448100i 0.835058 0.550162i \(-0.185434\pi\)
−0.0589258 + 0.998262i \(0.518768\pi\)
\(312\) 0 0
\(313\) −99.7337 172.744i −0.318638 0.551897i 0.661566 0.749887i \(-0.269892\pi\)
−0.980204 + 0.197990i \(0.936559\pi\)
\(314\) 289.992i 0.923541i
\(315\) 0 0
\(316\) 20.3764 0.0644824
\(317\) −16.1995 + 9.35277i −0.0511025 + 0.0295040i −0.525334 0.850896i \(-0.676059\pi\)
0.474231 + 0.880400i \(0.342726\pi\)
\(318\) 0 0
\(319\) −47.9865 + 83.1151i −0.150428 + 0.260549i
\(320\) 68.5138i 0.214105i
\(321\) 0 0
\(322\) −164.731 + 353.228i −0.511587 + 1.09698i
\(323\) 277.875i 0.860295i
\(324\) 0 0
\(325\) −359.494 622.662i −1.10614 1.91588i
\(326\) 368.477i 1.13030i
\(327\) 0 0
\(328\) −12.7280 22.0455i −0.0388048 0.0672119i
\(329\) −211.767 98.7593i −0.643668 0.300180i
\(330\) 0 0
\(331\) −105.691 183.062i −0.319308 0.553058i 0.661036 0.750354i \(-0.270117\pi\)
−0.980344 + 0.197297i \(0.936784\pi\)
\(332\) −31.7291 + 18.3188i −0.0955697 + 0.0551772i
\(333\) 0 0
\(334\) −90.0322 + 155.940i −0.269558 + 0.466887i
\(335\) −620.156 358.047i −1.85121 1.06880i
\(336\) 0 0
\(337\) 271.681 + 470.566i 0.806175 + 1.39634i 0.915495 + 0.402330i \(0.131800\pi\)
−0.109319 + 0.994007i \(0.534867\pi\)
\(338\) 73.7786i 0.218280i
\(339\) 0 0
\(340\) −246.239 −0.724233
\(341\) 147.222 + 84.9984i 0.431735 + 0.249262i
\(342\) 0 0
\(343\) −331.324 + 88.7332i −0.965958 + 0.258698i
\(344\) 158.987 + 91.7911i 0.462171 + 0.266835i
\(345\) 0 0
\(346\) 4.62759 8.01523i 0.0133745 0.0231654i
\(347\) 128.969 + 74.4605i 0.371670 + 0.214584i 0.674188 0.738560i \(-0.264494\pi\)
−0.302518 + 0.953144i \(0.597827\pi\)
\(348\) 0 0
\(349\) −229.407 + 397.344i −0.657325 + 1.13852i 0.323980 + 0.946064i \(0.394979\pi\)
−0.981305 + 0.192457i \(0.938354\pi\)
\(350\) 433.750 + 202.283i 1.23929 + 0.577952i
\(351\) 0 0
\(352\) −19.9488 + 34.5523i −0.0566727 + 0.0981600i
\(353\) 484.311i 1.37199i 0.727608 + 0.685993i \(0.240632\pi\)
−0.727608 + 0.685993i \(0.759368\pi\)
\(354\) 0 0
\(355\) −522.428 −1.47163
\(356\) 80.0415 46.2120i 0.224836 0.129809i
\(357\) 0 0
\(358\) −3.08606 + 5.34521i −0.00862028 + 0.0149308i
\(359\) 321.625 + 185.690i 0.895892 + 0.517244i 0.875865 0.482556i \(-0.160291\pi\)
0.0200269 + 0.999799i \(0.493625\pi\)
\(360\) 0 0
\(361\) −6.30620 10.9227i −0.0174687 0.0302567i
\(362\) −87.3716 + 50.4440i −0.241358 + 0.139348i
\(363\) 0 0
\(364\) 119.414 + 170.556i 0.328061 + 0.468561i
\(365\) −145.928 + 84.2516i −0.399803 + 0.230826i
\(366\) 0 0
\(367\) 244.691 0.666733 0.333366 0.942797i \(-0.391815\pi\)
0.333366 + 0.942797i \(0.391815\pi\)
\(368\) −136.385 + 78.7417i −0.370610 + 0.213972i
\(369\) 0 0
\(370\) 426.775 1.15345
\(371\) −384.146 179.150i −1.03544 0.482884i
\(372\) 0 0
\(373\) −649.307 −1.74077 −0.870385 0.492373i \(-0.836130\pi\)
−0.870385 + 0.492373i \(0.836130\pi\)
\(374\) −124.181 71.6962i −0.332036 0.191701i
\(375\) 0 0
\(376\) −47.2071 81.7651i −0.125551 0.217460i
\(377\) 202.367i 0.536783i
\(378\) 0 0
\(379\) −118.934 −0.313809 −0.156905 0.987614i \(-0.550152\pi\)
−0.156905 + 0.987614i \(0.550152\pi\)
\(380\) −286.721 + 165.538i −0.754528 + 0.435627i
\(381\) 0 0
\(382\) −83.7675 + 145.090i −0.219287 + 0.379816i
\(383\) 357.562i 0.933582i −0.884368 0.466791i \(-0.845410\pi\)
0.884368 0.466791i \(-0.154590\pi\)
\(384\) 0 0
\(385\) 242.506 + 346.365i 0.629886 + 0.899651i
\(386\) 271.940i 0.704509i
\(387\) 0 0
\(388\) 98.2909 + 170.245i 0.253327 + 0.438775i
\(389\) 350.758i 0.901691i 0.892602 + 0.450845i \(0.148877\pi\)
−0.892602 + 0.450845i \(0.851123\pi\)
\(390\) 0 0
\(391\) −282.999 490.168i −0.723781 1.25363i
\(392\) −130.231 47.4125i −0.332221 0.120950i
\(393\) 0 0
\(394\) 196.976 + 341.172i 0.499939 + 0.865920i
\(395\) 75.5643 43.6271i 0.191302 0.110448i
\(396\) 0 0
\(397\) 126.600 219.278i 0.318893 0.552338i −0.661365 0.750065i \(-0.730022\pi\)
0.980257 + 0.197726i \(0.0633557\pi\)
\(398\) 298.041 + 172.074i 0.748847 + 0.432347i
\(399\) 0 0
\(400\) 96.6917 + 167.475i 0.241729 + 0.418687i
\(401\) 479.464i 1.19567i −0.801619 0.597835i \(-0.796028\pi\)
0.801619 0.597835i \(-0.203972\pi\)
\(402\) 0 0
\(403\) 358.453 0.889461
\(404\) −191.899 110.793i −0.474998 0.274240i
\(405\) 0 0
\(406\) −77.2603 110.349i −0.190296 0.271795i
\(407\) 215.228 + 124.262i 0.528815 + 0.305311i
\(408\) 0 0
\(409\) −5.29891 + 9.17798i −0.0129558 + 0.0224400i −0.872431 0.488738i \(-0.837457\pi\)
0.859475 + 0.511178i \(0.170791\pi\)
\(410\) −94.4013 54.5026i −0.230247 0.132933i
\(411\) 0 0
\(412\) 87.6160 151.755i 0.212660 0.368338i
\(413\) 44.0989 + 504.296i 0.106777 + 1.22106i
\(414\) 0 0
\(415\) −78.4432 + 135.868i −0.189020 + 0.327392i
\(416\) 84.1274i 0.202229i
\(417\) 0 0
\(418\) −192.796 −0.461233
\(419\) −611.154 + 352.850i −1.45860 + 0.842124i −0.998943 0.0459710i \(-0.985362\pi\)
−0.459659 + 0.888095i \(0.652028\pi\)
\(420\) 0 0
\(421\) 212.170 367.490i 0.503968 0.872897i −0.496022 0.868310i \(-0.665206\pi\)
0.999989 0.00458746i \(-0.00146024\pi\)
\(422\) −160.116 92.4428i −0.379421 0.219059i
\(423\) 0 0
\(424\) −85.6341 148.323i −0.201967 0.349817i
\(425\) −601.907 + 347.511i −1.41625 + 0.817673i
\(426\) 0 0
\(427\) −23.6179 + 50.6432i −0.0553113 + 0.118602i
\(428\) −44.6513 + 25.7794i −0.104325 + 0.0602323i
\(429\) 0 0
\(430\) 786.119 1.82818
\(431\) 360.974 208.408i 0.837526 0.483546i −0.0188965 0.999821i \(-0.506015\pi\)
0.856423 + 0.516276i \(0.172682\pi\)
\(432\) 0 0
\(433\) −457.197 −1.05588 −0.527941 0.849281i \(-0.677036\pi\)
−0.527941 + 0.849281i \(0.677036\pi\)
\(434\) −195.461 + 136.851i −0.450371 + 0.315325i
\(435\) 0 0
\(436\) 211.046 0.484050
\(437\) −659.046 380.501i −1.50812 0.870711i
\(438\) 0 0
\(439\) 61.3814 + 106.316i 0.139821 + 0.242177i 0.927429 0.374000i \(-0.122014\pi\)
−0.787608 + 0.616177i \(0.788681\pi\)
\(440\) 170.846i 0.388286i
\(441\) 0 0
\(442\) −302.355 −0.684061
\(443\) 271.478 156.738i 0.612818 0.353811i −0.161249 0.986914i \(-0.551552\pi\)
0.774068 + 0.633103i \(0.218219\pi\)
\(444\) 0 0
\(445\) 197.885 342.747i 0.444685 0.770217i
\(446\) 72.2847i 0.162073i
\(447\) 0 0
\(448\) −32.1184 45.8739i −0.0716928 0.102397i
\(449\) 216.459i 0.482092i 0.970514 + 0.241046i \(0.0774904\pi\)
−0.970514 + 0.241046i \(0.922510\pi\)
\(450\) 0 0
\(451\) −31.7385 54.9726i −0.0703735 0.121891i
\(452\) 29.4214i 0.0650916i
\(453\) 0 0
\(454\) −245.309 424.887i −0.540328 0.935875i
\(455\) 808.008 + 376.821i 1.77584 + 0.828179i
\(456\) 0 0
\(457\) −282.487 489.281i −0.618133 1.07064i −0.989826 0.142282i \(-0.954556\pi\)
0.371693 0.928356i \(-0.378777\pi\)
\(458\) 204.810 118.247i 0.447182 0.258181i
\(459\) 0 0
\(460\) −337.181 + 584.014i −0.733001 + 1.26960i
\(461\) 504.476 + 291.259i 1.09431 + 0.631799i 0.934720 0.355385i \(-0.115650\pi\)
0.159588 + 0.987184i \(0.448983\pi\)
\(462\) 0 0
\(463\) 128.093 + 221.863i 0.276658 + 0.479186i 0.970552 0.240891i \(-0.0774397\pi\)
−0.693894 + 0.720077i \(0.744106\pi\)
\(464\) 54.4299i 0.117306i
\(465\) 0 0
\(466\) 280.825 0.602629
\(467\) −300.844 173.693i −0.644206 0.371933i 0.142027 0.989863i \(-0.454638\pi\)
−0.786233 + 0.617930i \(0.787971\pi\)
\(468\) 0 0
\(469\) 583.078 50.9880i 1.24324 0.108716i
\(470\) −350.127 202.146i −0.744952 0.430098i
\(471\) 0 0
\(472\) −102.272 + 177.140i −0.216678 + 0.375297i
\(473\) 396.449 + 228.890i 0.838159 + 0.483911i
\(474\) 0 0
\(475\) −467.240 + 809.283i −0.983663 + 1.70375i
\(476\) 164.871 115.434i 0.346368 0.242508i
\(477\) 0 0
\(478\) −203.011 + 351.626i −0.424710 + 0.735620i
\(479\) 67.8475i 0.141644i −0.997489 0.0708220i \(-0.977438\pi\)
0.997489 0.0708220i \(-0.0225622\pi\)
\(480\) 0 0
\(481\) 524.033 1.08947
\(482\) −463.681 + 267.706i −0.961993 + 0.555407i
\(483\) 0 0
\(484\) 71.2557 123.419i 0.147223 0.254997i
\(485\) 729.007 + 420.892i 1.50311 + 0.867819i
\(486\) 0 0
\(487\) −231.777 401.449i −0.475927 0.824330i 0.523693 0.851907i \(-0.324554\pi\)
−0.999620 + 0.0275774i \(0.991221\pi\)
\(488\) −19.5538 + 11.2894i −0.0400693 + 0.0231340i
\(489\) 0 0
\(490\) −584.463 + 103.006i −1.19278 + 0.210216i
\(491\) −93.7518 + 54.1276i −0.190941 + 0.110240i −0.592423 0.805627i \(-0.701828\pi\)
0.401482 + 0.915867i \(0.368495\pi\)
\(492\) 0 0
\(493\) 195.622 0.396799
\(494\) −352.062 + 203.263i −0.712675 + 0.411463i
\(495\) 0 0
\(496\) −96.4116 −0.194378
\(497\) 349.795 244.907i 0.703813 0.492771i
\(498\) 0 0
\(499\) −7.53911 −0.0151084 −0.00755422 0.999971i \(-0.502405\pi\)
−0.00755422 + 0.999971i \(0.502405\pi\)
\(500\) 346.305 + 199.939i 0.692609 + 0.399878i
\(501\) 0 0
\(502\) −69.6268 120.597i −0.138699 0.240233i
\(503\) 402.034i 0.799272i −0.916674 0.399636i \(-0.869137\pi\)
0.916674 0.399636i \(-0.130863\pi\)
\(504\) 0 0
\(505\) −948.855 −1.87892
\(506\) −340.088 + 196.350i −0.672111 + 0.388044i
\(507\) 0 0
\(508\) −14.2742 + 24.7236i −0.0280988 + 0.0486686i
\(509\) 736.522i 1.44700i 0.690325 + 0.723499i \(0.257467\pi\)
−0.690325 + 0.723499i \(0.742533\pi\)
\(510\) 0 0
\(511\) 58.2111 124.820i 0.113916 0.244267i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −152.227 263.664i −0.296161 0.512966i
\(515\) 750.362i 1.45701i
\(516\) 0 0
\(517\) −117.716 203.889i −0.227690 0.394370i
\(518\) −285.750 + 200.066i −0.551641 + 0.386229i
\(519\) 0 0
\(520\) 180.121 + 311.979i 0.346387 + 0.599960i
\(521\) 455.192 262.805i 0.873690 0.504425i 0.00511719 0.999987i \(-0.498371\pi\)
0.868573 + 0.495562i \(0.165038\pi\)
\(522\) 0 0
\(523\) 46.2741 80.1490i 0.0884781 0.153249i −0.818390 0.574663i \(-0.805133\pi\)
0.906868 + 0.421415i \(0.138466\pi\)
\(524\) 299.203 + 172.745i 0.570999 + 0.329666i
\(525\) 0 0
\(526\) 8.85001 + 15.3287i 0.0168251 + 0.0291420i
\(527\) 346.504i 0.657504i
\(528\) 0 0
\(529\) −1021.06 −1.93018
\(530\) −635.133 366.694i −1.19836 0.691876i
\(531\) 0 0
\(532\) 114.374 245.248i 0.214988 0.460993i
\(533\) −115.914 66.9232i −0.217475 0.125560i
\(534\) 0 0
\(535\) −110.390 + 191.202i −0.206337 + 0.357386i
\(536\) 204.813 + 118.249i 0.382114 + 0.220614i
\(537\) 0 0
\(538\) 123.104 213.222i 0.228818 0.396324i
\(539\) −324.743 118.228i −0.602492 0.219346i
\(540\) 0 0
\(541\) −66.8426 + 115.775i −0.123554 + 0.214001i −0.921167 0.389168i \(-0.872762\pi\)
0.797613 + 0.603170i \(0.206096\pi\)
\(542\) 49.7584i 0.0918052i
\(543\) 0 0
\(544\) 81.3232 0.149491
\(545\) 782.646 451.861i 1.43605 0.829103i
\(546\) 0 0
\(547\) 28.0279 48.5457i 0.0512393 0.0887490i −0.839268 0.543718i \(-0.817016\pi\)
0.890507 + 0.454969i \(0.150350\pi\)
\(548\) 280.747 + 162.089i 0.512312 + 0.295783i
\(549\) 0 0
\(550\) 241.110 + 417.615i 0.438382 + 0.759300i
\(551\) 227.782 131.510i 0.413397 0.238675i
\(552\) 0 0
\(553\) −30.1428 + 64.6344i −0.0545078 + 0.116880i
\(554\) 64.3117 37.1304i 0.116086 0.0670223i
\(555\) 0 0
\(556\) −313.855 −0.564487
\(557\) 173.289 100.048i 0.311111 0.179620i −0.336313 0.941750i \(-0.609180\pi\)
0.647423 + 0.762130i \(0.275847\pi\)
\(558\) 0 0
\(559\) 965.268 1.72678
\(560\) −217.327 101.352i −0.388083 0.180986i
\(561\) 0 0
\(562\) 534.683 0.951393
\(563\) −522.623 301.737i −0.928283 0.535945i −0.0420150 0.999117i \(-0.513378\pi\)
−0.886268 + 0.463172i \(0.846711\pi\)
\(564\) 0 0
\(565\) 62.9929 + 109.107i 0.111492 + 0.193109i
\(566\) 780.309i 1.37864i
\(567\) 0 0
\(568\) 172.537 0.303763
\(569\) −3.47634 + 2.00707i −0.00610956 + 0.00352736i −0.503052 0.864256i \(-0.667789\pi\)
0.496942 + 0.867784i \(0.334456\pi\)
\(570\) 0 0
\(571\) 303.356 525.428i 0.531271 0.920189i −0.468063 0.883695i \(-0.655048\pi\)
0.999334 0.0364935i \(-0.0116188\pi\)
\(572\) 209.780i 0.366748i
\(573\) 0 0
\(574\) 88.7571 7.76149i 0.154629 0.0135218i
\(575\) 1903.42i 3.31029i
\(576\) 0 0
\(577\) 290.727 + 503.553i 0.503859 + 0.872709i 0.999990 + 0.00446157i \(0.00142017\pi\)
−0.496131 + 0.868248i \(0.665247\pi\)
\(578\) 116.431i 0.201438i
\(579\) 0 0
\(580\) −116.537 201.849i −0.200927 0.348015i
\(581\) −11.1708 127.744i −0.0192268 0.219870i
\(582\) 0 0
\(583\) −213.537 369.857i −0.366273 0.634403i
\(584\) 48.1943 27.8250i 0.0825245 0.0476455i
\(585\) 0 0
\(586\) 281.234 487.112i 0.479922 0.831249i
\(587\) −119.284 68.8684i −0.203209 0.117323i 0.394943 0.918706i \(-0.370764\pi\)
−0.598151 + 0.801383i \(0.704098\pi\)
\(588\) 0 0
\(589\) −232.943 403.469i −0.395489 0.685008i
\(590\) 875.880i 1.48454i
\(591\) 0 0
\(592\) −140.947 −0.238086
\(593\) −491.375 283.696i −0.828626 0.478407i 0.0247561 0.999694i \(-0.492119\pi\)
−0.853382 + 0.521286i \(0.825452\pi\)
\(594\) 0 0
\(595\) 364.261 781.075i 0.612203 1.31273i
\(596\) 429.828 + 248.161i 0.721187 + 0.416378i
\(597\) 0 0
\(598\) −414.021 + 717.105i −0.692343 + 1.19917i
\(599\) 703.550 + 406.195i 1.17454 + 0.678121i 0.954745 0.297425i \(-0.0961277\pi\)
0.219795 + 0.975546i \(0.429461\pi\)
\(600\) 0 0
\(601\) 370.313 641.402i 0.616162 1.06722i −0.374017 0.927422i \(-0.622020\pi\)
0.990179 0.139802i \(-0.0446467\pi\)
\(602\) −526.352 + 368.522i −0.874338 + 0.612163i
\(603\) 0 0
\(604\) −94.4026 + 163.510i −0.156296 + 0.270712i
\(605\) 610.250i 1.00868i
\(606\) 0 0
\(607\) 186.920 0.307941 0.153971 0.988075i \(-0.450794\pi\)
0.153971 + 0.988075i \(0.450794\pi\)
\(608\) 94.6926 54.6708i 0.155744 0.0899191i
\(609\) 0 0
\(610\) −48.3425 + 83.7316i −0.0792500 + 0.137265i
\(611\) −429.918 248.213i −0.703630 0.406241i
\(612\) 0 0
\(613\) 435.744 + 754.731i 0.710839 + 1.23121i 0.964543 + 0.263927i \(0.0850178\pi\)
−0.253704 + 0.967282i \(0.581649\pi\)
\(614\) 361.695 208.825i 0.589080 0.340105i
\(615\) 0 0
\(616\) −80.0903 114.391i −0.130017 0.185700i
\(617\) −441.505 + 254.903i −0.715567 + 0.413133i −0.813119 0.582098i \(-0.802232\pi\)
0.0975522 + 0.995230i \(0.468899\pi\)
\(618\) 0 0
\(619\) −1064.80 −1.72019 −0.860097 0.510131i \(-0.829597\pi\)
−0.860097 + 0.510131i \(0.829597\pi\)
\(620\) −357.534 + 206.423i −0.576668 + 0.332940i
\(621\) 0 0
\(622\) −394.167 −0.633709
\(623\) 28.1800 + 322.254i 0.0452327 + 0.517262i
\(624\) 0 0
\(625\) 503.675 0.805880
\(626\) 244.297 + 141.045i 0.390250 + 0.225311i
\(627\) 0 0
\(628\) 205.055 + 355.166i 0.326521 + 0.565551i
\(629\) 506.565i 0.805350i
\(630\) 0 0
\(631\) 479.402 0.759750 0.379875 0.925038i \(-0.375967\pi\)
0.379875 + 0.925038i \(0.375967\pi\)
\(632\) −24.9560 + 14.4083i −0.0394873 + 0.0227980i
\(633\) 0 0
\(634\) 13.2268 22.9095i 0.0208625 0.0361349i
\(635\) 122.247i 0.192516i
\(636\) 0 0
\(637\) −717.656 + 126.480i −1.12662 + 0.198556i
\(638\) 135.726i 0.212737i
\(639\) 0 0
\(640\) −48.4465 83.9119i −0.0756977 0.131112i
\(641\) 209.386i 0.326655i −0.986572 0.163327i \(-0.947777\pi\)
0.986572 0.163327i \(-0.0522227\pi\)
\(642\) 0 0
\(643\) −184.919 320.289i −0.287588 0.498117i 0.685645 0.727936i \(-0.259520\pi\)
−0.973234 + 0.229818i \(0.926187\pi\)
\(644\) −48.0165 549.096i −0.0745598 0.852634i
\(645\) 0 0
\(646\) 196.488 + 340.326i 0.304160 + 0.526821i
\(647\) −227.896 + 131.576i −0.352235 + 0.203363i −0.665669 0.746247i \(-0.731854\pi\)
0.313434 + 0.949610i \(0.398521\pi\)
\(648\) 0 0
\(649\) −255.025 + 441.717i −0.392951 + 0.680611i
\(650\) 880.577 + 508.401i 1.35473 + 0.782156i
\(651\) 0 0
\(652\) 260.553 + 451.290i 0.399620 + 0.692163i
\(653\) 811.255i 1.24235i −0.783672 0.621175i \(-0.786655\pi\)
0.783672 0.621175i \(-0.213345\pi\)
\(654\) 0 0
\(655\) 1479.43 2.25867
\(656\) 31.1771 + 18.0001i 0.0475260 + 0.0274391i
\(657\) 0 0
\(658\) 329.194 28.7868i 0.500294 0.0437489i
\(659\) −31.0199 17.9093i −0.0470711 0.0271765i 0.476280 0.879294i \(-0.341985\pi\)
−0.523351 + 0.852117i \(0.675318\pi\)
\(660\) 0 0
\(661\) −194.584 + 337.029i −0.294378 + 0.509877i −0.974840 0.222906i \(-0.928446\pi\)
0.680462 + 0.732783i \(0.261779\pi\)
\(662\) 258.889 + 149.470i 0.391071 + 0.225785i
\(663\) 0 0
\(664\) 25.9067 44.8718i 0.0390162 0.0675780i
\(665\) −100.945 1154.36i −0.151797 1.73588i
\(666\) 0 0
\(667\) 267.869 463.963i 0.401603 0.695596i
\(668\) 254.650i 0.381212i
\(669\) 0 0
\(670\) 1012.71 1.51151
\(671\) −48.7594 + 28.1512i −0.0726668 + 0.0419542i
\(672\) 0 0
\(673\) −399.256 + 691.532i −0.593248 + 1.02754i 0.400543 + 0.916278i \(0.368821\pi\)
−0.993792 + 0.111258i \(0.964512\pi\)
\(674\) −665.480 384.215i −0.987359 0.570052i
\(675\) 0 0
\(676\) 52.1693 + 90.3600i 0.0771736 + 0.133669i
\(677\) 443.787 256.221i 0.655521 0.378465i −0.135048 0.990839i \(-0.543119\pi\)
0.790568 + 0.612374i \(0.209785\pi\)
\(678\) 0 0
\(679\) −685.420 + 59.9375i −1.00946 + 0.0882733i
\(680\) 301.580 174.117i 0.443500 0.256055i
\(681\) 0 0
\(682\) −240.412 −0.352510
\(683\) −1041.76 + 601.463i −1.52528 + 0.880619i −0.525726 + 0.850654i \(0.676206\pi\)
−0.999551 + 0.0299649i \(0.990460\pi\)
\(684\) 0 0
\(685\) 1388.17 2.02652
\(686\) 343.043 342.957i 0.500063 0.499937i
\(687\) 0 0
\(688\) −259.624 −0.377361
\(689\) −779.874 450.261i −1.13189 0.653499i
\(690\) 0 0
\(691\) 270.992 + 469.372i 0.392174 + 0.679265i 0.992736 0.120313i \(-0.0383899\pi\)
−0.600562 + 0.799578i \(0.705057\pi\)
\(692\) 13.0888i 0.0189145i
\(693\) 0 0
\(694\) −210.606 −0.303467
\(695\) −1163.90 + 671.980i −1.67468 + 0.966878i
\(696\) 0 0
\(697\) −64.6925 + 112.051i −0.0928156 + 0.160761i
\(698\) 648.860i 0.929599i
\(699\) 0 0
\(700\) −674.269 + 58.9624i −0.963241 + 0.0842320i
\(701\) 1106.17i 1.57800i −0.614396 0.788998i \(-0.710600\pi\)
0.614396 0.788998i \(-0.289400\pi\)
\(702\) 0 0
\(703\) −340.547 589.844i −0.484419 0.839039i
\(704\) 56.4237i 0.0801473i
\(705\) 0 0
\(706\) −342.460 593.158i −0.485070 0.840167i
\(707\) 635.313 444.811i 0.898603 0.629153i
\(708\) 0 0
\(709\) −679.865 1177.56i −0.958907 1.66088i −0.725163 0.688577i \(-0.758236\pi\)
−0.233744 0.972298i \(-0.575098\pi\)
\(710\) 639.840 369.412i 0.901184 0.520299i
\(711\) 0 0
\(712\) −65.3537 + 113.196i −0.0917888 + 0.158983i
\(713\) −821.816 474.476i −1.15262 0.665464i
\(714\) 0 0
\(715\) 449.150 + 777.951i 0.628182 + 1.08804i
\(716\) 8.72869i 0.0121909i
\(717\) 0 0
\(718\) −525.212 −0.731493
\(719\) 669.276 + 386.407i 0.930843 + 0.537422i 0.887078 0.461620i \(-0.152731\pi\)
0.0437647 + 0.999042i \(0.486065\pi\)
\(720\) 0 0
\(721\) 351.760 + 502.410i 0.487878 + 0.696824i
\(722\) 15.4470 + 8.91832i 0.0213947 + 0.0123522i
\(723\) 0 0
\(724\) 71.3386 123.562i 0.0985340 0.170666i
\(725\) −569.728 328.933i −0.785832 0.453700i
\(726\) 0 0
\(727\) −332.257 + 575.485i −0.457024 + 0.791589i −0.998802 0.0489326i \(-0.984418\pi\)
0.541778 + 0.840522i \(0.317751\pi\)
\(728\) −266.853 124.449i −0.366557 0.170947i
\(729\) 0 0
\(730\) 119.150 206.373i 0.163219 0.282703i
\(731\) 933.093i 1.27646i
\(732\) 0 0
\(733\) 982.898 1.34092 0.670462 0.741944i \(-0.266096\pi\)
0.670462 + 0.741944i \(0.266096\pi\)
\(734\) −299.684 + 173.023i −0.408289 + 0.235726i
\(735\) 0 0
\(736\) 111.358 192.877i 0.151301 0.262061i
\(737\) 510.722 + 294.865i 0.692974 + 0.400089i
\(738\) 0 0
\(739\) −451.664 782.306i −0.611183 1.05860i −0.991041 0.133556i \(-0.957360\pi\)
0.379858 0.925045i \(-0.375973\pi\)
\(740\) −522.690 + 301.775i −0.706338 + 0.407805i
\(741\) 0 0
\(742\) 597.160 52.2195i 0.804797 0.0703766i
\(743\) 662.703 382.612i 0.891928 0.514955i 0.0173557 0.999849i \(-0.494475\pi\)
0.874573 + 0.484894i \(0.161142\pi\)
\(744\) 0 0
\(745\) 2125.31 2.85276
\(746\) 795.235 459.129i 1.06600 0.615455i
\(747\) 0 0
\(748\) 202.787 0.271106
\(749\) −15.7202 179.770i −0.0209883 0.240013i
\(750\) 0 0
\(751\) 448.075 0.596638 0.298319 0.954466i \(-0.403574\pi\)
0.298319 + 0.954466i \(0.403574\pi\)
\(752\) 115.633 + 66.7609i 0.153768 + 0.0887779i
\(753\) 0 0
\(754\) −143.095 247.848i −0.189782 0.328711i
\(755\) 808.485i 1.07084i
\(756\) 0 0
\(757\) −1350.52 −1.78404 −0.892020 0.451995i \(-0.850712\pi\)
−0.892020 + 0.451995i \(0.850712\pi\)
\(758\) 145.663 84.0988i 0.192168 0.110948i
\(759\) 0 0
\(760\) 234.106 405.484i 0.308035 0.533532i
\(761\) 212.791i 0.279620i 0.990178 + 0.139810i \(0.0446492\pi\)
−0.990178 + 0.139810i \(0.955351\pi\)
\(762\) 0 0
\(763\) −312.200 + 669.441i −0.409174 + 0.877380i
\(764\) 236.930i 0.310118i
\(765\) 0 0
\(766\) 252.834 + 437.922i 0.330071 + 0.571700i
\(767\) 1075.48i 1.40220i
\(768\) 0 0
\(769\) 349.195 + 604.823i 0.454090 + 0.786506i 0.998635 0.0522249i \(-0.0166313\pi\)
−0.544546 + 0.838731i \(0.683298\pi\)
\(770\) −541.925 252.732i −0.703799 0.328223i
\(771\) 0 0
\(772\) −192.291 333.058i −0.249082 0.431422i
\(773\) 156.237 90.2037i 0.202118 0.116693i −0.395525 0.918455i \(-0.629437\pi\)
0.597643 + 0.801762i \(0.296104\pi\)
\(774\) 0 0
\(775\) −582.638 + 1009.16i −0.751791 + 1.30214i
\(776\) −240.762 139.004i −0.310261 0.179129i
\(777\) 0 0
\(778\) −248.023 429.589i −0.318796 0.552170i
\(779\) 173.962i 0.223315i
\(780\) 0 0
\(781\) 430.239 0.550882
\(782\) 693.202 + 400.220i 0.886448 + 0.511791i
\(783\) 0 0
\(784\) 193.025 34.0189i 0.246206 0.0433914i
\(785\) 1520.86 + 878.069i 1.93740 + 1.11856i
\(786\) 0 0
\(787\) −80.2269 + 138.957i −0.101940 + 0.176566i −0.912484 0.409113i \(-0.865838\pi\)
0.810544 + 0.585678i \(0.199172\pi\)
\(788\) −482.491 278.566i −0.612298 0.353510i
\(789\) 0 0
\(790\) −61.6980 + 106.864i −0.0780988 + 0.135271i
\(791\) −93.3252 43.5230i −0.117984 0.0550228i
\(792\) 0 0
\(793\) −59.3593 + 102.813i −0.0748541 + 0.129651i
\(794\) 358.080i 0.450982i
\(795\) 0 0
\(796\) −486.699 −0.611431
\(797\) 969.679 559.844i 1.21666 0.702439i 0.252459 0.967608i \(-0.418761\pi\)
0.964202 + 0.265168i \(0.0854275\pi\)
\(798\) 0 0
\(799\) −239.940 + 415.588i −0.300300 + 0.520135i
\(800\) −236.845 136.743i −0.296057 0.170928i
\(801\) 0 0
\(802\) 339.032 + 587.221i 0.422733 + 0.732196i
\(803\) 120.177 69.3844i 0.149660 0.0864064i
\(804\) 0 0
\(805\) −1353.71 1933.47i −1.68163 2.40183i
\(806\) −439.013 + 253.464i −0.544681 + 0.314472i
\(807\) 0 0
\(808\) 313.370 0.387834
\(809\) 262.167 151.362i 0.324063 0.187098i −0.329139 0.944282i \(-0.606758\pi\)
0.653202 + 0.757183i \(0.273425\pi\)
\(810\) 0 0
\(811\) 1037.56 1.27936 0.639680 0.768641i \(-0.279067\pi\)
0.639680 + 0.768641i \(0.279067\pi\)
\(812\) 172.653 + 80.5180i 0.212626 + 0.0991601i
\(813\) 0 0
\(814\) −351.465 −0.431776
\(815\) 1932.47 + 1115.71i 2.37113 + 1.36897i
\(816\) 0 0
\(817\) −627.287 1086.49i −0.767793 1.32986i
\(818\) 14.9876i 0.0183222i
\(819\) 0 0
\(820\) 154.157 0.187996
\(821\) −523.028 + 301.971i −0.637063 + 0.367808i −0.783482 0.621414i \(-0.786558\pi\)
0.146419 + 0.989223i \(0.453225\pi\)
\(822\) 0 0
\(823\) 14.2238 24.6363i 0.0172828 0.0299347i −0.857255 0.514893i \(-0.827832\pi\)
0.874537 + 0.484958i \(0.161165\pi\)
\(824\) 247.815i 0.300747i
\(825\) 0 0
\(826\) −410.601 586.452i −0.497096 0.709990i
\(827\) 798.699i 0.965778i 0.875681 + 0.482889i \(0.160413\pi\)
−0.875681 + 0.482889i \(0.839587\pi\)
\(828\) 0 0
\(829\) 216.869 + 375.628i 0.261603 + 0.453110i 0.966668 0.256033i \(-0.0824154\pi\)
−0.705065 + 0.709143i \(0.749082\pi\)
\(830\) 221.871i 0.267314i
\(831\) 0 0
\(832\) −59.4871 103.035i −0.0714989 0.123840i
\(833\) 122.264 + 693.735i 0.146776 + 0.832815i
\(834\) 0 0
\(835\) −545.219 944.347i −0.652957 1.13095i
\(836\) 236.125 136.327i 0.282447 0.163071i
\(837\) 0 0
\(838\) 499.005 864.303i 0.595472 1.03139i
\(839\) −338.993 195.718i −0.404044 0.233275i 0.284183 0.958770i \(-0.408278\pi\)
−0.688227 + 0.725495i \(0.741611\pi\)
\(840\) 0 0
\(841\) −327.918 567.971i −0.389915 0.675352i
\(842\) 600.108i 0.712718i
\(843\) 0 0
\(844\) 261.468 0.309796
\(845\) 386.931 + 223.395i 0.457907 + 0.264373i
\(846\) 0 0
\(847\) 286.077 + 408.597i 0.337753 + 0.482405i
\(848\) 209.760 + 121.105i 0.247358 + 0.142812i
\(849\) 0 0
\(850\) 491.455 851.225i 0.578182 1.00144i
\(851\) −1201.44 693.651i −1.41180 0.815101i
\(852\) 0 0
\(853\) −517.801 + 896.857i −0.607035 + 1.05141i 0.384692 + 0.923045i \(0.374308\pi\)
−0.991726 + 0.128370i \(0.959026\pi\)
\(854\) −6.88426 78.7254i −0.00806119 0.0921843i
\(855\) 0 0
\(856\) 36.4576 63.1464i 0.0425907 0.0737692i
\(857\) 849.651i 0.991424i 0.868487 + 0.495712i \(0.165093\pi\)
−0.868487 + 0.495712i \(0.834907\pi\)
\(858\) 0 0
\(859\) 1221.58 1.42210 0.711050 0.703142i \(-0.248220\pi\)
0.711050 + 0.703142i \(0.248220\pi\)
\(860\) −962.795 + 555.870i −1.11953 + 0.646361i
\(861\) 0 0
\(862\) −294.734 + 510.494i −0.341919 + 0.592220i
\(863\) −232.708 134.354i −0.269650 0.155682i 0.359079 0.933307i \(-0.383091\pi\)
−0.628728 + 0.777625i \(0.716424\pi\)
\(864\) 0 0
\(865\) 28.0239 + 48.5387i 0.0323975 + 0.0561142i
\(866\) 559.949 323.287i 0.646593 0.373310i
\(867\) 0 0
\(868\) 142.621 305.819i 0.164310 0.352326i
\(869\) −62.2301 + 35.9286i −0.0716112 + 0.0413447i
\(870\) 0 0
\(871\) 1243.50 1.42767
\(872\) −258.477 + 149.232i −0.296419 + 0.171138i
\(873\) 0 0
\(874\) 1076.22 1.23137
\(875\) −1146.50 + 802.714i −1.31028 + 0.917388i
\(876\) 0 0
\(877\) −1004.06 −1.14488 −0.572438 0.819948i \(-0.694002\pi\)
−0.572438 + 0.819948i \(0.694002\pi\)
\(878\) −150.353 86.8064i −0.171245 0.0988684i
\(879\) 0 0
\(880\) −120.806 209.242i −0.137280 0.237776i
\(881\) 370.961i 0.421068i 0.977587 + 0.210534i \(0.0675203\pi\)
−0.977587 + 0.210534i \(0.932480\pi\)
\(882\) 0 0
\(883\) 694.091 0.786060 0.393030 0.919526i \(-0.371427\pi\)
0.393030 + 0.919526i \(0.371427\pi\)
\(884\) 370.308 213.797i 0.418900 0.241852i
\(885\) 0 0
\(886\) −221.661 + 383.929i −0.250182 + 0.433328i
\(887\) 291.012i 0.328086i 0.986453 + 0.164043i \(0.0524536\pi\)
−0.986453 + 0.164043i \(0.947546\pi\)
\(888\) 0 0
\(889\) −57.3080 81.8516i −0.0644634 0.0920715i
\(890\) 559.703i 0.628880i
\(891\) 0 0
\(892\) 51.1130 + 88.5303i 0.0573016 + 0.0992492i
\(893\) 645.213i 0.722523i
\(894\) 0 0
\(895\) −18.6886 32.3696i −0.0208811 0.0361672i
\(896\) 71.7745 + 33.4727i 0.0801055 + 0.0373579i
\(897\) 0 0
\(898\) −153.060 265.107i −0.170445 0.295220i
\(899\) 284.039 163.990i 0.315950 0.182414i
\(900\) 0 0
\(901\) −435.252 + 753.879i −0.483077 + 0.836713i
\(902\) 77.7430 + 44.8850i 0.0861896 + 0.0497616i
\(903\) 0 0
\(904\) −20.8041 36.0337i −0.0230134 0.0398603i
\(905\) 610.960i 0.675094i
\(906\) 0 0
\(907\) −1455.65 −1.60490 −0.802451 0.596719i \(-0.796471\pi\)
−0.802451 + 0.596719i \(0.796471\pi\)
\(908\) 600.881 + 346.919i 0.661763 + 0.382069i
\(909\) 0 0
\(910\) −1256.06 + 109.838i −1.38028 + 0.120701i
\(911\) −310.858 179.474i −0.341228 0.197008i 0.319587 0.947557i \(-0.396456\pi\)
−0.660815 + 0.750549i \(0.729789\pi\)
\(912\) 0 0
\(913\) 64.6010 111.892i 0.0707568 0.122554i
\(914\) 691.948 + 399.496i 0.757055 + 0.437086i
\(915\) 0 0
\(916\) −167.226 + 289.644i −0.182561 + 0.316206i
\(917\) −990.561 + 693.537i −1.08022 + 0.756310i
\(918\) 0 0
\(919\) −739.927 + 1281.59i −0.805144 + 1.39455i 0.111050 + 0.993815i \(0.464579\pi\)
−0.916194 + 0.400735i \(0.868755\pi\)
\(920\) 953.691i 1.03662i
\(921\) 0 0
\(922\) −823.806 −0.893499
\(923\) 785.654 453.598i 0.851196 0.491438i
\(924\) 0 0
\(925\) −851.776 + 1475.32i −0.920839 + 1.59494i
\(926\) −313.762 181.150i −0.338835 0.195627i
\(927\) 0 0
\(928\) 38.4878 + 66.6628i 0.0414739 + 0.0718349i
\(929\) −428.161 + 247.199i −0.460884 + 0.266092i −0.712416 0.701757i \(-0.752399\pi\)
0.251532 + 0.967849i \(0.419066\pi\)
\(930\) 0 0
\(931\) 608.739 + 725.590i 0.653855 + 0.779366i
\(932\) −343.939 + 198.573i −0.369033 + 0.213062i
\(933\) 0 0
\(934\) 491.277 0.525992
\(935\) 752.020 434.179i 0.804299 0.464362i
\(936\) 0 0
\(937\) −1460.33 −1.55852 −0.779258 0.626704i \(-0.784404\pi\)
−0.779258 + 0.626704i \(0.784404\pi\)
\(938\) −678.067 + 474.745i −0.722886 + 0.506125i
\(939\) 0 0
\(940\) 571.755 0.608250
\(941\) 1143.15 + 660.000i 1.21483 + 0.701381i 0.963807 0.266600i \(-0.0859003\pi\)
0.251021 + 0.967982i \(0.419234\pi\)
\(942\) 0 0
\(943\) 177.170 + 306.867i 0.187879 + 0.325415i
\(944\) 289.269i 0.306429i
\(945\) 0 0
\(946\) −647.399 −0.684354
\(947\) 458.361 264.635i 0.484013 0.279445i −0.238074 0.971247i \(-0.576516\pi\)
0.722087 + 0.691802i \(0.243183\pi\)
\(948\) 0 0
\(949\) 146.303 253.404i 0.154165 0.267022i
\(950\) 1321.55i 1.39111i
\(951\) 0 0
\(952\) −120.301 + 257.958i −0.126367 + 0.270965i
\(953\) 193.203i 0.202731i 0.994849 + 0.101366i \(0.0323212\pi\)
−0.994849 + 0.101366i \(0.967679\pi\)
\(954\) 0 0
\(955\) −507.281 878.636i −0.531184 0.920038i
\(956\) 574.203i 0.600631i
\(957\) 0 0
\(958\) 47.9754 + 83.0959i 0.0500787 + 0.0867389i
\(959\) −929.458 + 650.755i −0.969195 + 0.678577i
\(960\) 0 0
\(961\) 190.025 + 329.133i 0.197737 + 0.342490i
\(962\) −641.806 + 370.547i −0.667159 + 0.385184i
\(963\) 0 0
\(964\) 378.594 655.743i 0.392732 0.680232i
\(965\) −1426.19 823.411i −1.47792 0.853275i
\(966\) 0 0
\(967\) −802.035 1389.17i −0.829405 1.43657i −0.898505 0.438962i \(-0.855346\pi\)
0.0691002 0.997610i \(-0.477987\pi\)
\(968\) 201.542i 0.208204i
\(969\) 0 0
\(970\) −1190.46 −1.22728
\(971\) 1197.47 + 691.361i 1.23324 + 0.712010i 0.967703 0.252092i \(-0.0811185\pi\)
0.265534 + 0.964102i \(0.414452\pi\)
\(972\) 0 0
\(973\) 464.284 995.552i 0.477168 1.02318i
\(974\) 567.734 + 327.781i 0.582889 + 0.336531i
\(975\) 0 0
\(976\) 15.9656 27.6533i 0.0163582 0.0283333i
\(977\) −1120.07 646.671i −1.14643 0.661894i −0.198419 0.980117i \(-0.563581\pi\)
−0.948016 + 0.318223i \(0.896914\pi\)
\(978\) 0 0
\(979\) −162.966 + 282.265i −0.166461 + 0.288320i
\(980\) 642.981 539.434i 0.656103 0.550442i
\(981\) 0 0
\(982\) 76.5481 132.585i 0.0779512 0.135015i
\(983\) 1406.31i 1.43063i −0.698800 0.715317i \(-0.746282\pi\)
0.698800 0.715317i \(-0.253718\pi\)
\(984\) 0 0
\(985\) −2385.70 −2.42203
\(986\) −239.587 + 138.325i −0.242989 + 0.140290i
\(987\) 0 0
\(988\) 287.457 497.890i 0.290949 0.503938i
\(989\) −2213.05 1277.70i −2.23766 1.29192i
\(990\) 0 0
\(991\) 929.154 + 1609.34i 0.937593 + 1.62396i 0.769944 + 0.638111i \(0.220284\pi\)
0.167649 + 0.985847i \(0.446383\pi\)
\(992\) 118.080 68.1733i 0.119032 0.0687231i
\(993\) 0 0
\(994\) −255.234 + 547.291i −0.256775 + 0.550595i
\(995\) −1804.88 + 1042.05i −1.81395 + 1.04729i
\(996\) 0 0
\(997\) 642.749 0.644683 0.322341 0.946623i \(-0.395530\pi\)
0.322341 + 0.946623i \(0.395530\pi\)
\(998\) 9.23349 5.33096i 0.00925200 0.00534164i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.i.a.359.1 32
3.2 odd 2 126.3.i.a.65.9 32
7.4 even 3 378.3.r.a.305.8 32
9.4 even 3 126.3.r.a.23.5 yes 32
9.5 odd 6 378.3.r.a.233.16 32
21.11 odd 6 126.3.r.a.11.13 yes 32
63.4 even 3 126.3.i.a.95.9 yes 32
63.32 odd 6 inner 378.3.i.a.179.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.9 32 3.2 odd 2
126.3.i.a.95.9 yes 32 63.4 even 3
126.3.r.a.11.13 yes 32 21.11 odd 6
126.3.r.a.23.5 yes 32 9.4 even 3
378.3.i.a.179.8 32 63.32 odd 6 inner
378.3.i.a.359.1 32 1.1 even 1 trivial
378.3.r.a.233.16 32 9.5 odd 6
378.3.r.a.305.8 32 7.4 even 3