Properties

Label 378.3.r.a.305.14
Level $378$
Weight $3$
Character 378.305
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(233,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.233"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.14
Character \(\chi\) \(=\) 378.305
Dual form 378.3.r.a.233.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +(2.07383 + 1.19732i) q^{5} +(-5.45012 - 4.39274i) q^{7} -2.82843i q^{8} +(-1.69327 + 2.93283i) q^{10} +(-5.05707 + 2.91970i) q^{11} +(-2.87005 - 4.97107i) q^{13} +(6.21227 - 7.70764i) q^{14} +4.00000 q^{16} +(-21.4241 - 12.3692i) q^{17} +(-1.06883 - 1.85127i) q^{19} +(-4.14765 - 2.39465i) q^{20} +(-4.12908 - 7.15177i) q^{22} +(0.123600 + 0.0713603i) q^{23} +(-9.63283 - 16.6845i) q^{25} +(7.03015 - 4.05886i) q^{26} +(10.9002 + 8.78548i) q^{28} +(-31.4557 - 18.1610i) q^{29} +13.0465 q^{31} +5.65685i q^{32} +(17.4927 - 30.2982i) q^{34} +(-6.04307 - 15.6353i) q^{35} +(16.0604 + 27.8173i) q^{37} +(2.61809 - 1.51156i) q^{38} +(3.38655 - 5.86567i) q^{40} +(-27.3943 + 15.8161i) q^{41} +(40.1194 - 69.4888i) q^{43} +(10.1141 - 5.83940i) q^{44} +(-0.100919 + 0.174796i) q^{46} -61.1758i q^{47} +(10.4077 + 47.8819i) q^{49} +(23.5955 - 13.6229i) q^{50} +(5.74010 + 9.94214i) q^{52} +(-22.5819 - 13.0377i) q^{53} -13.9833 q^{55} +(-12.4245 + 15.4153i) q^{56} +(25.6835 - 44.4851i) q^{58} -22.7566i q^{59} -102.664 q^{61} +18.4505i q^{62} -8.00000 q^{64} -13.7455i q^{65} +70.2380 q^{67} +(42.8481 + 24.7384i) q^{68} +(22.1117 - 8.54620i) q^{70} +100.792i q^{71} +(-4.36953 + 7.56824i) q^{73} +(-39.3397 + 22.7128i) q^{74} +(2.13766 + 3.70254i) q^{76} +(40.3871 + 6.30167i) q^{77} -62.2922 q^{79} +(8.29531 + 4.78930i) q^{80} +(-22.3674 - 38.7414i) q^{82} +(51.5381 + 29.7555i) q^{83} +(-29.6199 - 51.3031i) q^{85} +(98.2720 + 56.7374i) q^{86} +(8.25816 + 14.3035i) q^{88} +(94.6860 - 54.6670i) q^{89} +(-6.19450 + 39.7003i) q^{91} +(-0.247199 - 0.142721i) q^{92} +86.5157 q^{94} -5.11896i q^{95} +(-79.8603 + 138.322i) q^{97} +(-67.7153 + 14.7187i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 2 q^{7} + 36 q^{11} + 10 q^{13} - 36 q^{14} + 128 q^{16} + 54 q^{17} + 28 q^{19} + 126 q^{23} + 80 q^{25} + 72 q^{26} - 4 q^{28} - 36 q^{29} + 16 q^{31} + 90 q^{35} + 22 q^{37} - 72 q^{41}+ \cdots - 288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 2.07383 + 1.19732i 0.414765 + 0.239465i 0.692835 0.721096i \(-0.256361\pi\)
−0.278070 + 0.960561i \(0.589695\pi\)
\(6\) 0 0
\(7\) −5.45012 4.39274i −0.778589 0.627534i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −1.69327 + 2.93283i −0.169327 + 0.293283i
\(11\) −5.05707 + 2.91970i −0.459733 + 0.265427i −0.711932 0.702248i \(-0.752180\pi\)
0.252199 + 0.967675i \(0.418846\pi\)
\(12\) 0 0
\(13\) −2.87005 4.97107i −0.220773 0.382390i 0.734270 0.678858i \(-0.237525\pi\)
−0.955043 + 0.296468i \(0.904191\pi\)
\(14\) 6.21227 7.70764i 0.443734 0.550545i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −21.4241 12.3692i −1.26024 0.727600i −0.287119 0.957895i \(-0.592697\pi\)
−0.973121 + 0.230296i \(0.926031\pi\)
\(18\) 0 0
\(19\) −1.06883 1.85127i −0.0562543 0.0974353i 0.836527 0.547926i \(-0.184582\pi\)
−0.892781 + 0.450491i \(0.851249\pi\)
\(20\) −4.14765 2.39465i −0.207383 0.119732i
\(21\) 0 0
\(22\) −4.12908 7.15177i −0.187685 0.325081i
\(23\) 0.123600 + 0.0713603i 0.00537389 + 0.00310262i 0.502685 0.864470i \(-0.332346\pi\)
−0.497311 + 0.867573i \(0.665679\pi\)
\(24\) 0 0
\(25\) −9.63283 16.6845i −0.385313 0.667382i
\(26\) 7.03015 4.05886i 0.270391 0.156110i
\(27\) 0 0
\(28\) 10.9002 + 8.78548i 0.389294 + 0.313767i
\(29\) −31.4557 18.1610i −1.08468 0.626240i −0.152524 0.988300i \(-0.548740\pi\)
−0.932155 + 0.362060i \(0.882074\pi\)
\(30\) 0 0
\(31\) 13.0465 0.420855 0.210427 0.977609i \(-0.432514\pi\)
0.210427 + 0.977609i \(0.432514\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 17.4927 30.2982i 0.514491 0.891124i
\(35\) −6.04307 15.6353i −0.172659 0.446724i
\(36\) 0 0
\(37\) 16.0604 + 27.8173i 0.434064 + 0.751820i 0.997219 0.0745311i \(-0.0237460\pi\)
−0.563155 + 0.826351i \(0.690413\pi\)
\(38\) 2.61809 1.51156i 0.0688972 0.0397778i
\(39\) 0 0
\(40\) 3.38655 5.86567i 0.0846636 0.146642i
\(41\) −27.3943 + 15.8161i −0.668155 + 0.385759i −0.795377 0.606115i \(-0.792727\pi\)
0.127222 + 0.991874i \(0.459394\pi\)
\(42\) 0 0
\(43\) 40.1194 69.4888i 0.933009 1.61602i 0.154863 0.987936i \(-0.450506\pi\)
0.778146 0.628083i \(-0.216160\pi\)
\(44\) 10.1141 5.83940i 0.229867 0.132714i
\(45\) 0 0
\(46\) −0.100919 + 0.174796i −0.00219388 + 0.00379992i
\(47\) 61.1758i 1.30161i −0.759244 0.650807i \(-0.774431\pi\)
0.759244 0.650807i \(-0.225569\pi\)
\(48\) 0 0
\(49\) 10.4077 + 47.8819i 0.212401 + 0.977183i
\(50\) 23.5955 13.6229i 0.471910 0.272458i
\(51\) 0 0
\(52\) 5.74010 + 9.94214i 0.110386 + 0.191195i
\(53\) −22.5819 13.0377i −0.426074 0.245994i 0.271599 0.962411i \(-0.412448\pi\)
−0.697673 + 0.716417i \(0.745781\pi\)
\(54\) 0 0
\(55\) −13.9833 −0.254242
\(56\) −12.4245 + 15.4153i −0.221867 + 0.275273i
\(57\) 0 0
\(58\) 25.6835 44.4851i 0.442818 0.766984i
\(59\) 22.7566i 0.385706i −0.981228 0.192853i \(-0.938226\pi\)
0.981228 0.192853i \(-0.0617740\pi\)
\(60\) 0 0
\(61\) −102.664 −1.68302 −0.841508 0.540244i \(-0.818332\pi\)
−0.841508 + 0.540244i \(0.818332\pi\)
\(62\) 18.4505i 0.297589i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 13.7455i 0.211469i
\(66\) 0 0
\(67\) 70.2380 1.04833 0.524164 0.851617i \(-0.324378\pi\)
0.524164 + 0.851617i \(0.324378\pi\)
\(68\) 42.8481 + 24.7384i 0.630120 + 0.363800i
\(69\) 0 0
\(70\) 22.1117 8.54620i 0.315882 0.122089i
\(71\) 100.792i 1.41961i 0.704399 + 0.709804i \(0.251216\pi\)
−0.704399 + 0.709804i \(0.748784\pi\)
\(72\) 0 0
\(73\) −4.36953 + 7.56824i −0.0598565 + 0.103675i −0.894401 0.447266i \(-0.852398\pi\)
0.834544 + 0.550941i \(0.185731\pi\)
\(74\) −39.3397 + 22.7128i −0.531617 + 0.306929i
\(75\) 0 0
\(76\) 2.13766 + 3.70254i 0.0281272 + 0.0487177i
\(77\) 40.3871 + 6.30167i 0.524508 + 0.0818398i
\(78\) 0 0
\(79\) −62.2922 −0.788508 −0.394254 0.919001i \(-0.628997\pi\)
−0.394254 + 0.919001i \(0.628997\pi\)
\(80\) 8.29531 + 4.78930i 0.103691 + 0.0598662i
\(81\) 0 0
\(82\) −22.3674 38.7414i −0.272773 0.472457i
\(83\) 51.5381 + 29.7555i 0.620941 + 0.358501i 0.777235 0.629210i \(-0.216621\pi\)
−0.156294 + 0.987711i \(0.549955\pi\)
\(84\) 0 0
\(85\) −29.6199 51.3031i −0.348469 0.603566i
\(86\) 98.2720 + 56.7374i 1.14270 + 0.659737i
\(87\) 0 0
\(88\) 8.25816 + 14.3035i 0.0938427 + 0.162540i
\(89\) 94.6860 54.6670i 1.06389 0.614236i 0.137382 0.990518i \(-0.456131\pi\)
0.926505 + 0.376282i \(0.122798\pi\)
\(90\) 0 0
\(91\) −6.19450 + 39.7003i −0.0680715 + 0.436267i
\(92\) −0.247199 0.142721i −0.00268695 0.00155131i
\(93\) 0 0
\(94\) 86.5157 0.920380
\(95\) 5.11896i 0.0538837i
\(96\) 0 0
\(97\) −79.8603 + 138.322i −0.823302 + 1.42600i 0.0799082 + 0.996802i \(0.474537\pi\)
−0.903210 + 0.429199i \(0.858796\pi\)
\(98\) −67.7153 + 14.7187i −0.690972 + 0.150190i
\(99\) 0 0
\(100\) 19.2657 + 33.3691i 0.192657 + 0.333691i
\(101\) 110.263 63.6601i 1.09171 0.630298i 0.157678 0.987491i \(-0.449599\pi\)
0.934031 + 0.357192i \(0.116266\pi\)
\(102\) 0 0
\(103\) 24.4892 42.4165i 0.237759 0.411811i −0.722312 0.691567i \(-0.756920\pi\)
0.960071 + 0.279757i \(0.0902538\pi\)
\(104\) −14.0603 + 8.11772i −0.135195 + 0.0780550i
\(105\) 0 0
\(106\) 18.4380 31.9356i 0.173944 0.301280i
\(107\) −116.454 + 67.2350i −1.08836 + 0.628364i −0.933139 0.359516i \(-0.882942\pi\)
−0.155220 + 0.987880i \(0.549608\pi\)
\(108\) 0 0
\(109\) −83.0714 + 143.884i −0.762123 + 1.32004i 0.179631 + 0.983734i \(0.442510\pi\)
−0.941754 + 0.336302i \(0.890824\pi\)
\(110\) 19.7754i 0.179776i
\(111\) 0 0
\(112\) −21.8005 17.5710i −0.194647 0.156884i
\(113\) −174.655 + 100.837i −1.54562 + 0.892363i −0.547149 + 0.837035i \(0.684287\pi\)
−0.998468 + 0.0553276i \(0.982380\pi\)
\(114\) 0 0
\(115\) 0.170883 + 0.295978i 0.00148594 + 0.00257372i
\(116\) 62.9114 + 36.3219i 0.542340 + 0.313120i
\(117\) 0 0
\(118\) 32.1827 0.272735
\(119\) 62.4291 + 161.524i 0.524615 + 1.35734i
\(120\) 0 0
\(121\) −43.4507 + 75.2588i −0.359097 + 0.621974i
\(122\) 145.189i 1.19007i
\(123\) 0 0
\(124\) −26.0930 −0.210427
\(125\) 106.001i 0.848006i
\(126\) 0 0
\(127\) −32.4486 −0.255501 −0.127750 0.991806i \(-0.540776\pi\)
−0.127750 + 0.991806i \(0.540776\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 19.4391 0.149532
\(131\) −158.483 91.5000i −1.20979 0.698473i −0.247077 0.968996i \(-0.579470\pi\)
−0.962714 + 0.270523i \(0.912803\pi\)
\(132\) 0 0
\(133\) −2.30689 + 14.7848i −0.0173450 + 0.111164i
\(134\) 99.3315i 0.741280i
\(135\) 0 0
\(136\) −34.9854 + 60.5964i −0.257245 + 0.445562i
\(137\) −26.6948 + 15.4123i −0.194853 + 0.112498i −0.594252 0.804279i \(-0.702552\pi\)
0.399400 + 0.916777i \(0.369219\pi\)
\(138\) 0 0
\(139\) 27.7854 + 48.1257i 0.199895 + 0.346228i 0.948494 0.316795i \(-0.102607\pi\)
−0.748599 + 0.663023i \(0.769273\pi\)
\(140\) 12.0861 + 31.2707i 0.0863296 + 0.223362i
\(141\) 0 0
\(142\) −142.542 −1.00381
\(143\) 29.0281 + 16.7594i 0.202993 + 0.117198i
\(144\) 0 0
\(145\) −43.4891 75.3253i −0.299925 0.519485i
\(146\) −10.7031 6.17945i −0.0733090 0.0423250i
\(147\) 0 0
\(148\) −32.1207 55.6347i −0.217032 0.375910i
\(149\) −6.39250 3.69071i −0.0429027 0.0247699i 0.478395 0.878145i \(-0.341219\pi\)
−0.521298 + 0.853375i \(0.674552\pi\)
\(150\) 0 0
\(151\) −17.2684 29.9097i −0.114360 0.198078i 0.803164 0.595759i \(-0.203148\pi\)
−0.917524 + 0.397681i \(0.869815\pi\)
\(152\) −5.23619 + 3.02311i −0.0344486 + 0.0198889i
\(153\) 0 0
\(154\) −8.91190 + 57.1160i −0.0578695 + 0.370883i
\(155\) 27.0562 + 15.6209i 0.174556 + 0.100780i
\(156\) 0 0
\(157\) 192.632 1.22696 0.613478 0.789712i \(-0.289770\pi\)
0.613478 + 0.789712i \(0.289770\pi\)
\(158\) 88.0944i 0.557560i
\(159\) 0 0
\(160\) −6.77309 + 11.7313i −0.0423318 + 0.0733209i
\(161\) −0.360166 0.931863i −0.00223705 0.00578797i
\(162\) 0 0
\(163\) 113.038 + 195.787i 0.693484 + 1.20115i 0.970689 + 0.240339i \(0.0772586\pi\)
−0.277205 + 0.960811i \(0.589408\pi\)
\(164\) 54.7887 31.6323i 0.334077 0.192880i
\(165\) 0 0
\(166\) −42.0807 + 72.8859i −0.253498 + 0.439072i
\(167\) 113.351 65.4431i 0.678747 0.391875i −0.120636 0.992697i \(-0.538493\pi\)
0.799383 + 0.600822i \(0.205160\pi\)
\(168\) 0 0
\(169\) 68.0256 117.824i 0.402519 0.697183i
\(170\) 72.5536 41.8888i 0.426786 0.246405i
\(171\) 0 0
\(172\) −80.2388 + 138.978i −0.466505 + 0.808010i
\(173\) 80.1752i 0.463440i 0.972782 + 0.231720i \(0.0744354\pi\)
−0.972782 + 0.231720i \(0.925565\pi\)
\(174\) 0 0
\(175\) −20.7908 + 133.247i −0.118805 + 0.761413i
\(176\) −20.2283 + 11.6788i −0.114933 + 0.0663568i
\(177\) 0 0
\(178\) 77.3108 + 133.906i 0.434330 + 0.752282i
\(179\) 90.6710 + 52.3489i 0.506542 + 0.292452i 0.731411 0.681937i \(-0.238862\pi\)
−0.224869 + 0.974389i \(0.572195\pi\)
\(180\) 0 0
\(181\) −177.386 −0.980033 −0.490016 0.871713i \(-0.663009\pi\)
−0.490016 + 0.871713i \(0.663009\pi\)
\(182\) −56.1447 8.76035i −0.308487 0.0481338i
\(183\) 0 0
\(184\) 0.201837 0.349592i 0.00109694 0.00189996i
\(185\) 76.9178i 0.415772i
\(186\) 0 0
\(187\) 144.457 0.772499
\(188\) 122.352i 0.650807i
\(189\) 0 0
\(190\) 7.23930 0.0381016
\(191\) 175.715i 0.919971i 0.887926 + 0.459986i \(0.152145\pi\)
−0.887926 + 0.459986i \(0.847855\pi\)
\(192\) 0 0
\(193\) 81.6816 0.423221 0.211610 0.977354i \(-0.432129\pi\)
0.211610 + 0.977354i \(0.432129\pi\)
\(194\) −195.617 112.940i −1.00833 0.582162i
\(195\) 0 0
\(196\) −20.8153 95.7639i −0.106201 0.488591i
\(197\) 318.861i 1.61858i −0.587407 0.809292i \(-0.699851\pi\)
0.587407 0.809292i \(-0.300149\pi\)
\(198\) 0 0
\(199\) 187.878 325.414i 0.944109 1.63524i 0.186583 0.982439i \(-0.440259\pi\)
0.757525 0.652806i \(-0.226408\pi\)
\(200\) −47.1910 + 27.2458i −0.235955 + 0.136229i
\(201\) 0 0
\(202\) 90.0290 + 155.935i 0.445688 + 0.771955i
\(203\) 91.6610 + 237.156i 0.451532 + 1.16826i
\(204\) 0 0
\(205\) −75.7481 −0.369503
\(206\) 59.9860 + 34.6329i 0.291194 + 0.168121i
\(207\) 0 0
\(208\) −11.4802 19.8843i −0.0551932 0.0955975i
\(209\) 10.8103 + 6.24134i 0.0517240 + 0.0298629i
\(210\) 0 0
\(211\) −130.248 225.596i −0.617289 1.06918i −0.989978 0.141220i \(-0.954898\pi\)
0.372689 0.927956i \(-0.378436\pi\)
\(212\) 45.1638 + 26.0753i 0.213037 + 0.122997i
\(213\) 0 0
\(214\) −95.0846 164.691i −0.444320 0.769586i
\(215\) 166.401 96.0719i 0.773960 0.446846i
\(216\) 0 0
\(217\) −71.1050 57.3099i −0.327673 0.264101i
\(218\) −203.483 117.481i −0.933406 0.538902i
\(219\) 0 0
\(220\) 27.9666 0.127121
\(221\) 142.001i 0.642537i
\(222\) 0 0
\(223\) 118.795 205.760i 0.532715 0.922690i −0.466555 0.884492i \(-0.654505\pi\)
0.999270 0.0381976i \(-0.0121616\pi\)
\(224\) 24.8491 30.8305i 0.110933 0.137636i
\(225\) 0 0
\(226\) −142.605 246.999i −0.630996 1.09292i
\(227\) 204.405 118.013i 0.900462 0.519882i 0.0231118 0.999733i \(-0.492643\pi\)
0.877350 + 0.479851i \(0.159309\pi\)
\(228\) 0 0
\(229\) 199.129 344.901i 0.869559 1.50612i 0.00711031 0.999975i \(-0.497737\pi\)
0.862448 0.506145i \(-0.168930\pi\)
\(230\) −0.418576 + 0.241665i −0.00181989 + 0.00105072i
\(231\) 0 0
\(232\) −51.3669 + 88.9701i −0.221409 + 0.383492i
\(233\) −131.868 + 76.1339i −0.565956 + 0.326755i −0.755532 0.655111i \(-0.772622\pi\)
0.189577 + 0.981866i \(0.439288\pi\)
\(234\) 0 0
\(235\) 73.2473 126.868i 0.311691 0.539864i
\(236\) 45.5133i 0.192853i
\(237\) 0 0
\(238\) −228.429 + 88.2881i −0.959787 + 0.370959i
\(239\) 60.0571 34.6740i 0.251285 0.145079i −0.369067 0.929403i \(-0.620323\pi\)
0.620353 + 0.784323i \(0.286990\pi\)
\(240\) 0 0
\(241\) 15.3762 + 26.6324i 0.0638018 + 0.110508i 0.896162 0.443727i \(-0.146344\pi\)
−0.832360 + 0.554235i \(0.813011\pi\)
\(242\) −106.432 61.4486i −0.439802 0.253920i
\(243\) 0 0
\(244\) 205.328 0.841508
\(245\) −35.7465 + 111.760i −0.145904 + 0.456164i
\(246\) 0 0
\(247\) −6.13520 + 10.6265i −0.0248389 + 0.0430222i
\(248\) 36.9011i 0.148795i
\(249\) 0 0
\(250\) 149.908 0.599631
\(251\) 297.840i 1.18661i −0.804976 0.593307i \(-0.797822\pi\)
0.804976 0.593307i \(-0.202178\pi\)
\(252\) 0 0
\(253\) −0.833402 −0.00329408
\(254\) 45.8893i 0.180666i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −91.4268 52.7853i −0.355746 0.205390i 0.311467 0.950257i \(-0.399180\pi\)
−0.667213 + 0.744867i \(0.732513\pi\)
\(258\) 0 0
\(259\) 34.6635 222.157i 0.133836 0.857749i
\(260\) 27.4910i 0.105735i
\(261\) 0 0
\(262\) 129.400 224.128i 0.493895 0.855451i
\(263\) 91.8938 53.0549i 0.349406 0.201730i −0.315018 0.949086i \(-0.602010\pi\)
0.664424 + 0.747356i \(0.268677\pi\)
\(264\) 0 0
\(265\) −31.2206 54.0757i −0.117814 0.204059i
\(266\) −20.9088 3.26244i −0.0786045 0.0122648i
\(267\) 0 0
\(268\) −140.476 −0.524164
\(269\) −195.184 112.689i −0.725591 0.418920i 0.0912161 0.995831i \(-0.470925\pi\)
−0.816807 + 0.576911i \(0.804258\pi\)
\(270\) 0 0
\(271\) 84.0102 + 145.510i 0.310001 + 0.536937i 0.978362 0.206900i \(-0.0663374\pi\)
−0.668362 + 0.743837i \(0.733004\pi\)
\(272\) −85.6963 49.4768i −0.315060 0.181900i
\(273\) 0 0
\(274\) −21.7962 37.7522i −0.0795483 0.137782i
\(275\) 97.4277 + 56.2499i 0.354283 + 0.204545i
\(276\) 0 0
\(277\) 167.769 + 290.584i 0.605663 + 1.04904i 0.991946 + 0.126659i \(0.0404255\pi\)
−0.386283 + 0.922380i \(0.626241\pi\)
\(278\) −68.0600 + 39.2944i −0.244820 + 0.141347i
\(279\) 0 0
\(280\) −44.2234 + 17.0924i −0.157941 + 0.0610443i
\(281\) −468.870 270.702i −1.66858 0.963353i −0.968406 0.249377i \(-0.919774\pi\)
−0.700170 0.713976i \(-0.746893\pi\)
\(282\) 0 0
\(283\) −316.510 −1.11841 −0.559204 0.829030i \(-0.688893\pi\)
−0.559204 + 0.829030i \(0.688893\pi\)
\(284\) 201.584i 0.709804i
\(285\) 0 0
\(286\) −23.7013 + 41.0519i −0.0828717 + 0.143538i
\(287\) 218.779 + 34.1364i 0.762295 + 0.118942i
\(288\) 0 0
\(289\) 161.494 + 279.715i 0.558802 + 0.967874i
\(290\) 106.526 61.5029i 0.367331 0.212079i
\(291\) 0 0
\(292\) 8.73906 15.1365i 0.0299283 0.0518373i
\(293\) 224.604 129.675i 0.766568 0.442578i −0.0650812 0.997880i \(-0.520731\pi\)
0.831649 + 0.555302i \(0.187397\pi\)
\(294\) 0 0
\(295\) 27.2471 47.1933i 0.0923629 0.159977i
\(296\) 78.6793 45.4255i 0.265809 0.153465i
\(297\) 0 0
\(298\) 5.21945 9.04035i 0.0175149 0.0303368i
\(299\) 0.819229i 0.00273990i
\(300\) 0 0
\(301\) −523.902 + 202.489i −1.74054 + 0.672719i
\(302\) 42.2987 24.4212i 0.140062 0.0808649i
\(303\) 0 0
\(304\) −4.27533 7.40509i −0.0140636 0.0243588i
\(305\) −212.907 122.922i −0.698057 0.403023i
\(306\) 0 0
\(307\) 185.899 0.605534 0.302767 0.953065i \(-0.402090\pi\)
0.302767 + 0.953065i \(0.402090\pi\)
\(308\) −80.7742 12.6033i −0.262254 0.0409199i
\(309\) 0 0
\(310\) −22.0913 + 38.2632i −0.0712622 + 0.123430i
\(311\) 6.94024i 0.0223159i −0.999938 0.0111579i \(-0.996448\pi\)
0.999938 0.0111579i \(-0.00355176\pi\)
\(312\) 0 0
\(313\) 396.112 1.26553 0.632767 0.774342i \(-0.281919\pi\)
0.632767 + 0.774342i \(0.281919\pi\)
\(314\) 272.423i 0.867589i
\(315\) 0 0
\(316\) 124.584 0.394254
\(317\) 56.4970i 0.178224i 0.996022 + 0.0891120i \(0.0284029\pi\)
−0.996022 + 0.0891120i \(0.971597\pi\)
\(318\) 0 0
\(319\) 212.098 0.664884
\(320\) −16.5906 9.57860i −0.0518457 0.0299331i
\(321\) 0 0
\(322\) 1.31785 0.509351i 0.00409271 0.00158184i
\(323\) 52.8824i 0.163722i
\(324\) 0 0
\(325\) −55.2934 + 95.7709i −0.170133 + 0.294680i
\(326\) −276.885 + 159.860i −0.849341 + 0.490367i
\(327\) 0 0
\(328\) 44.7348 + 77.4829i 0.136386 + 0.236228i
\(329\) −268.730 + 333.416i −0.816807 + 1.01342i
\(330\) 0 0
\(331\) −220.862 −0.667256 −0.333628 0.942705i \(-0.608273\pi\)
−0.333628 + 0.942705i \(0.608273\pi\)
\(332\) −103.076 59.5111i −0.310471 0.179250i
\(333\) 0 0
\(334\) 92.5505 + 160.302i 0.277097 + 0.479946i
\(335\) 145.661 + 84.0977i 0.434810 + 0.251038i
\(336\) 0 0
\(337\) −171.431 296.928i −0.508698 0.881092i −0.999949 0.0100734i \(-0.996793\pi\)
0.491251 0.871018i \(-0.336540\pi\)
\(338\) 166.628 + 96.2028i 0.492983 + 0.284624i
\(339\) 0 0
\(340\) 59.2397 + 102.606i 0.174235 + 0.301783i
\(341\) −65.9770 + 38.0919i −0.193481 + 0.111706i
\(342\) 0 0
\(343\) 153.610 306.681i 0.447842 0.894113i
\(344\) −196.544 113.475i −0.571349 0.329869i
\(345\) 0 0
\(346\) −113.385 −0.327702
\(347\) 365.443i 1.05315i −0.850129 0.526574i \(-0.823476\pi\)
0.850129 0.526574i \(-0.176524\pi\)
\(348\) 0 0
\(349\) −2.62605 + 4.54846i −0.00752451 + 0.0130328i −0.869763 0.493469i \(-0.835728\pi\)
0.862239 + 0.506502i \(0.169062\pi\)
\(350\) −188.440 29.4026i −0.538401 0.0840075i
\(351\) 0 0
\(352\) −16.5163 28.6071i −0.0469213 0.0812701i
\(353\) 129.987 75.0482i 0.368236 0.212601i −0.304452 0.952528i \(-0.598473\pi\)
0.672687 + 0.739927i \(0.265140\pi\)
\(354\) 0 0
\(355\) −120.681 + 209.026i −0.339946 + 0.588804i
\(356\) −189.372 + 109.334i −0.531944 + 0.307118i
\(357\) 0 0
\(358\) −74.0325 + 128.228i −0.206795 + 0.358179i
\(359\) −21.1053 + 12.1852i −0.0587893 + 0.0339420i −0.529107 0.848555i \(-0.677473\pi\)
0.470317 + 0.882497i \(0.344139\pi\)
\(360\) 0 0
\(361\) 178.215 308.678i 0.493671 0.855063i
\(362\) 250.862i 0.692988i
\(363\) 0 0
\(364\) 12.3890 79.4006i 0.0340357 0.218134i
\(365\) −18.1233 + 10.4635i −0.0496528 + 0.0286671i
\(366\) 0 0
\(367\) 271.890 + 470.927i 0.740845 + 1.28318i 0.952111 + 0.305752i \(0.0989079\pi\)
−0.211266 + 0.977429i \(0.567759\pi\)
\(368\) 0.494398 + 0.285441i 0.00134347 + 0.000775655i
\(369\) 0 0
\(370\) −108.778 −0.293995
\(371\) 65.8030 + 170.253i 0.177367 + 0.458904i
\(372\) 0 0
\(373\) −145.946 + 252.785i −0.391275 + 0.677709i −0.992618 0.121283i \(-0.961299\pi\)
0.601343 + 0.798991i \(0.294633\pi\)
\(374\) 204.293i 0.546239i
\(375\) 0 0
\(376\) −173.031 −0.460190
\(377\) 208.491i 0.553027i
\(378\) 0 0
\(379\) −387.585 −1.02265 −0.511325 0.859387i \(-0.670845\pi\)
−0.511325 + 0.859387i \(0.670845\pi\)
\(380\) 10.2379i 0.0269419i
\(381\) 0 0
\(382\) −248.498 −0.650518
\(383\) −303.470 175.208i −0.792350 0.457463i 0.0484394 0.998826i \(-0.484575\pi\)
−0.840789 + 0.541363i \(0.817909\pi\)
\(384\) 0 0
\(385\) 76.2107 + 61.4251i 0.197950 + 0.159546i
\(386\) 115.515i 0.299262i
\(387\) 0 0
\(388\) 159.721 276.644i 0.411651 0.713000i
\(389\) 445.087 256.971i 1.14418 0.660594i 0.196720 0.980460i \(-0.436971\pi\)
0.947463 + 0.319866i \(0.103638\pi\)
\(390\) 0 0
\(391\) −1.76534 3.05765i −0.00451493 0.00782009i
\(392\) 135.431 29.4373i 0.345486 0.0750952i
\(393\) 0 0
\(394\) 450.937 1.14451
\(395\) −129.183 74.5839i −0.327046 0.188820i
\(396\) 0 0
\(397\) −223.785 387.607i −0.563690 0.976339i −0.997170 0.0751762i \(-0.976048\pi\)
0.433481 0.901163i \(-0.357285\pi\)
\(398\) 460.204 + 265.699i 1.15629 + 0.667586i
\(399\) 0 0
\(400\) −38.5313 66.7382i −0.0963283 0.166845i
\(401\) 269.976 + 155.871i 0.673257 + 0.388705i 0.797309 0.603571i \(-0.206256\pi\)
−0.124053 + 0.992276i \(0.539589\pi\)
\(402\) 0 0
\(403\) −37.4441 64.8551i −0.0929134 0.160931i
\(404\) −220.525 + 127.320i −0.545854 + 0.315149i
\(405\) 0 0
\(406\) −335.389 + 129.628i −0.826082 + 0.319281i
\(407\) −162.437 93.7828i −0.399107 0.230425i
\(408\) 0 0
\(409\) −295.889 −0.723444 −0.361722 0.932286i \(-0.617811\pi\)
−0.361722 + 0.932286i \(0.617811\pi\)
\(410\) 107.124i 0.261278i
\(411\) 0 0
\(412\) −48.9784 + 84.8330i −0.118880 + 0.205905i
\(413\) −99.9640 + 124.026i −0.242043 + 0.300306i
\(414\) 0 0
\(415\) 71.2541 + 123.416i 0.171697 + 0.297387i
\(416\) 28.1206 16.2354i 0.0675976 0.0390275i
\(417\) 0 0
\(418\) −8.82658 + 15.2881i −0.0211162 + 0.0365744i
\(419\) 327.219 188.920i 0.780952 0.450883i −0.0558158 0.998441i \(-0.517776\pi\)
0.836767 + 0.547558i \(0.184443\pi\)
\(420\) 0 0
\(421\) −282.035 + 488.499i −0.669918 + 1.16033i 0.308009 + 0.951383i \(0.400337\pi\)
−0.977927 + 0.208948i \(0.932996\pi\)
\(422\) 319.041 184.199i 0.756022 0.436489i
\(423\) 0 0
\(424\) −36.8761 + 63.8713i −0.0869719 + 0.150640i
\(425\) 476.601i 1.12141i
\(426\) 0 0
\(427\) 559.531 + 450.976i 1.31038 + 1.05615i
\(428\) 232.909 134.470i 0.544179 0.314182i
\(429\) 0 0
\(430\) 135.866 + 235.327i 0.315968 + 0.547272i
\(431\) 651.482 + 376.134i 1.51156 + 0.872700i 0.999909 + 0.0135064i \(0.00429935\pi\)
0.511651 + 0.859193i \(0.329034\pi\)
\(432\) 0 0
\(433\) −451.261 −1.04217 −0.521087 0.853503i \(-0.674473\pi\)
−0.521087 + 0.853503i \(0.674473\pi\)
\(434\) 81.0484 100.558i 0.186748 0.231700i
\(435\) 0 0
\(436\) 166.143 287.768i 0.381061 0.660018i
\(437\) 0.305089i 0.000698143i
\(438\) 0 0
\(439\) −132.928 −0.302798 −0.151399 0.988473i \(-0.548378\pi\)
−0.151399 + 0.988473i \(0.548378\pi\)
\(440\) 39.5508i 0.0898881i
\(441\) 0 0
\(442\) −200.819 −0.454342
\(443\) 415.252i 0.937364i 0.883367 + 0.468682i \(0.155271\pi\)
−0.883367 + 0.468682i \(0.844729\pi\)
\(444\) 0 0
\(445\) 261.816 0.588351
\(446\) 290.988 + 168.002i 0.652440 + 0.376687i
\(447\) 0 0
\(448\) 43.6010 + 35.1419i 0.0973236 + 0.0784418i
\(449\) 262.832i 0.585372i 0.956209 + 0.292686i \(0.0945490\pi\)
−0.956209 + 0.292686i \(0.905451\pi\)
\(450\) 0 0
\(451\) 92.3567 159.966i 0.204782 0.354693i
\(452\) 349.310 201.674i 0.772809 0.446181i
\(453\) 0 0
\(454\) 166.896 + 289.072i 0.367612 + 0.636723i
\(455\) −60.3805 + 74.9147i −0.132704 + 0.164648i
\(456\) 0 0
\(457\) −506.026 −1.10728 −0.553639 0.832757i \(-0.686761\pi\)
−0.553639 + 0.832757i \(0.686761\pi\)
\(458\) 487.764 + 281.611i 1.06499 + 0.614871i
\(459\) 0 0
\(460\) −0.341766 0.591955i −0.000742969 0.00128686i
\(461\) −660.234 381.186i −1.43218 0.826868i −0.434891 0.900483i \(-0.643213\pi\)
−0.997287 + 0.0736145i \(0.976547\pi\)
\(462\) 0 0
\(463\) −14.2110 24.6141i −0.0306932 0.0531622i 0.850271 0.526346i \(-0.176438\pi\)
−0.880964 + 0.473183i \(0.843105\pi\)
\(464\) −125.823 72.6438i −0.271170 0.156560i
\(465\) 0 0
\(466\) −107.670 186.489i −0.231050 0.400191i
\(467\) 126.660 73.1271i 0.271220 0.156589i −0.358222 0.933637i \(-0.616617\pi\)
0.629442 + 0.777047i \(0.283283\pi\)
\(468\) 0 0
\(469\) −382.806 308.537i −0.816217 0.657862i
\(470\) 179.419 + 103.587i 0.381742 + 0.220399i
\(471\) 0 0
\(472\) −64.3655 −0.136368
\(473\) 468.546i 0.990584i
\(474\) 0 0
\(475\) −20.5918 + 35.6660i −0.0433511 + 0.0750862i
\(476\) −124.858 323.048i −0.262307 0.678672i
\(477\) 0 0
\(478\) 49.0364 + 84.9336i 0.102587 + 0.177685i
\(479\) 47.7197 27.5510i 0.0996236 0.0575177i −0.449360 0.893351i \(-0.648348\pi\)
0.548984 + 0.835833i \(0.315015\pi\)
\(480\) 0 0
\(481\) 92.1880 159.674i 0.191659 0.331963i
\(482\) −37.6639 + 21.7453i −0.0781409 + 0.0451147i
\(483\) 0 0
\(484\) 86.9014 150.518i 0.179548 0.310987i
\(485\) −331.233 + 191.237i −0.682954 + 0.394304i
\(486\) 0 0
\(487\) 238.930 413.839i 0.490616 0.849772i −0.509326 0.860574i \(-0.670105\pi\)
0.999942 + 0.0108019i \(0.00343842\pi\)
\(488\) 290.378i 0.595036i
\(489\) 0 0
\(490\) −158.053 50.5532i −0.322557 0.103170i
\(491\) −412.348 + 238.069i −0.839813 + 0.484866i −0.857201 0.514982i \(-0.827798\pi\)
0.0173875 + 0.999849i \(0.494465\pi\)
\(492\) 0 0
\(493\) 449.273 + 778.163i 0.911303 + 1.57842i
\(494\) −15.0281 8.67648i −0.0304213 0.0175637i
\(495\) 0 0
\(496\) 52.1860 0.105214
\(497\) 442.754 549.330i 0.890853 1.10529i
\(498\) 0 0
\(499\) −24.9779 + 43.2630i −0.0500560 + 0.0866995i −0.889968 0.456023i \(-0.849273\pi\)
0.839912 + 0.542723i \(0.182607\pi\)
\(500\) 212.001i 0.424003i
\(501\) 0 0
\(502\) 421.209 0.839063
\(503\) 807.461i 1.60529i 0.596457 + 0.802645i \(0.296575\pi\)
−0.596457 + 0.802645i \(0.703425\pi\)
\(504\) 0 0
\(505\) 304.887 0.603737
\(506\) 1.17861i 0.00232927i
\(507\) 0 0
\(508\) 64.8972 0.127750
\(509\) 214.257 + 123.701i 0.420937 + 0.243028i 0.695478 0.718547i \(-0.255193\pi\)
−0.274541 + 0.961575i \(0.588526\pi\)
\(510\) 0 0
\(511\) 57.0598 22.0537i 0.111663 0.0431578i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 74.6497 129.297i 0.145233 0.251551i
\(515\) 101.573 58.6430i 0.197228 0.113870i
\(516\) 0 0
\(517\) 178.615 + 309.370i 0.345484 + 0.598395i
\(518\) 314.177 + 49.0216i 0.606520 + 0.0946363i
\(519\) 0 0
\(520\) −38.8782 −0.0747658
\(521\) −451.108 260.448i −0.865851 0.499899i 0.000116349 1.00000i \(-0.499963\pi\)
−0.865967 + 0.500101i \(0.833296\pi\)
\(522\) 0 0
\(523\) 232.863 + 403.331i 0.445245 + 0.771187i 0.998069 0.0621107i \(-0.0197832\pi\)
−0.552824 + 0.833298i \(0.686450\pi\)
\(524\) 316.965 + 183.000i 0.604895 + 0.349236i
\(525\) 0 0
\(526\) 75.0310 + 129.957i 0.142644 + 0.247067i
\(527\) −279.509 161.375i −0.530378 0.306214i
\(528\) 0 0
\(529\) −264.490 458.110i −0.499981 0.865992i
\(530\) 76.4746 44.1526i 0.144292 0.0833069i
\(531\) 0 0
\(532\) 4.61378 29.5695i 0.00867252 0.0555818i
\(533\) 157.246 + 90.7861i 0.295021 + 0.170330i
\(534\) 0 0
\(535\) −322.008 −0.601885
\(536\) 198.663i 0.370640i
\(537\) 0 0
\(538\) 159.367 276.032i 0.296221 0.513070i
\(539\) −192.433 211.755i −0.357019 0.392866i
\(540\) 0 0
\(541\) 272.202 + 471.468i 0.503147 + 0.871476i 0.999993 + 0.00363728i \(0.00115778\pi\)
−0.496847 + 0.867838i \(0.665509\pi\)
\(542\) −205.782 + 118.808i −0.379672 + 0.219204i
\(543\) 0 0
\(544\) 69.9707 121.193i 0.128623 0.222781i
\(545\) −344.551 + 198.927i −0.632204 + 0.365003i
\(546\) 0 0
\(547\) −166.024 + 287.563i −0.303518 + 0.525709i −0.976930 0.213558i \(-0.931495\pi\)
0.673412 + 0.739267i \(0.264828\pi\)
\(548\) 53.3897 30.8245i 0.0974264 0.0562492i
\(549\) 0 0
\(550\) −79.5494 + 137.784i −0.144635 + 0.250516i
\(551\) 77.6440i 0.140915i
\(552\) 0 0
\(553\) 339.500 + 273.633i 0.613924 + 0.494816i
\(554\) −410.948 + 237.261i −0.741783 + 0.428269i
\(555\) 0 0
\(556\) −55.5707 96.2513i −0.0999474 0.173114i
\(557\) 384.372 + 221.918i 0.690076 + 0.398416i 0.803641 0.595115i \(-0.202893\pi\)
−0.113564 + 0.993531i \(0.536227\pi\)
\(558\) 0 0
\(559\) −460.578 −0.823933
\(560\) −24.1723 62.5414i −0.0431648 0.111681i
\(561\) 0 0
\(562\) 382.831 663.082i 0.681194 1.17986i
\(563\) 805.689i 1.43106i −0.698580 0.715532i \(-0.746184\pi\)
0.698580 0.715532i \(-0.253816\pi\)
\(564\) 0 0
\(565\) −482.938 −0.854758
\(566\) 447.612i 0.790834i
\(567\) 0 0
\(568\) 285.083 0.501907
\(569\) 762.194i 1.33953i −0.742572 0.669767i \(-0.766394\pi\)
0.742572 0.669767i \(-0.233606\pi\)
\(570\) 0 0
\(571\) −895.261 −1.56788 −0.783941 0.620835i \(-0.786794\pi\)
−0.783941 + 0.620835i \(0.786794\pi\)
\(572\) −58.0561 33.5187i −0.101497 0.0585991i
\(573\) 0 0
\(574\) −48.2761 + 309.400i −0.0841048 + 0.539024i
\(575\) 2.74960i 0.00478192i
\(576\) 0 0
\(577\) −0.145650 + 0.252273i −0.000252426 + 0.000437215i −0.866152 0.499781i \(-0.833414\pi\)
0.865899 + 0.500219i \(0.166747\pi\)
\(578\) −395.577 + 228.387i −0.684390 + 0.395133i
\(579\) 0 0
\(580\) 86.9782 + 150.651i 0.149962 + 0.259743i
\(581\) −150.181 388.565i −0.258486 0.668786i
\(582\) 0 0
\(583\) 152.264 0.261174
\(584\) 21.4062 + 12.3589i 0.0366545 + 0.0211625i
\(585\) 0 0
\(586\) 183.389 + 317.638i 0.312950 + 0.542045i
\(587\) −316.757 182.880i −0.539621 0.311550i 0.205304 0.978698i \(-0.434182\pi\)
−0.744925 + 0.667148i \(0.767515\pi\)
\(588\) 0 0
\(589\) −13.9445 24.1526i −0.0236749 0.0410061i
\(590\) 66.7414 + 38.5332i 0.113121 + 0.0653105i
\(591\) 0 0
\(592\) 64.2414 + 111.269i 0.108516 + 0.187955i
\(593\) 248.305 143.359i 0.418726 0.241752i −0.275806 0.961213i \(-0.588945\pi\)
0.694532 + 0.719462i \(0.255611\pi\)
\(594\) 0 0
\(595\) −63.9294 + 409.721i −0.107444 + 0.688606i
\(596\) 12.7850 + 7.38142i 0.0214513 + 0.0123849i
\(597\) 0 0
\(598\) 1.15857 0.00193740
\(599\) 36.1773i 0.0603961i 0.999544 + 0.0301980i \(0.00961380\pi\)
−0.999544 + 0.0301980i \(0.990386\pi\)
\(600\) 0 0
\(601\) 450.390 780.099i 0.749402 1.29800i −0.198708 0.980059i \(-0.563675\pi\)
0.948110 0.317943i \(-0.102992\pi\)
\(602\) −286.362 740.909i −0.475684 1.23075i
\(603\) 0 0
\(604\) 34.5368 + 59.8194i 0.0571801 + 0.0990388i
\(605\) −180.219 + 104.049i −0.297882 + 0.171982i
\(606\) 0 0
\(607\) −7.88292 + 13.6536i −0.0129867 + 0.0224936i −0.872446 0.488711i \(-0.837467\pi\)
0.859459 + 0.511205i \(0.170801\pi\)
\(608\) 10.4724 6.04623i 0.0172243 0.00994445i
\(609\) 0 0
\(610\) 173.838 301.097i 0.284981 0.493601i
\(611\) −304.109 + 175.578i −0.497724 + 0.287361i
\(612\) 0 0
\(613\) 44.9747 77.8984i 0.0733681 0.127077i −0.827007 0.562191i \(-0.809959\pi\)
0.900375 + 0.435114i \(0.143292\pi\)
\(614\) 262.901i 0.428178i
\(615\) 0 0
\(616\) 17.8238 114.232i 0.0289348 0.185442i
\(617\) 871.820 503.346i 1.41300 0.815795i 0.417329 0.908755i \(-0.362966\pi\)
0.995670 + 0.0929603i \(0.0296330\pi\)
\(618\) 0 0
\(619\) −75.5436 130.845i −0.122041 0.211382i 0.798531 0.601953i \(-0.205611\pi\)
−0.920573 + 0.390572i \(0.872277\pi\)
\(620\) −54.1124 31.2418i −0.0872780 0.0503900i
\(621\) 0 0
\(622\) 9.81499 0.0157797
\(623\) −756.188 117.989i −1.21378 0.189389i
\(624\) 0 0
\(625\) −113.903 + 197.287i −0.182246 + 0.315658i
\(626\) 560.187i 0.894868i
\(627\) 0 0
\(628\) −385.264 −0.613478
\(629\) 794.614i 1.26330i
\(630\) 0 0
\(631\) 318.002 0.503965 0.251982 0.967732i \(-0.418917\pi\)
0.251982 + 0.967732i \(0.418917\pi\)
\(632\) 176.189i 0.278780i
\(633\) 0 0
\(634\) −79.8988 −0.126023
\(635\) −67.2928 38.8515i −0.105973 0.0611835i
\(636\) 0 0
\(637\) 208.154 189.161i 0.326772 0.296956i
\(638\) 299.952i 0.470144i
\(639\) 0 0
\(640\) 13.5462 23.4627i 0.0211659 0.0366604i
\(641\) −376.730 + 217.505i −0.587722 + 0.339321i −0.764196 0.644984i \(-0.776864\pi\)
0.176474 + 0.984305i \(0.443531\pi\)
\(642\) 0 0
\(643\) −267.589 463.477i −0.416157 0.720805i 0.579392 0.815049i \(-0.303290\pi\)
−0.995549 + 0.0942441i \(0.969957\pi\)
\(644\) 0.720331 + 1.86373i 0.00111853 + 0.00289398i
\(645\) 0 0
\(646\) −74.7869 −0.115769
\(647\) 217.880 + 125.793i 0.336755 + 0.194425i 0.658836 0.752287i \(-0.271049\pi\)
−0.322081 + 0.946712i \(0.604382\pi\)
\(648\) 0 0
\(649\) 66.4425 + 115.082i 0.102377 + 0.177322i
\(650\) −135.441 78.1966i −0.208370 0.120302i
\(651\) 0 0
\(652\) −226.076 391.575i −0.346742 0.600575i
\(653\) −580.813 335.333i −0.889454 0.513526i −0.0156901 0.999877i \(-0.504995\pi\)
−0.873764 + 0.486350i \(0.838328\pi\)
\(654\) 0 0
\(655\) −219.110 379.510i −0.334520 0.579405i
\(656\) −109.577 + 63.2645i −0.167039 + 0.0964398i
\(657\) 0 0
\(658\) −471.521 380.041i −0.716597 0.577570i
\(659\) 240.616 + 138.920i 0.365123 + 0.210804i 0.671326 0.741162i \(-0.265725\pi\)
−0.306203 + 0.951966i \(0.599058\pi\)
\(660\) 0 0
\(661\) −783.234 −1.18492 −0.592462 0.805599i \(-0.701844\pi\)
−0.592462 + 0.805599i \(0.701844\pi\)
\(662\) 312.346i 0.471822i
\(663\) 0 0
\(664\) 84.1614 145.772i 0.126749 0.219536i
\(665\) −22.4862 + 27.8989i −0.0338139 + 0.0419533i
\(666\) 0 0
\(667\) −2.59194 4.48937i −0.00388597 0.00673069i
\(668\) −226.701 + 130.886i −0.339373 + 0.195937i
\(669\) 0 0
\(670\) −118.932 + 205.996i −0.177511 + 0.307457i
\(671\) 519.179 299.748i 0.773739 0.446718i
\(672\) 0 0
\(673\) 292.102 505.936i 0.434030 0.751762i −0.563186 0.826330i \(-0.690425\pi\)
0.997216 + 0.0745684i \(0.0237579\pi\)
\(674\) 419.919 242.441i 0.623026 0.359704i
\(675\) 0 0
\(676\) −136.051 + 235.648i −0.201259 + 0.348591i
\(677\) 192.330i 0.284091i −0.989860 0.142046i \(-0.954632\pi\)
0.989860 0.142046i \(-0.0453680\pi\)
\(678\) 0 0
\(679\) 1042.86 403.067i 1.53588 0.593618i
\(680\) −145.107 + 83.7777i −0.213393 + 0.123202i
\(681\) 0 0
\(682\) −53.8700 93.3056i −0.0789883 0.136812i
\(683\) −715.412 413.043i −1.04746 0.604749i −0.125519 0.992091i \(-0.540060\pi\)
−0.921936 + 0.387343i \(0.873393\pi\)
\(684\) 0 0
\(685\) −73.8140 −0.107758
\(686\) 433.712 + 217.237i 0.632233 + 0.316672i
\(687\) 0 0
\(688\) 160.478 277.955i 0.233252 0.404005i
\(689\) 149.675i 0.217235i
\(690\) 0 0
\(691\) −950.291 −1.37524 −0.687620 0.726070i \(-0.741345\pi\)
−0.687620 + 0.726070i \(0.741345\pi\)
\(692\) 160.350i 0.231720i
\(693\) 0 0
\(694\) 516.814 0.744689
\(695\) 133.072i 0.191471i
\(696\) 0 0
\(697\) 782.531 1.12271
\(698\) −6.43249 3.71380i −0.00921560 0.00532063i
\(699\) 0 0
\(700\) 41.5816 266.495i 0.0594023 0.380707i
\(701\) 275.965i 0.393673i −0.980436 0.196836i \(-0.936933\pi\)
0.980436 0.196836i \(-0.0630668\pi\)
\(702\) 0 0
\(703\) 34.3316 59.4641i 0.0488359 0.0845863i
\(704\) 40.4565 23.3576i 0.0574667 0.0331784i
\(705\) 0 0
\(706\) 106.134 + 183.830i 0.150332 + 0.260382i
\(707\) −880.587 137.399i −1.24553 0.194341i
\(708\) 0 0
\(709\) −468.543 −0.660851 −0.330425 0.943832i \(-0.607192\pi\)
−0.330425 + 0.943832i \(0.607192\pi\)
\(710\) −295.607 170.669i −0.416347 0.240378i
\(711\) 0 0
\(712\) −154.622 267.812i −0.217165 0.376141i
\(713\) 1.61254 + 0.931002i 0.00226163 + 0.00130575i
\(714\) 0 0
\(715\) 40.1328 + 69.5120i 0.0561297 + 0.0972196i
\(716\) −181.342 104.698i −0.253271 0.146226i
\(717\) 0 0
\(718\) −17.2324 29.8475i −0.0240006 0.0415703i
\(719\) 946.861 546.670i 1.31691 0.760321i 0.333683 0.942685i \(-0.391709\pi\)
0.983231 + 0.182365i \(0.0583752\pi\)
\(720\) 0 0
\(721\) −319.794 + 123.601i −0.443542 + 0.171429i
\(722\) 436.536 + 252.034i 0.604621 + 0.349078i
\(723\) 0 0
\(724\) 354.772 0.490016
\(725\) 699.765i 0.965194i
\(726\) 0 0
\(727\) 437.186 757.228i 0.601356 1.04158i −0.391260 0.920280i \(-0.627961\pi\)
0.992616 0.121299i \(-0.0387061\pi\)
\(728\) 112.289 + 17.5207i 0.154244 + 0.0240669i
\(729\) 0 0
\(730\) −14.7976 25.6302i −0.0202707 0.0351099i
\(731\) −1719.04 + 992.489i −2.35163 + 1.35771i
\(732\) 0 0
\(733\) −165.614 + 286.852i −0.225940 + 0.391340i −0.956601 0.291401i \(-0.905879\pi\)
0.730661 + 0.682741i \(0.239212\pi\)
\(734\) −665.992 + 384.511i −0.907346 + 0.523856i
\(735\) 0 0
\(736\) −0.403675 + 0.699185i −0.000548471 + 0.000949979i
\(737\) −355.198 + 205.074i −0.481952 + 0.278255i
\(738\) 0 0
\(739\) −626.471 + 1085.08i −0.847729 + 1.46831i 0.0355017 + 0.999370i \(0.488697\pi\)
−0.883230 + 0.468939i \(0.844636\pi\)
\(740\) 153.836i 0.207886i
\(741\) 0 0
\(742\) −240.775 + 93.0595i −0.324494 + 0.125417i
\(743\) 567.386 327.580i 0.763642 0.440889i −0.0669598 0.997756i \(-0.521330\pi\)
0.830602 + 0.556867i \(0.187997\pi\)
\(744\) 0 0
\(745\) −8.83795 15.3078i −0.0118630 0.0205474i
\(746\) −357.492 206.398i −0.479212 0.276673i
\(747\) 0 0
\(748\) −288.915 −0.386249
\(749\) 930.036 + 145.115i 1.24170 + 0.193745i
\(750\) 0 0
\(751\) 748.509 1296.46i 0.996683 1.72631i 0.427867 0.903842i \(-0.359265\pi\)
0.568817 0.822464i \(-0.307401\pi\)
\(752\) 244.703i 0.325403i
\(753\) 0 0
\(754\) −294.851 −0.391049
\(755\) 82.7035i 0.109541i
\(756\) 0 0
\(757\) 1042.92 1.37771 0.688853 0.724901i \(-0.258115\pi\)
0.688853 + 0.724901i \(0.258115\pi\)
\(758\) 548.127i 0.723123i
\(759\) 0 0
\(760\) −14.4786 −0.0190508
\(761\) 949.011 + 547.912i 1.24706 + 0.719989i 0.970522 0.241014i \(-0.0774800\pi\)
0.276536 + 0.961003i \(0.410813\pi\)
\(762\) 0 0
\(763\) 1084.79 419.274i 1.42175 0.549507i
\(764\) 351.429i 0.459986i
\(765\) 0 0
\(766\) 247.782 429.171i 0.323475 0.560276i
\(767\) −113.125 + 65.3126i −0.147490 + 0.0851533i
\(768\) 0 0
\(769\) 176.993 + 306.561i 0.230160 + 0.398649i 0.957855 0.287252i \(-0.0927418\pi\)
−0.727695 + 0.685901i \(0.759408\pi\)
\(770\) −86.8681 + 107.778i −0.112816 + 0.139972i
\(771\) 0 0
\(772\) −163.363 −0.211610
\(773\) 40.8414 + 23.5798i 0.0528349 + 0.0305043i 0.526185 0.850370i \(-0.323622\pi\)
−0.473350 + 0.880875i \(0.656955\pi\)
\(774\) 0 0
\(775\) −125.675 217.675i −0.162161 0.280871i
\(776\) 391.234 + 225.879i 0.504167 + 0.291081i
\(777\) 0 0
\(778\) 363.412 + 629.448i 0.467111 + 0.809059i
\(779\) 58.5599 + 33.8096i 0.0751732 + 0.0434012i
\(780\) 0 0
\(781\) −294.283 509.713i −0.376803 0.652641i
\(782\) 4.32418 2.49656i 0.00552964 0.00319254i
\(783\) 0 0
\(784\) 41.6306 + 191.528i 0.0531003 + 0.244296i
\(785\) 399.486 + 230.643i 0.508899 + 0.293813i
\(786\) 0 0
\(787\) −683.837 −0.868916 −0.434458 0.900692i \(-0.643060\pi\)
−0.434458 + 0.900692i \(0.643060\pi\)
\(788\) 637.722i 0.809292i
\(789\) 0 0
\(790\) 105.478 182.693i 0.133516 0.231256i
\(791\) 1394.84 + 217.639i 1.76339 + 0.275144i
\(792\) 0 0
\(793\) 294.651 + 510.350i 0.371564 + 0.643569i
\(794\) 548.159 316.479i 0.690376 0.398589i
\(795\) 0 0
\(796\) −375.755 + 650.827i −0.472054 + 0.817622i
\(797\) −173.916 + 100.410i −0.218213 + 0.125985i −0.605123 0.796132i \(-0.706876\pi\)
0.386910 + 0.922118i \(0.373543\pi\)
\(798\) 0 0
\(799\) −756.695 + 1310.64i −0.947053 + 1.64034i
\(800\) 94.3821 54.4915i 0.117978 0.0681144i
\(801\) 0 0
\(802\) −220.434 + 381.804i −0.274856 + 0.476064i
\(803\) 51.0308i 0.0635502i
\(804\) 0 0
\(805\) 0.368821 2.36376i 0.000458163 0.00293635i
\(806\) 91.7189 52.9539i 0.113795 0.0656997i
\(807\) 0 0
\(808\) −180.058 311.870i −0.222844 0.385977i
\(809\) −264.760 152.859i −0.327268 0.188948i 0.327359 0.944900i \(-0.393841\pi\)
−0.654628 + 0.755951i \(0.727175\pi\)
\(810\) 0 0
\(811\) −902.926 −1.11335 −0.556674 0.830731i \(-0.687923\pi\)
−0.556674 + 0.830731i \(0.687923\pi\)
\(812\) −183.322 474.312i −0.225766 0.584128i
\(813\) 0 0
\(814\) 132.629 229.720i 0.162935 0.282211i
\(815\) 541.372i 0.664260i
\(816\) 0 0
\(817\) −171.524 −0.209943
\(818\) 418.450i 0.511552i
\(819\) 0 0
\(820\) 151.496 0.184752
\(821\) 47.7520i 0.0581632i 0.999577 + 0.0290816i \(0.00925827\pi\)
−0.999577 + 0.0290816i \(0.990742\pi\)
\(822\) 0 0
\(823\) 1480.15 1.79848 0.899239 0.437457i \(-0.144121\pi\)
0.899239 + 0.437457i \(0.144121\pi\)
\(824\) −119.972 69.2659i −0.145597 0.0840605i
\(825\) 0 0
\(826\) −175.400 141.370i −0.212348 0.171151i
\(827\) 1050.14i 1.26982i 0.772587 + 0.634909i \(0.218962\pi\)
−0.772587 + 0.634909i \(0.781038\pi\)
\(828\) 0 0
\(829\) 182.182 315.549i 0.219762 0.380638i −0.734973 0.678096i \(-0.762805\pi\)
0.954735 + 0.297458i \(0.0961387\pi\)
\(830\) −174.536 + 100.769i −0.210285 + 0.121408i
\(831\) 0 0
\(832\) 22.9604 + 39.7686i 0.0275966 + 0.0477987i
\(833\) 369.287 1154.56i 0.443321 1.38603i
\(834\) 0 0
\(835\) 313.426 0.375361
\(836\) −21.6206 12.4827i −0.0258620 0.0149314i
\(837\) 0 0
\(838\) 267.173 + 462.757i 0.318822 + 0.552216i
\(839\) −1021.16 589.566i −1.21711 0.702701i −0.252814 0.967515i \(-0.581356\pi\)
−0.964299 + 0.264814i \(0.914689\pi\)
\(840\) 0 0
\(841\) 239.140 + 414.203i 0.284352 + 0.492513i
\(842\) −690.843 398.858i −0.820478 0.473703i
\(843\) 0 0
\(844\) 260.496 + 451.192i 0.308645 + 0.534588i
\(845\) 282.147 162.898i 0.333902 0.192778i
\(846\) 0 0
\(847\) 567.404 219.302i 0.669899 0.258916i
\(848\) −90.3276 52.1507i −0.106518 0.0614984i
\(849\) 0 0
\(850\) −674.016 −0.792960
\(851\) 4.58428i 0.00538694i
\(852\) 0 0
\(853\) 152.043 263.345i 0.178244 0.308729i −0.763035 0.646357i \(-0.776292\pi\)
0.941279 + 0.337629i \(0.109625\pi\)
\(854\) −637.777 + 791.297i −0.746811 + 0.926577i
\(855\) 0 0
\(856\) 190.169 + 329.383i 0.222160 + 0.384793i
\(857\) 1324.10 764.468i 1.54504 0.892028i 0.546529 0.837440i \(-0.315949\pi\)
0.998509 0.0545873i \(-0.0173843\pi\)
\(858\) 0 0
\(859\) 227.177 393.483i 0.264467 0.458071i −0.702957 0.711233i \(-0.748137\pi\)
0.967424 + 0.253162i \(0.0814705\pi\)
\(860\) −332.803 + 192.144i −0.386980 + 0.223423i
\(861\) 0 0
\(862\) −531.933 + 921.335i −0.617092 + 1.06883i
\(863\) 190.804 110.161i 0.221094 0.127649i −0.385363 0.922765i \(-0.625924\pi\)
0.606457 + 0.795116i \(0.292590\pi\)
\(864\) 0 0
\(865\) −95.9957 + 166.269i −0.110978 + 0.192219i
\(866\) 638.180i 0.736929i
\(867\) 0 0
\(868\) 142.210 + 114.620i 0.163836 + 0.132050i
\(869\) 315.016 181.874i 0.362504 0.209292i
\(870\) 0 0
\(871\) −201.586 349.158i −0.231443 0.400870i
\(872\) 406.965 + 234.961i 0.466703 + 0.269451i
\(873\) 0 0
\(874\) 0.431460 0.000493662
\(875\) −465.634 + 577.717i −0.532153 + 0.660248i
\(876\) 0 0
\(877\) 824.034 1427.27i 0.939606 1.62744i 0.173398 0.984852i \(-0.444525\pi\)
0.766208 0.642593i \(-0.222141\pi\)
\(878\) 187.989i 0.214110i
\(879\) 0 0
\(880\) −55.9332 −0.0635605
\(881\) 1387.66i 1.57510i 0.616252 + 0.787549i \(0.288650\pi\)
−0.616252 + 0.787549i \(0.711350\pi\)
\(882\) 0 0
\(883\) −117.311 −0.132855 −0.0664274 0.997791i \(-0.521160\pi\)
−0.0664274 + 0.997791i \(0.521160\pi\)
\(884\) 284.001i 0.321269i
\(885\) 0 0
\(886\) −587.255 −0.662816
\(887\) −319.904 184.697i −0.360658 0.208226i 0.308711 0.951156i \(-0.400102\pi\)
−0.669370 + 0.742930i \(0.733436\pi\)
\(888\) 0 0
\(889\) 176.849 + 142.538i 0.198930 + 0.160336i
\(890\) 370.264i 0.416027i
\(891\) 0 0
\(892\) −237.591 + 411.520i −0.266358 + 0.461345i
\(893\) −113.253 + 65.3867i −0.126823 + 0.0732214i
\(894\) 0 0
\(895\) 125.357 + 217.125i 0.140064 + 0.242598i
\(896\) −49.6982 + 61.6611i −0.0554667 + 0.0688182i
\(897\) 0 0
\(898\) −371.701 −0.413920
\(899\) −410.387 236.937i −0.456493 0.263556i
\(900\) 0 0
\(901\) 322.531 + 558.640i 0.357970 + 0.620022i
\(902\) 226.227 + 130.612i 0.250806 + 0.144803i
\(903\) 0 0
\(904\) 285.210 + 493.998i 0.315498 + 0.546458i
\(905\) −367.868 212.389i −0.406484 0.234683i
\(906\) 0 0
\(907\) 297.608 + 515.472i 0.328124 + 0.568327i 0.982140 0.188154i \(-0.0602504\pi\)
−0.654016 + 0.756481i \(0.726917\pi\)
\(908\) −408.810 + 236.026i −0.450231 + 0.259941i
\(909\) 0 0
\(910\) −105.945 85.3909i −0.116424 0.0938362i
\(911\) 451.079 + 260.431i 0.495148 + 0.285874i 0.726707 0.686947i \(-0.241050\pi\)
−0.231560 + 0.972821i \(0.574383\pi\)
\(912\) 0 0
\(913\) −347.509 −0.380623
\(914\) 715.629i 0.782964i
\(915\) 0 0
\(916\) −398.258 + 689.803i −0.434779 + 0.753060i
\(917\) 461.814 + 1194.86i 0.503614 + 1.30301i
\(918\) 0 0
\(919\) −430.710 746.012i −0.468673 0.811765i 0.530686 0.847568i \(-0.321934\pi\)
−0.999359 + 0.0358037i \(0.988601\pi\)
\(920\) 0.837151 0.483329i 0.000909947 0.000525358i
\(921\) 0 0
\(922\) 539.079 933.712i 0.584684 1.01270i
\(923\) 501.045 289.278i 0.542844 0.313411i
\(924\) 0 0
\(925\) 309.413 535.919i 0.334501 0.579372i
\(926\) 34.8096 20.0973i 0.0375913 0.0217034i
\(927\) 0 0
\(928\) 102.734 177.940i 0.110705 0.191746i
\(929\) 854.333i 0.919627i 0.888016 + 0.459813i \(0.152084\pi\)
−0.888016 + 0.459813i \(0.847916\pi\)
\(930\) 0 0
\(931\) 77.5184 70.4452i 0.0832636 0.0756661i
\(932\) 263.735 152.268i 0.282978 0.163377i
\(933\) 0 0
\(934\) 103.417 + 179.124i 0.110725 + 0.191782i
\(935\) 299.579 + 172.962i 0.320406 + 0.184986i
\(936\) 0 0
\(937\) −336.030 −0.358623 −0.179311 0.983792i \(-0.557387\pi\)
−0.179311 + 0.983792i \(0.557387\pi\)
\(938\) 436.338 541.369i 0.465179 0.577152i
\(939\) 0 0
\(940\) −146.495 + 253.736i −0.155845 + 0.269932i
\(941\) 1399.91i 1.48768i 0.668356 + 0.743842i \(0.266998\pi\)
−0.668356 + 0.743842i \(0.733002\pi\)
\(942\) 0 0
\(943\) −4.51457 −0.00478746
\(944\) 91.0265i 0.0964264i
\(945\) 0 0
\(946\) −662.624 −0.700449
\(947\) 804.331i 0.849347i −0.905347 0.424673i \(-0.860389\pi\)
0.905347 0.424673i \(-0.139611\pi\)
\(948\) 0 0
\(949\) 50.1630 0.0528588
\(950\) −50.4393 29.1211i −0.0530940 0.0306538i
\(951\) 0 0
\(952\) 456.859 176.576i 0.479894 0.185479i
\(953\) 998.754i 1.04801i −0.851715 0.524005i \(-0.824437\pi\)
0.851715 0.524005i \(-0.175563\pi\)
\(954\) 0 0
\(955\) −210.387 + 364.402i −0.220301 + 0.381572i
\(956\) −120.114 + 69.3480i −0.125643 + 0.0725397i
\(957\) 0 0
\(958\) 38.9630 + 67.4858i 0.0406712 + 0.0704445i
\(959\) 213.192 + 33.2647i 0.222307 + 0.0346869i
\(960\) 0 0
\(961\) −790.789 −0.822881
\(962\) 225.813 + 130.373i 0.234733 + 0.135523i
\(963\) 0 0
\(964\) −30.7525 53.2648i −0.0319009 0.0552540i
\(965\) 169.393 + 97.7994i 0.175537 + 0.101347i
\(966\) 0 0
\(967\) 568.912 + 985.384i 0.588327 + 1.01901i 0.994452 + 0.105194i \(0.0335464\pi\)
−0.406125 + 0.913818i \(0.633120\pi\)
\(968\) 212.864 + 122.897i 0.219901 + 0.126960i
\(969\) 0 0
\(970\) −270.450 468.434i −0.278815 0.482922i
\(971\) −1389.34 + 802.138i −1.43084 + 0.826095i −0.997185 0.0749853i \(-0.976109\pi\)
−0.433653 + 0.901080i \(0.642776\pi\)
\(972\) 0 0
\(973\) 59.9699 384.345i 0.0616341 0.395010i
\(974\) 585.257 + 337.898i 0.600880 + 0.346918i
\(975\) 0 0
\(976\) −410.656 −0.420754
\(977\) 1129.63i 1.15622i 0.815958 + 0.578111i \(0.196210\pi\)
−0.815958 + 0.578111i \(0.803790\pi\)
\(978\) 0 0
\(979\) −319.222 + 552.909i −0.326070 + 0.564769i
\(980\) 71.4931 223.520i 0.0729521 0.228082i
\(981\) 0 0
\(982\) −336.681 583.149i −0.342852 0.593838i
\(983\) −484.590 + 279.778i −0.492970 + 0.284617i −0.725806 0.687900i \(-0.758533\pi\)
0.232836 + 0.972516i \(0.425200\pi\)
\(984\) 0 0
\(985\) 381.780 661.262i 0.387594 0.671332i
\(986\) −1100.49 + 635.367i −1.11611 + 0.644389i
\(987\) 0 0
\(988\) 12.2704 21.2530i 0.0124194 0.0215111i
\(989\) 9.91748 5.72586i 0.0100278 0.00578955i
\(990\) 0 0
\(991\) −820.211 + 1420.65i −0.827660 + 1.43355i 0.0722098 + 0.997389i \(0.476995\pi\)
−0.899870 + 0.436159i \(0.856338\pi\)
\(992\) 73.8022i 0.0743973i
\(993\) 0 0
\(994\) 776.869 + 626.148i 0.781559 + 0.629928i
\(995\) 779.252 449.901i 0.783167 0.452162i
\(996\) 0 0
\(997\) −39.1528 67.8146i −0.0392706 0.0680187i 0.845722 0.533624i \(-0.179170\pi\)
−0.884993 + 0.465605i \(0.845837\pi\)
\(998\) −61.1832 35.3241i −0.0613058 0.0353949i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.r.a.305.14 32
3.2 odd 2 126.3.r.a.11.6 yes 32
7.2 even 3 378.3.i.a.359.11 32
9.4 even 3 126.3.i.a.95.5 yes 32
9.5 odd 6 378.3.i.a.179.14 32
21.2 odd 6 126.3.i.a.65.5 32
63.23 odd 6 inner 378.3.r.a.233.6 32
63.58 even 3 126.3.r.a.23.14 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.5 32 21.2 odd 6
126.3.i.a.95.5 yes 32 9.4 even 3
126.3.r.a.11.6 yes 32 3.2 odd 2
126.3.r.a.23.14 yes 32 63.58 even 3
378.3.i.a.179.14 32 9.5 odd 6
378.3.i.a.359.11 32 7.2 even 3
378.3.r.a.233.6 32 63.23 odd 6 inner
378.3.r.a.305.14 32 1.1 even 1 trivial