Properties

Label 126.3.i.a.65.5
Level $126$
Weight $3$
Character 126.65
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(65,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.65"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 65.5
Character \(\chi\) \(=\) 126.65
Dual form 126.3.i.a.95.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(0.810726 + 2.88838i) q^{3} +(1.00000 - 1.73205i) q^{4} +2.39465i q^{5} +(-3.03532 - 2.96426i) q^{6} +(6.52929 + 2.52357i) q^{7} +2.82843i q^{8} +(-7.68545 + 4.68336i) q^{9} +(-1.69327 - 2.93283i) q^{10} +5.83940i q^{11} +(5.81354 + 1.48416i) q^{12} +(-2.87005 - 4.97107i) q^{13} +(-9.78115 + 1.52617i) q^{14} +(-6.91665 + 1.94140i) q^{15} +(-2.00000 - 3.46410i) q^{16} +(-21.4241 + 12.3692i) q^{17} +(6.10108 - 11.1704i) q^{18} +(-1.06883 + 1.85127i) q^{19} +(4.14765 + 2.39465i) q^{20} +(-1.99557 + 20.9050i) q^{21} +(-4.12908 - 7.15177i) q^{22} +0.142721i q^{23} +(-8.16956 + 2.29308i) q^{24} +19.2657 q^{25} +(7.03015 + 4.05886i) q^{26} +(-19.7581 - 18.4016i) q^{27} +(10.9002 - 8.78548i) q^{28} +(31.4557 + 18.1610i) q^{29} +(7.09835 - 7.26853i) q^{30} +(-6.52325 + 11.2986i) q^{31} +(4.89898 + 2.82843i) q^{32} +(-16.8664 + 4.73415i) q^{33} +(17.4927 - 30.2982i) q^{34} +(-6.04307 + 15.6353i) q^{35} +(0.426375 + 17.9949i) q^{36} +(16.0604 - 27.8173i) q^{37} -3.02311i q^{38} +(12.0315 - 12.3200i) q^{39} -6.77309 q^{40} +(27.3943 - 15.8161i) q^{41} +(-12.3380 - 27.0143i) q^{42} +(40.1194 - 69.4888i) q^{43} +(10.1141 + 5.83940i) q^{44} +(-11.2150 - 18.4040i) q^{45} +(-0.100919 - 0.174796i) q^{46} +(52.9798 - 30.5879i) q^{47} +(8.38418 - 8.58519i) q^{48} +(36.2631 + 32.9543i) q^{49} +(-23.5955 + 13.6229i) q^{50} +(-53.0959 - 51.8528i) q^{51} -11.4802 q^{52} +(-22.5819 + 13.0377i) q^{53} +(37.2105 + 8.56611i) q^{54} -13.9833 q^{55} +(-7.13774 + 18.4676i) q^{56} +(-6.21370 - 1.58632i) q^{57} -51.3669 q^{58} +(-19.7078 - 11.3783i) q^{59} +(-3.55404 + 13.9214i) q^{60} +(51.3320 + 88.9096i) q^{61} -18.4505i q^{62} +(-61.9993 + 11.1842i) q^{63} -8.00000 q^{64} +(11.9040 - 6.87276i) q^{65} +(17.3095 - 17.7245i) q^{66} +(-35.1190 + 60.8279i) q^{67} +49.4768i q^{68} +(-0.412231 + 0.115707i) q^{69} +(-3.65464 - 23.4224i) q^{70} -100.792i q^{71} +(-13.2466 - 21.7377i) q^{72} +(-4.36953 - 7.56824i) q^{73} +45.4255i q^{74} +(15.6192 + 55.6465i) q^{75} +(2.13766 + 3.70254i) q^{76} +(-14.7362 + 38.1271i) q^{77} +(-6.02400 + 23.5964i) q^{78} +(31.1461 + 53.9466i) q^{79} +(8.29531 - 4.78930i) q^{80} +(37.1322 - 71.9875i) q^{81} +(-22.3674 + 38.7414i) q^{82} +(-51.5381 - 29.7555i) q^{83} +(34.2129 + 24.3614i) q^{84} +(-29.6199 - 51.3031i) q^{85} +113.475i q^{86} +(-26.9537 + 105.579i) q^{87} -16.5163 q^{88} +(94.6860 + 54.6670i) q^{89} +(26.7491 + 14.6099i) q^{90} +(-6.19450 - 39.7003i) q^{91} +(0.247199 + 0.142721i) q^{92} +(-37.9232 - 9.68155i) q^{93} +(-43.2578 + 74.9248i) q^{94} +(-4.43315 - 2.55948i) q^{95} +(-4.19784 + 16.4432i) q^{96} +(-79.8603 + 138.322i) q^{97} +(-67.7153 - 14.7187i) q^{98} +(-27.3480 - 44.8784i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{4} + 8 q^{6} + 2 q^{7} + 4 q^{9} + 10 q^{13} + 36 q^{14} + 10 q^{15} - 64 q^{16} + 54 q^{17} + 24 q^{18} + 28 q^{19} + 16 q^{21} + 8 q^{24} - 160 q^{25} + 72 q^{26} - 126 q^{27} - 4 q^{28}+ \cdots + 394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.612372 + 0.353553i
\(3\) 0.810726 + 2.88838i 0.270242 + 0.962792i
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 2.39465i 0.478930i 0.970905 + 0.239465i \(0.0769720\pi\)
−0.970905 + 0.239465i \(0.923028\pi\)
\(6\) −3.03532 2.96426i −0.505887 0.494043i
\(7\) 6.52929 + 2.52357i 0.932755 + 0.360511i
\(8\) 2.82843i 0.353553i
\(9\) −7.68545 + 4.68336i −0.853939 + 0.520374i
\(10\) −1.69327 2.93283i −0.169327 0.293283i
\(11\) 5.83940i 0.530854i 0.964131 + 0.265427i \(0.0855130\pi\)
−0.964131 + 0.265427i \(0.914487\pi\)
\(12\) 5.81354 + 1.48416i 0.484462 + 0.123680i
\(13\) −2.87005 4.97107i −0.220773 0.382390i 0.734270 0.678858i \(-0.237525\pi\)
−0.955043 + 0.296468i \(0.904191\pi\)
\(14\) −9.78115 + 1.52617i −0.698653 + 0.109012i
\(15\) −6.91665 + 1.94140i −0.461110 + 0.129427i
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −21.4241 + 12.3692i −1.26024 + 0.727600i −0.973121 0.230296i \(-0.926031\pi\)
−0.287119 + 0.957895i \(0.592697\pi\)
\(18\) 6.10108 11.1704i 0.338949 0.620575i
\(19\) −1.06883 + 1.85127i −0.0562543 + 0.0974353i −0.892781 0.450491i \(-0.851249\pi\)
0.836527 + 0.547926i \(0.184582\pi\)
\(20\) 4.14765 + 2.39465i 0.207383 + 0.119732i
\(21\) −1.99557 + 20.9050i −0.0950274 + 0.995475i
\(22\) −4.12908 7.15177i −0.187685 0.325081i
\(23\) 0.142721i 0.00620524i 0.999995 + 0.00310262i \(0.000987596\pi\)
−0.999995 + 0.00310262i \(0.999012\pi\)
\(24\) −8.16956 + 2.29308i −0.340399 + 0.0955449i
\(25\) 19.2657 0.770626
\(26\) 7.03015 + 4.05886i 0.270391 + 0.156110i
\(27\) −19.7581 18.4016i −0.731782 0.681539i
\(28\) 10.9002 8.78548i 0.389294 0.313767i
\(29\) 31.4557 + 18.1610i 1.08468 + 0.626240i 0.932155 0.362060i \(-0.117926\pi\)
0.152524 + 0.988300i \(0.451260\pi\)
\(30\) 7.09835 7.26853i 0.236612 0.242284i
\(31\) −6.52325 + 11.2986i −0.210427 + 0.364471i −0.951848 0.306569i \(-0.900819\pi\)
0.741421 + 0.671040i \(0.234152\pi\)
\(32\) 4.89898 + 2.82843i 0.153093 + 0.0883883i
\(33\) −16.8664 + 4.73415i −0.511103 + 0.143459i
\(34\) 17.4927 30.2982i 0.514491 0.891124i
\(35\) −6.04307 + 15.6353i −0.172659 + 0.446724i
\(36\) 0.426375 + 17.9949i 0.0118437 + 0.499860i
\(37\) 16.0604 27.8173i 0.434064 0.751820i −0.563155 0.826351i \(-0.690413\pi\)
0.997219 + 0.0745311i \(0.0237460\pi\)
\(38\) 3.02311i 0.0795556i
\(39\) 12.0315 12.3200i 0.308500 0.315896i
\(40\) −6.77309 −0.169327
\(41\) 27.3943 15.8161i 0.668155 0.385759i −0.127222 0.991874i \(-0.540606\pi\)
0.795377 + 0.606115i \(0.207273\pi\)
\(42\) −12.3380 27.0143i −0.293761 0.643198i
\(43\) 40.1194 69.4888i 0.933009 1.61602i 0.154863 0.987936i \(-0.450506\pi\)
0.778146 0.628083i \(-0.216160\pi\)
\(44\) 10.1141 + 5.83940i 0.229867 + 0.132714i
\(45\) −11.2150 18.4040i −0.249222 0.408977i
\(46\) −0.100919 0.174796i −0.00219388 0.00379992i
\(47\) 52.9798 30.5879i 1.12723 0.650807i 0.183993 0.982927i \(-0.441098\pi\)
0.943237 + 0.332121i \(0.107764\pi\)
\(48\) 8.38418 8.58519i 0.174670 0.178858i
\(49\) 36.2631 + 32.9543i 0.740064 + 0.672536i
\(50\) −23.5955 + 13.6229i −0.471910 + 0.272458i
\(51\) −53.0959 51.8528i −1.04110 1.01672i
\(52\) −11.4802 −0.220773
\(53\) −22.5819 + 13.0377i −0.426074 + 0.245994i −0.697673 0.716417i \(-0.745781\pi\)
0.271599 + 0.962411i \(0.412448\pi\)
\(54\) 37.2105 + 8.56611i 0.689083 + 0.158632i
\(55\) −13.9833 −0.254242
\(56\) −7.13774 + 18.4676i −0.127460 + 0.329779i
\(57\) −6.21370 1.58632i −0.109012 0.0278301i
\(58\) −51.3669 −0.885637
\(59\) −19.7078 11.3783i −0.334031 0.192853i 0.323598 0.946195i \(-0.395107\pi\)
−0.657629 + 0.753342i \(0.728441\pi\)
\(60\) −3.55404 + 13.9214i −0.0592340 + 0.232023i
\(61\) 51.3320 + 88.9096i 0.841508 + 1.45754i 0.888619 + 0.458645i \(0.151665\pi\)
−0.0471111 + 0.998890i \(0.515001\pi\)
\(62\) 18.4505i 0.297589i
\(63\) −61.9993 + 11.1842i −0.984116 + 0.177527i
\(64\) −8.00000 −0.125000
\(65\) 11.9040 6.87276i 0.183138 0.105735i
\(66\) 17.3095 17.7245i 0.262265 0.268552i
\(67\) −35.1190 + 60.8279i −0.524164 + 0.907879i 0.475440 + 0.879748i \(0.342289\pi\)
−0.999604 + 0.0281308i \(0.991044\pi\)
\(68\) 49.4768i 0.727600i
\(69\) −0.412231 + 0.115707i −0.00597436 + 0.00167692i
\(70\) −3.65464 23.4224i −0.0522091 0.334606i
\(71\) 100.792i 1.41961i −0.704399 0.709804i \(-0.748784\pi\)
0.704399 0.709804i \(-0.251216\pi\)
\(72\) −13.2466 21.7377i −0.183980 0.301913i
\(73\) −4.36953 7.56824i −0.0598565 0.103675i 0.834544 0.550941i \(-0.185731\pi\)
−0.894401 + 0.447266i \(0.852398\pi\)
\(74\) 45.4255i 0.613859i
\(75\) 15.6192 + 55.6465i 0.208255 + 0.741953i
\(76\) 2.13766 + 3.70254i 0.0281272 + 0.0487177i
\(77\) −14.7362 + 38.1271i −0.191379 + 0.495157i
\(78\) −6.02400 + 23.5964i −0.0772307 + 0.302517i
\(79\) 31.1461 + 53.9466i 0.394254 + 0.682868i 0.993006 0.118067i \(-0.0376696\pi\)
−0.598751 + 0.800935i \(0.704336\pi\)
\(80\) 8.29531 4.78930i 0.103691 0.0598662i
\(81\) 37.1322 71.9875i 0.458422 0.888734i
\(82\) −22.3674 + 38.7414i −0.272773 + 0.472457i
\(83\) −51.5381 29.7555i −0.620941 0.358501i 0.156294 0.987711i \(-0.450045\pi\)
−0.777235 + 0.629210i \(0.783379\pi\)
\(84\) 34.2129 + 24.3614i 0.407296 + 0.290017i
\(85\) −29.6199 51.3031i −0.348469 0.603566i
\(86\) 113.475i 1.31947i
\(87\) −26.9537 + 105.579i −0.309813 + 1.21356i
\(88\) −16.5163 −0.187685
\(89\) 94.6860 + 54.6670i 1.06389 + 0.614236i 0.926505 0.376282i \(-0.122798\pi\)
0.137382 + 0.990518i \(0.456131\pi\)
\(90\) 26.7491 + 14.6099i 0.297212 + 0.162333i
\(91\) −6.19450 39.7003i −0.0680715 0.436267i
\(92\) 0.247199 + 0.142721i 0.00268695 + 0.00155131i
\(93\) −37.9232 9.68155i −0.407776 0.104103i
\(94\) −43.2578 + 74.9248i −0.460190 + 0.797072i
\(95\) −4.43315 2.55948i −0.0466647 0.0269419i
\(96\) −4.19784 + 16.4432i −0.0437275 + 0.171283i
\(97\) −79.8603 + 138.322i −0.823302 + 1.42600i 0.0799082 + 0.996802i \(0.474537\pi\)
−0.903210 + 0.429199i \(0.858796\pi\)
\(98\) −67.7153 14.7187i −0.690972 0.150190i
\(99\) −27.3480 44.8784i −0.276243 0.453317i
\(100\) 19.2657 33.3691i 0.192657 0.333691i
\(101\) 127.320i 1.26060i −0.776353 0.630298i \(-0.782933\pi\)
0.776353 0.630298i \(-0.217067\pi\)
\(102\) 101.694 + 25.9619i 0.997004 + 0.254529i
\(103\) −48.9784 −0.475518 −0.237759 0.971324i \(-0.576413\pi\)
−0.237759 + 0.971324i \(0.576413\pi\)
\(104\) 14.0603 8.11772i 0.135195 0.0780550i
\(105\) −50.0601 4.77870i −0.476762 0.0455114i
\(106\) 18.4380 31.9356i 0.173944 0.301280i
\(107\) −116.454 67.2350i −1.08836 0.628364i −0.155220 0.987880i \(-0.549608\pi\)
−0.933139 + 0.359516i \(0.882942\pi\)
\(108\) −51.6305 + 15.8205i −0.478060 + 0.146486i
\(109\) −83.0714 143.884i −0.762123 1.32004i −0.941754 0.336302i \(-0.890824\pi\)
0.179631 0.983734i \(-0.442510\pi\)
\(110\) 17.1260 9.88769i 0.155691 0.0898881i
\(111\) 93.3675 + 23.8361i 0.841149 + 0.214740i
\(112\) −4.31666 27.6653i −0.0385416 0.247011i
\(113\) 174.655 100.837i 1.54562 0.892363i 0.547149 0.837035i \(-0.315713\pi\)
0.998468 0.0553276i \(-0.0176203\pi\)
\(114\) 8.73189 2.45092i 0.0765956 0.0214993i
\(115\) −0.341766 −0.00297187
\(116\) 62.9114 36.3219i 0.542340 0.313120i
\(117\) 45.3389 + 24.7634i 0.387512 + 0.211653i
\(118\) 32.1827 0.272735
\(119\) −171.098 + 26.6968i −1.43780 + 0.224343i
\(120\) −5.49112 19.5632i −0.0457593 0.163027i
\(121\) 86.9014 0.718194
\(122\) −125.737 72.5944i −1.03063 0.595036i
\(123\) 67.8922 + 66.3026i 0.551969 + 0.539046i
\(124\) 13.0465 + 22.5972i 0.105214 + 0.182236i
\(125\) 106.001i 0.848006i
\(126\) 68.0249 57.5379i 0.539880 0.456650i
\(127\) −32.4486 −0.255501 −0.127750 0.991806i \(-0.540776\pi\)
−0.127750 + 0.991806i \(0.540776\pi\)
\(128\) 9.79796 5.65685i 0.0765466 0.0441942i
\(129\) 233.236 + 59.5436i 1.80803 + 0.461578i
\(130\) −9.71955 + 16.8348i −0.0747658 + 0.129498i
\(131\) 183.000i 1.39695i −0.715636 0.698473i \(-0.753863\pi\)
0.715636 0.698473i \(-0.246137\pi\)
\(132\) −8.66660 + 33.9476i −0.0656560 + 0.257179i
\(133\) −11.6505 + 9.39020i −0.0875980 + 0.0706030i
\(134\) 99.3315i 0.741280i
\(135\) 44.0653 47.3137i 0.326409 0.350472i
\(136\) −34.9854 60.5964i −0.257245 0.445562i
\(137\) 30.8245i 0.224997i 0.993652 + 0.112498i \(0.0358853\pi\)
−0.993652 + 0.112498i \(0.964115\pi\)
\(138\) 0.423060 0.433203i 0.00306565 0.00313915i
\(139\) 27.7854 + 48.1257i 0.199895 + 0.346228i 0.948494 0.316795i \(-0.102607\pi\)
−0.748599 + 0.663023i \(0.769273\pi\)
\(140\) 21.0381 + 26.1023i 0.150272 + 0.186445i
\(141\) 131.302 + 128.227i 0.931217 + 0.909413i
\(142\) 71.2708 + 123.445i 0.501907 + 0.869329i
\(143\) 29.0281 16.7594i 0.202993 0.117198i
\(144\) 31.5945 + 17.2564i 0.219407 + 0.119836i
\(145\) −43.4891 + 75.3253i −0.299925 + 0.519485i
\(146\) 10.7031 + 6.17945i 0.0733090 + 0.0423250i
\(147\) −65.7849 + 131.459i −0.447516 + 0.894276i
\(148\) −32.1207 55.6347i −0.217032 0.375910i
\(149\) 7.38142i 0.0495397i −0.999693 0.0247699i \(-0.992115\pi\)
0.999693 0.0247699i \(-0.00788530\pi\)
\(150\) −58.4775 57.1083i −0.389850 0.380722i
\(151\) 34.5368 0.228720 0.114360 0.993439i \(-0.463518\pi\)
0.114360 + 0.993439i \(0.463518\pi\)
\(152\) −5.23619 3.02311i −0.0344486 0.0198889i
\(153\) 106.724 195.399i 0.697543 1.27712i
\(154\) −8.91190 57.1160i −0.0578695 0.370883i
\(155\) −27.0562 15.6209i −0.174556 0.100780i
\(156\) −9.30729 33.1591i −0.0596621 0.212559i
\(157\) −96.3161 + 166.824i −0.613478 + 1.06258i 0.377171 + 0.926144i \(0.376897\pi\)
−0.990649 + 0.136432i \(0.956436\pi\)
\(158\) −76.2920 44.0472i −0.482861 0.278780i
\(159\) −55.9654 54.6551i −0.351984 0.343743i
\(160\) −6.77309 + 11.7313i −0.0423318 + 0.0733209i
\(161\) −0.360166 + 0.931863i −0.00223705 + 0.00578797i
\(162\) 5.42534 + 114.423i 0.0334898 + 0.706313i
\(163\) 113.038 195.787i 0.693484 1.20115i −0.277205 0.960811i \(-0.589408\pi\)
0.970689 0.240339i \(-0.0772586\pi\)
\(164\) 63.2645i 0.385759i
\(165\) −11.3366 40.3891i −0.0687068 0.244782i
\(166\) 84.1614 0.506996
\(167\) −113.351 + 65.4431i −0.678747 + 0.391875i −0.799383 0.600822i \(-0.794840\pi\)
0.120636 + 0.992697i \(0.461507\pi\)
\(168\) −59.1282 5.64434i −0.351953 0.0335972i
\(169\) 68.0256 117.824i 0.402519 0.697183i
\(170\) 72.5536 + 41.8888i 0.426786 + 0.246405i
\(171\) −0.455723 19.2336i −0.00266505 0.112477i
\(172\) −80.2388 138.978i −0.466505 0.808010i
\(173\) −69.4338 + 40.0876i −0.401351 + 0.231720i −0.687067 0.726594i \(-0.741102\pi\)
0.285716 + 0.958314i \(0.407769\pi\)
\(174\) −41.6445 148.367i −0.239336 0.852684i
\(175\) 125.791 + 48.6183i 0.718806 + 0.277819i
\(176\) 20.2283 11.6788i 0.114933 0.0663568i
\(177\) 16.8872 66.1483i 0.0954081 0.373719i
\(178\) −154.622 −0.868660
\(179\) 90.6710 52.3489i 0.506542 0.292452i −0.224869 0.974389i \(-0.572195\pi\)
0.731411 + 0.681937i \(0.238862\pi\)
\(180\) −43.0916 + 1.02102i −0.239398 + 0.00567232i
\(181\) −177.386 −0.980033 −0.490016 0.871713i \(-0.663009\pi\)
−0.490016 + 0.871713i \(0.663009\pi\)
\(182\) 35.6590 + 44.2426i 0.195929 + 0.243091i
\(183\) −215.188 + 220.348i −1.17589 + 1.20408i
\(184\) −0.403675 −0.00219388
\(185\) 66.6128 + 38.4589i 0.360069 + 0.207886i
\(186\) 53.2921 14.9583i 0.286517 0.0804211i
\(187\) −72.2286 125.104i −0.386249 0.669004i
\(188\) 122.352i 0.650807i
\(189\) −82.5687 170.010i −0.436871 0.899524i
\(190\) 7.23930 0.0381016
\(191\) −152.173 + 87.8573i −0.796719 + 0.459986i −0.842322 0.538974i \(-0.818812\pi\)
0.0456039 + 0.998960i \(0.485479\pi\)
\(192\) −6.48580 23.1070i −0.0337802 0.120349i
\(193\) −40.8408 + 70.7383i −0.211610 + 0.366520i −0.952219 0.305417i \(-0.901204\pi\)
0.740608 + 0.671937i \(0.234537\pi\)
\(194\) 225.879i 1.16432i
\(195\) 29.5020 + 28.8112i 0.151292 + 0.147750i
\(196\) 93.3416 29.8553i 0.476233 0.152323i
\(197\) 318.861i 1.61858i 0.587407 + 0.809292i \(0.300149\pi\)
−0.587407 + 0.809292i \(0.699851\pi\)
\(198\) 65.2282 + 35.6266i 0.329435 + 0.179932i
\(199\) 187.878 + 325.414i 0.944109 + 1.63524i 0.757525 + 0.652806i \(0.226408\pi\)
0.186583 + 0.982439i \(0.440259\pi\)
\(200\) 54.4915i 0.272458i
\(201\) −204.166 52.1222i −1.01575 0.259314i
\(202\) 90.0290 + 155.935i 0.445688 + 0.771955i
\(203\) 159.553 + 197.959i 0.785974 + 0.975167i
\(204\) −142.908 + 40.1121i −0.700527 + 0.196628i
\(205\) 37.8741 + 65.5998i 0.184752 + 0.319999i
\(206\) 59.9860 34.6329i 0.291194 0.168121i
\(207\) −0.668412 1.09687i −0.00322904 0.00529889i
\(208\) −11.4802 + 19.8843i −0.0551932 + 0.0955975i
\(209\) −10.8103 6.24134i −0.0517240 0.0298629i
\(210\) 64.6899 29.5451i 0.308047 0.140691i
\(211\) −130.248 225.596i −0.617289 1.06918i −0.989978 0.141220i \(-0.954898\pi\)
0.372689 0.927956i \(-0.378436\pi\)
\(212\) 52.1507i 0.245994i
\(213\) 291.126 81.7148i 1.36679 0.383638i
\(214\) 190.169 0.888641
\(215\) 166.401 + 96.0719i 0.773960 + 0.446846i
\(216\) 52.0474 55.8844i 0.240960 0.258724i
\(217\) −71.1050 + 57.3099i −0.327673 + 0.264101i
\(218\) 203.483 + 117.481i 0.933406 + 0.538902i
\(219\) 18.3175 18.7566i 0.0836414 0.0856466i
\(220\) −13.9833 + 24.2198i −0.0635605 + 0.110090i
\(221\) 122.976 + 71.0004i 0.556453 + 0.321269i
\(222\) −131.206 + 36.8276i −0.591018 + 0.165890i
\(223\) 118.795 205.760i 0.532715 0.922690i −0.466555 0.884492i \(-0.654505\pi\)
0.999270 0.0381976i \(-0.0121616\pi\)
\(224\) 24.8491 + 30.8305i 0.110933 + 0.137636i
\(225\) −148.065 + 90.2281i −0.658068 + 0.401014i
\(226\) −142.605 + 246.999i −0.630996 + 1.09292i
\(227\) 236.026i 1.03976i −0.854238 0.519882i \(-0.825976\pi\)
0.854238 0.519882i \(-0.174024\pi\)
\(228\) −8.96128 + 9.17613i −0.0393039 + 0.0402462i
\(229\) −398.258 −1.73912 −0.869559 0.493830i \(-0.835597\pi\)
−0.869559 + 0.493830i \(0.835597\pi\)
\(230\) 0.418576 0.241665i 0.00181989 0.00105072i
\(231\) −122.072 11.6530i −0.528452 0.0504457i
\(232\) −51.3669 + 88.9701i −0.221409 + 0.383492i
\(233\) −131.868 76.1339i −0.565956 0.326755i 0.189577 0.981866i \(-0.439288\pi\)
−0.755532 + 0.655111i \(0.772622\pi\)
\(234\) −73.0390 + 1.73060i −0.312132 + 0.00739571i
\(235\) 73.2473 + 126.868i 0.311691 + 0.539864i
\(236\) −39.4156 + 22.7566i −0.167015 + 0.0964264i
\(237\) −130.567 + 133.698i −0.550917 + 0.564125i
\(238\) 190.674 153.682i 0.801153 0.645721i
\(239\) −60.0571 + 34.6740i −0.251285 + 0.145079i −0.620353 0.784323i \(-0.713010\pi\)
0.369067 + 0.929403i \(0.379677\pi\)
\(240\) 20.5585 + 20.0772i 0.0856605 + 0.0836549i
\(241\) −30.7525 −0.127604 −0.0638018 0.997963i \(-0.520323\pi\)
−0.0638018 + 0.997963i \(0.520323\pi\)
\(242\) −106.432 + 61.4486i −0.439802 + 0.253920i
\(243\) 238.031 + 48.8898i 0.979552 + 0.201192i
\(244\) 205.328 0.841508
\(245\) −78.9139 + 86.8375i −0.322098 + 0.354439i
\(246\) −130.034 33.1968i −0.528592 0.134946i
\(247\) 12.2704 0.0496777
\(248\) −31.9573 18.4505i −0.128860 0.0743973i
\(249\) 44.1620 172.985i 0.177357 0.694719i
\(250\) −74.9538 129.824i −0.299815 0.519295i
\(251\) 297.840i 1.18661i 0.804976 + 0.593307i \(0.202178\pi\)
−0.804976 + 0.593307i \(0.797822\pi\)
\(252\) −42.6277 + 118.570i −0.169157 + 0.470517i
\(253\) −0.833402 −0.00329408
\(254\) 39.7413 22.9446i 0.156462 0.0903332i
\(255\) 124.169 127.146i 0.486938 0.498612i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 105.571i 0.410780i −0.978680 0.205390i \(-0.934154\pi\)
0.978680 0.205390i \(-0.0658464\pi\)
\(258\) −327.758 + 91.9969i −1.27038 + 0.356577i
\(259\) 175.062 141.098i 0.675914 0.544780i
\(260\) 27.4910i 0.105735i
\(261\) −326.805 + 7.74337i −1.25213 + 0.0296681i
\(262\) 129.400 + 224.128i 0.493895 + 0.855451i
\(263\) 106.110i 0.403459i −0.979441 0.201730i \(-0.935344\pi\)
0.979441 0.201730i \(-0.0646563\pi\)
\(264\) −13.3902 47.7053i −0.0507204 0.180702i
\(265\) −31.2206 54.0757i −0.117814 0.204059i
\(266\) 7.62905 19.7388i 0.0286806 0.0742059i
\(267\) −81.1345 + 317.809i −0.303875 + 1.19029i
\(268\) 70.2380 + 121.656i 0.262082 + 0.453939i
\(269\) −195.184 + 112.689i −0.725591 + 0.418920i −0.816807 0.576911i \(-0.804258\pi\)
0.0912161 + 0.995831i \(0.470925\pi\)
\(270\) −20.5128 + 89.1061i −0.0759735 + 0.330023i
\(271\) 84.0102 145.510i 0.310001 0.536937i −0.668362 0.743837i \(-0.733004\pi\)
0.978362 + 0.206900i \(0.0663374\pi\)
\(272\) 85.6963 + 49.4768i 0.315060 + 0.181900i
\(273\) 109.647 50.0781i 0.401639 0.183436i
\(274\) −21.7962 37.7522i −0.0795483 0.137782i
\(275\) 112.500i 0.409090i
\(276\) −0.211820 + 0.829712i −0.000767464 + 0.00300620i
\(277\) −335.538 −1.21133 −0.605663 0.795721i \(-0.707092\pi\)
−0.605663 + 0.795721i \(0.707092\pi\)
\(278\) −68.0600 39.2944i −0.244820 0.141347i
\(279\) −2.78135 117.386i −0.00996899 0.420737i
\(280\) −44.2234 17.0924i −0.157941 0.0610443i
\(281\) 468.870 + 270.702i 1.66858 + 0.963353i 0.968406 + 0.249377i \(0.0802259\pi\)
0.700170 + 0.713976i \(0.253107\pi\)
\(282\) −251.481 64.2015i −0.891778 0.227665i
\(283\) 158.255 274.105i 0.559204 0.968570i −0.438359 0.898800i \(-0.644440\pi\)
0.997563 0.0697700i \(-0.0222265\pi\)
\(284\) −174.577 100.792i −0.614708 0.354902i
\(285\) 3.79867 14.8796i 0.0133287 0.0522092i
\(286\) −23.7013 + 41.0519i −0.0828717 + 0.143538i
\(287\) 218.779 34.1364i 0.762295 0.118942i
\(288\) −50.8974 + 1.20597i −0.176727 + 0.00418739i
\(289\) 161.494 279.715i 0.558802 0.967874i
\(290\) 123.006i 0.424158i
\(291\) −464.271 118.525i −1.59543 0.407304i
\(292\) −17.4781 −0.0598565
\(293\) −224.604 + 129.675i −0.766568 + 0.442578i −0.831649 0.555302i \(-0.812603\pi\)
0.0650812 + 0.997880i \(0.479269\pi\)
\(294\) −12.3855 207.520i −0.0421275 0.705851i
\(295\) 27.2471 47.1933i 0.0923629 0.159977i
\(296\) 78.6793 + 45.4255i 0.265809 + 0.153465i
\(297\) 107.454 115.375i 0.361798 0.388470i
\(298\) 5.21945 + 9.04035i 0.0175149 + 0.0303368i
\(299\) 0.709473 0.409615i 0.00237282 0.00136995i
\(300\) 112.002 + 28.5933i 0.373339 + 0.0953110i
\(301\) 437.311 352.468i 1.45286 1.17099i
\(302\) −42.2987 + 24.4212i −0.140062 + 0.0808649i
\(303\) 367.749 103.222i 1.21369 0.340666i
\(304\) 8.55066 0.0281272
\(305\) −212.907 + 122.922i −0.698057 + 0.403023i
\(306\) 7.45844 + 314.780i 0.0243740 + 1.02869i
\(307\) 185.899 0.605534 0.302767 0.953065i \(-0.402090\pi\)
0.302767 + 0.953065i \(0.402090\pi\)
\(308\) 51.3019 + 63.6509i 0.166565 + 0.206659i
\(309\) −39.7080 141.468i −0.128505 0.457825i
\(310\) 44.1826 0.142524
\(311\) −6.01043 3.47012i −0.0193261 0.0111579i 0.490306 0.871550i \(-0.336885\pi\)
−0.509632 + 0.860393i \(0.670218\pi\)
\(312\) 34.8461 + 34.0302i 0.111686 + 0.109071i
\(313\) −198.056 343.043i −0.632767 1.09598i −0.986984 0.160821i \(-0.948586\pi\)
0.354217 0.935163i \(-0.384748\pi\)
\(314\) 272.423i 0.867589i
\(315\) −26.7823 148.467i −0.0850231 0.471322i
\(316\) 124.584 0.394254
\(317\) −48.9278 + 28.2485i −0.154346 + 0.0891120i −0.575184 0.818024i \(-0.695070\pi\)
0.420838 + 0.907136i \(0.361736\pi\)
\(318\) 107.190 + 27.3650i 0.337077 + 0.0860535i
\(319\) −106.049 + 183.682i −0.332442 + 0.575807i
\(320\) 19.1572i 0.0598662i
\(321\) 99.7874 390.873i 0.310864 1.21767i
\(322\) −0.217815 1.39597i −0.000676446 0.00433531i
\(323\) 52.8824i 0.163722i
\(324\) −87.5538 136.302i −0.270228 0.420686i
\(325\) −55.2934 95.7709i −0.170133 0.294680i
\(326\) 319.720i 0.980735i
\(327\) 348.243 356.592i 1.06496 1.09050i
\(328\) 44.7348 + 77.4829i 0.136386 + 0.236228i
\(329\) 423.111 66.0187i 1.28605 0.200665i
\(330\) 42.4439 + 41.4501i 0.128618 + 0.125606i
\(331\) 110.431 + 191.272i 0.333628 + 0.577861i 0.983220 0.182422i \(-0.0583937\pi\)
−0.649592 + 0.760283i \(0.725060\pi\)
\(332\) −103.076 + 59.5111i −0.310471 + 0.179250i
\(333\) 6.84773 + 289.005i 0.0205637 + 0.867883i
\(334\) 92.5505 160.302i 0.277097 0.479946i
\(335\) −145.661 84.0977i −0.434810 0.251038i
\(336\) 76.4081 34.8971i 0.227405 0.103860i
\(337\) −171.431 296.928i −0.508698 0.881092i −0.999949 0.0100734i \(-0.996793\pi\)
0.491251 0.871018i \(-0.336540\pi\)
\(338\) 192.406i 0.569247i
\(339\) 432.852 + 422.718i 1.27685 + 1.24696i
\(340\) −118.479 −0.348469
\(341\) −65.9770 38.0919i −0.193481 0.111706i
\(342\) 14.1583 + 23.2340i 0.0413987 + 0.0679356i
\(343\) 153.610 + 306.681i 0.447842 + 0.894113i
\(344\) 196.544 + 113.475i 0.571349 + 0.329869i
\(345\) −0.277078 0.987148i −0.000803125 0.00286130i
\(346\) 56.6924 98.1942i 0.163851 0.283798i
\(347\) −316.483 182.721i −0.912054 0.526574i −0.0309622 0.999521i \(-0.509857\pi\)
−0.881091 + 0.472946i \(0.843190\pi\)
\(348\) 155.915 + 152.265i 0.448032 + 0.437542i
\(349\) −2.62605 + 4.54846i −0.00752451 + 0.0130328i −0.869763 0.493469i \(-0.835728\pi\)
0.862239 + 0.506502i \(0.169062\pi\)
\(350\) −188.440 + 29.4026i −0.538401 + 0.0840075i
\(351\) −34.7687 + 151.032i −0.0990560 + 0.430291i
\(352\) −16.5163 + 28.6071i −0.0469213 + 0.0812701i
\(353\) 150.096i 0.425202i −0.977139 0.212601i \(-0.931807\pi\)
0.977139 0.212601i \(-0.0681935\pi\)
\(354\) 26.0914 + 92.9559i 0.0737044 + 0.262587i
\(355\) 241.362 0.679893
\(356\) 189.372 109.334i 0.531944 0.307118i
\(357\) −215.824 472.553i −0.604550 1.32368i
\(358\) −74.0325 + 128.228i −0.206795 + 0.358179i
\(359\) −21.1053 12.1852i −0.0587893 0.0339420i 0.470317 0.882497i \(-0.344139\pi\)
−0.529107 + 0.848555i \(0.677473\pi\)
\(360\) 52.0542 31.7208i 0.144595 0.0881134i
\(361\) 178.215 + 308.678i 0.493671 + 0.855063i
\(362\) 217.252 125.431i 0.600145 0.346494i
\(363\) 70.4532 + 251.004i 0.194086 + 0.691471i
\(364\) −74.9575 28.9711i −0.205927 0.0795910i
\(365\) 18.1233 10.4635i 0.0496528 0.0286671i
\(366\) 107.742 422.031i 0.294376 1.15309i
\(367\) −543.780 −1.48169 −0.740845 0.671676i \(-0.765575\pi\)
−0.740845 + 0.671676i \(0.765575\pi\)
\(368\) 0.494398 0.285441i 0.00134347 0.000775655i
\(369\) −136.465 + 249.852i −0.369824 + 0.677105i
\(370\) −108.778 −0.293995
\(371\) −180.345 + 28.1396i −0.486106 + 0.0758479i
\(372\) −54.6921 + 56.0034i −0.147022 + 0.150547i
\(373\) 291.891 0.782551 0.391275 0.920274i \(-0.372034\pi\)
0.391275 + 0.920274i \(0.372034\pi\)
\(374\) 176.923 + 102.147i 0.473057 + 0.273120i
\(375\) −306.170 + 85.9375i −0.816453 + 0.229167i
\(376\) 86.5157 + 149.850i 0.230095 + 0.398536i
\(377\) 208.491i 0.553027i
\(378\) 221.341 + 149.834i 0.585558 + 0.396386i
\(379\) −387.585 −1.02265 −0.511325 0.859387i \(-0.670845\pi\)
−0.511325 + 0.859387i \(0.670845\pi\)
\(380\) −8.86629 + 5.11896i −0.0233323 + 0.0134709i
\(381\) −26.3069 93.7238i −0.0690470 0.245994i
\(382\) 124.249 215.205i 0.325259 0.563365i
\(383\) 350.417i 0.914927i −0.889229 0.457463i \(-0.848758\pi\)
0.889229 0.457463i \(-0.151242\pi\)
\(384\) 24.2826 + 23.7140i 0.0632359 + 0.0617553i
\(385\) −91.3010 35.2879i −0.237146 0.0916569i
\(386\) 115.515i 0.299262i
\(387\) 17.1059 + 721.946i 0.0442013 + 1.86549i
\(388\) 159.721 + 276.644i 0.411651 + 0.713000i
\(389\) 513.942i 1.32119i −0.750743 0.660594i \(-0.770304\pi\)
0.750743 0.660594i \(-0.229696\pi\)
\(390\) −56.5050 14.4254i −0.144885 0.0369881i
\(391\) −1.76534 3.05765i −0.00451493 0.00782009i
\(392\) −93.2088 + 102.568i −0.237777 + 0.261652i
\(393\) 528.573 148.363i 1.34497 0.377513i
\(394\) −225.469 390.523i −0.572256 0.991176i
\(395\) −129.183 + 74.5839i −0.327046 + 0.188820i
\(396\) −105.080 + 2.48977i −0.265353 + 0.00628730i
\(397\) −223.785 + 387.607i −0.563690 + 0.976339i 0.433481 + 0.901163i \(0.357285\pi\)
−0.997170 + 0.0751762i \(0.976048\pi\)
\(398\) −460.204 265.699i −1.15629 0.667586i
\(399\) −36.5678 26.0383i −0.0916487 0.0652588i
\(400\) −38.5313 66.7382i −0.0963283 0.166845i
\(401\) 311.741i 0.777410i 0.921362 + 0.388705i \(0.127077\pi\)
−0.921362 + 0.388705i \(0.872923\pi\)
\(402\) 286.907 80.5306i 0.713699 0.200325i
\(403\) 74.8882 0.185827
\(404\) −220.525 127.320i −0.545854 0.315149i
\(405\) 172.385 + 88.9186i 0.425641 + 0.219552i
\(406\) −335.389 129.628i −0.826082 0.319281i
\(407\) 162.437 + 93.7828i 0.399107 + 0.230425i
\(408\) 146.662 150.178i 0.359465 0.368083i
\(409\) 147.944 256.247i 0.361722 0.626521i −0.626522 0.779403i \(-0.715522\pi\)
0.988244 + 0.152883i \(0.0488557\pi\)
\(410\) −92.7722 53.5620i −0.226274 0.130639i
\(411\) −89.0329 + 24.9902i −0.216625 + 0.0608035i
\(412\) −48.9784 + 84.8330i −0.118880 + 0.205905i
\(413\) −99.9640 124.026i −0.242043 0.300306i
\(414\) 1.59424 + 0.870749i 0.00385082 + 0.00210326i
\(415\) 71.2541 123.416i 0.171697 0.297387i
\(416\) 32.4709i 0.0780550i
\(417\) −116.479 + 119.271i −0.279326 + 0.286022i
\(418\) 17.6532 0.0422325
\(419\) −327.219 + 188.920i −0.780952 + 0.450883i −0.836767 0.547558i \(-0.815557\pi\)
0.0558158 + 0.998441i \(0.482224\pi\)
\(420\) −58.3370 + 81.9279i −0.138898 + 0.195066i
\(421\) −282.035 + 488.499i −0.669918 + 1.16033i 0.308009 + 0.951383i \(0.400337\pi\)
−0.977927 + 0.208948i \(0.932996\pi\)
\(422\) 319.041 + 184.199i 0.756022 + 0.436489i
\(423\) −263.919 + 483.206i −0.623923 + 1.14233i
\(424\) −36.8761 63.8713i −0.0869719 0.150640i
\(425\) −412.749 + 238.301i −0.971173 + 0.560707i
\(426\) −298.774 + 305.937i −0.701347 + 0.718162i
\(427\) 110.791 + 710.057i 0.259464 + 1.66290i
\(428\) −232.909 + 134.470i −0.544179 + 0.314182i
\(429\) 71.9411 + 70.2567i 0.167695 + 0.163769i
\(430\) −271.732 −0.631936
\(431\) 651.482 376.134i 1.51156 0.872700i 0.511651 0.859193i \(-0.329034\pi\)
0.999909 0.0135064i \(-0.00429935\pi\)
\(432\) −24.2286 + 105.247i −0.0560848 + 0.243628i
\(433\) −451.261 −1.04217 −0.521087 0.853503i \(-0.674473\pi\)
−0.521087 + 0.853503i \(0.674473\pi\)
\(434\) 46.5613 120.469i 0.107284 0.277578i
\(435\) −252.826 64.5448i −0.581209 0.148379i
\(436\) −332.286 −0.762123
\(437\) −0.264214 0.152544i −0.000604610 0.000349072i
\(438\) −9.17128 + 35.9245i −0.0209390 + 0.0820193i
\(439\) 66.4641 + 115.119i 0.151399 + 0.262230i 0.931742 0.363121i \(-0.118289\pi\)
−0.780343 + 0.625352i \(0.784956\pi\)
\(440\) 39.5508i 0.0898881i
\(441\) −433.035 83.4348i −0.981940 0.189195i
\(442\) −200.819 −0.454342
\(443\) −359.619 + 207.626i −0.811781 + 0.468682i −0.847574 0.530677i \(-0.821938\pi\)
0.0357932 + 0.999359i \(0.488604\pi\)
\(444\) 134.653 137.881i 0.303272 0.310543i
\(445\) −130.908 + 226.740i −0.294176 + 0.509527i
\(446\) 336.004i 0.753373i
\(447\) 21.3203 5.98430i 0.0476965 0.0133877i
\(448\) −52.2343 20.1886i −0.116594 0.0450638i
\(449\) 262.832i 0.585372i −0.956209 0.292686i \(-0.905451\pi\)
0.956209 0.292686i \(-0.0945490\pi\)
\(450\) 117.541 215.204i 0.261203 0.478232i
\(451\) 92.3567 + 159.966i 0.204782 + 0.354693i
\(452\) 403.348i 0.892363i
\(453\) 27.9998 + 99.7552i 0.0618098 + 0.220210i
\(454\) 166.896 + 289.072i 0.367612 + 0.636723i
\(455\) 95.0683 14.8337i 0.208941 0.0326015i
\(456\) 4.48678 17.5750i 0.00983944 0.0385417i
\(457\) 253.013 + 438.232i 0.553639 + 0.958931i 0.998008 + 0.0630874i \(0.0200947\pi\)
−0.444369 + 0.895844i \(0.646572\pi\)
\(458\) 487.764 281.611i 1.06499 0.614871i
\(459\) 650.911 + 149.844i 1.41811 + 0.326458i
\(460\) −0.341766 + 0.591955i −0.000742969 + 0.00128686i
\(461\) 660.234 + 381.186i 1.43218 + 0.826868i 0.997287 0.0736145i \(-0.0234534\pi\)
0.434891 + 0.900483i \(0.356787\pi\)
\(462\) 157.747 72.0463i 0.341445 0.155944i
\(463\) −14.2110 24.6141i −0.0306932 0.0531622i 0.850271 0.526346i \(-0.176438\pi\)
−0.880964 + 0.473183i \(0.843105\pi\)
\(464\) 145.288i 0.313120i
\(465\) 23.1839 90.8127i 0.0498579 0.195296i
\(466\) 215.339 0.462101
\(467\) 126.660 + 73.1271i 0.271220 + 0.156589i 0.629442 0.777047i \(-0.283283\pi\)
−0.358222 + 0.933637i \(0.616617\pi\)
\(468\) 88.2304 53.7659i 0.188527 0.114884i
\(469\) −382.806 + 308.537i −0.816217 + 0.657862i
\(470\) −179.419 103.587i −0.381742 0.220399i
\(471\) −559.938 142.948i −1.18883 0.303500i
\(472\) 32.1827 55.7421i 0.0681838 0.118098i
\(473\) 405.773 + 234.273i 0.857871 + 0.495292i
\(474\) 65.3731 256.070i 0.137918 0.540233i
\(475\) −20.5918 + 35.6660i −0.0433511 + 0.0750862i
\(476\) −124.858 + 323.048i −0.262307 + 0.678672i
\(477\) 112.492 205.960i 0.235832 0.431781i
\(478\) 49.0364 84.9336i 0.102587 0.177685i
\(479\) 55.1020i 0.115035i −0.998344 0.0575177i \(-0.981681\pi\)
0.998344 0.0575177i \(-0.0183186\pi\)
\(480\) −39.3756 10.0523i −0.0820326 0.0209424i
\(481\) −184.376 −0.383318
\(482\) 37.6639 21.7453i 0.0781409 0.0451147i
\(483\) −2.98357 0.284809i −0.00617716 0.000589667i
\(484\) 86.9014 150.518i 0.179548 0.310987i
\(485\) −331.233 191.237i −0.682954 0.394304i
\(486\) −326.098 + 108.436i −0.670983 + 0.223119i
\(487\) 238.930 + 413.839i 0.490616 + 0.849772i 0.999942 0.0108019i \(-0.00343842\pi\)
−0.509326 + 0.860574i \(0.670105\pi\)
\(488\) −251.474 + 145.189i −0.515316 + 0.297518i
\(489\) 657.151 + 167.766i 1.34387 + 0.343080i
\(490\) 35.2460 162.154i 0.0719306 0.330927i
\(491\) 412.348 238.069i 0.839813 0.484866i −0.0173875 0.999849i \(-0.505535\pi\)
0.857201 + 0.514982i \(0.172202\pi\)
\(492\) 182.732 51.2902i 0.371406 0.104248i
\(493\) −898.545 −1.82261
\(494\) −15.0281 + 8.67648i −0.0304213 + 0.0175637i
\(495\) 107.468 65.4889i 0.217107 0.132301i
\(496\) 52.1860 0.105214
\(497\) 254.356 658.101i 0.511784 1.32415i
\(498\) 68.2318 + 243.090i 0.137012 + 0.488132i
\(499\) 49.9559 0.100112 0.0500560 0.998746i \(-0.484060\pi\)
0.0500560 + 0.998746i \(0.484060\pi\)
\(500\) 183.599 + 106.001i 0.367197 + 0.212001i
\(501\) −280.921 274.343i −0.560720 0.547591i
\(502\) −210.605 364.778i −0.419531 0.726650i
\(503\) 807.461i 1.60529i −0.596457 0.802645i \(-0.703425\pi\)
0.596457 0.802645i \(-0.296575\pi\)
\(504\) −31.6338 175.361i −0.0627654 0.347938i
\(505\) 304.887 0.603737
\(506\) 1.02070 0.589304i 0.00201720 0.00116463i
\(507\) 395.470 + 100.961i 0.780020 + 0.199134i
\(508\) −32.4486 + 56.2026i −0.0638752 + 0.110635i
\(509\) 247.402i 0.486056i 0.970019 + 0.243028i \(0.0781407\pi\)
−0.970019 + 0.243028i \(0.921859\pi\)
\(510\) −62.1697 + 243.522i −0.121901 + 0.477495i
\(511\) −9.43087 60.4421i −0.0184557 0.118282i
\(512\) 22.6274i 0.0441942i
\(513\) 55.1844 16.9095i 0.107572 0.0329619i
\(514\) 74.6497 + 129.297i 0.145233 + 0.251551i
\(515\) 117.286i 0.227740i
\(516\) 336.368 344.433i 0.651877 0.667505i
\(517\) 178.615 + 309.370i 0.345484 + 0.598395i
\(518\) −114.635 + 296.596i −0.221302 + 0.572580i
\(519\) −172.080 168.051i −0.331560 0.323797i
\(520\) 19.4391 + 33.6695i 0.0373829 + 0.0647490i
\(521\) −451.108 + 260.448i −0.865851 + 0.499899i −0.865967 0.500101i \(-0.833296\pi\)
0.000116349 1.00000i \(0.499963\pi\)
\(522\) 394.778 240.570i 0.756279 0.460862i
\(523\) 232.863 403.331i 0.445245 0.771187i −0.552824 0.833298i \(-0.686450\pi\)
0.998069 + 0.0621107i \(0.0197832\pi\)
\(524\) −316.965 183.000i −0.604895 0.349236i
\(525\) −38.4461 + 402.748i −0.0732306 + 0.767139i
\(526\) 75.0310 + 129.957i 0.142644 + 0.247067i
\(527\) 322.749i 0.612428i
\(528\) 50.1323 + 48.9586i 0.0949476 + 0.0927246i
\(529\) 528.980 0.999961
\(530\) 76.4746 + 44.1526i 0.144292 + 0.0833069i
\(531\) 204.752 4.85142i 0.385597 0.00913639i
\(532\) 4.61378 + 29.5695i 0.00867252 + 0.0555818i
\(533\) −157.246 90.7861i −0.295021 0.170330i
\(534\) −125.356 446.605i −0.234748 0.836340i
\(535\) 161.004 278.867i 0.300942 0.521247i
\(536\) −172.047 99.3315i −0.320984 0.185320i
\(537\) 224.713 + 219.451i 0.418459 + 0.408662i
\(538\) 159.367 276.032i 0.296221 0.513070i
\(539\) −192.433 + 211.755i −0.357019 + 0.392866i
\(540\) −37.8845 123.637i −0.0701566 0.228957i
\(541\) 272.202 471.468i 0.503147 0.871476i −0.496847 0.867838i \(-0.665509\pi\)
0.999993 0.00363728i \(-0.00115778\pi\)
\(542\) 237.617i 0.438407i
\(543\) −143.811 512.357i −0.264846 0.943568i
\(544\) −139.941 −0.257245
\(545\) 344.551 198.927i 0.632204 0.365003i
\(546\) −98.8796 + 138.865i −0.181098 + 0.254332i
\(547\) −166.024 + 287.563i −0.303518 + 0.525709i −0.976930 0.213558i \(-0.931495\pi\)
0.673412 + 0.739267i \(0.264828\pi\)
\(548\) 53.3897 + 30.8245i 0.0974264 + 0.0562492i
\(549\) −810.906 442.904i −1.47706 0.806747i
\(550\) −79.5494 137.784i −0.144635 0.250516i
\(551\) −67.2417 + 38.8220i −0.122036 + 0.0704574i
\(552\) −0.327269 1.16596i −0.000592879 0.00211225i
\(553\) 67.2235 + 430.832i 0.121561 + 0.779082i
\(554\) 410.948 237.261i 0.741783 0.428269i
\(555\) −57.0791 + 223.582i −0.102845 + 0.402851i
\(556\) 111.141 0.199895
\(557\) 384.372 221.918i 0.690076 0.398416i −0.113564 0.993531i \(-0.536227\pi\)
0.803641 + 0.595115i \(0.202893\pi\)
\(558\) 86.4106 + 141.801i 0.154858 + 0.254123i
\(559\) −460.578 −0.823933
\(560\) 66.2486 10.3369i 0.118301 0.0184587i
\(561\) 302.789 310.048i 0.539731 0.552671i
\(562\) −765.662 −1.36239
\(563\) −697.747 402.845i −1.23934 0.715532i −0.270379 0.962754i \(-0.587149\pi\)
−0.968959 + 0.247222i \(0.920482\pi\)
\(564\) 353.398 99.1936i 0.626592 0.175875i
\(565\) 241.469 + 418.237i 0.427379 + 0.740242i
\(566\) 447.612i 0.790834i
\(567\) 424.113 376.321i 0.747994 0.663705i
\(568\) 285.083 0.501907
\(569\) 660.080 381.097i 1.16007 0.669767i 0.208749 0.977969i \(-0.433061\pi\)
0.951321 + 0.308203i \(0.0997275\pi\)
\(570\) 5.86908 + 20.9098i 0.0102966 + 0.0366839i
\(571\) 447.631 775.319i 0.783941 1.35783i −0.145688 0.989331i \(-0.546540\pi\)
0.929629 0.368496i \(-0.120127\pi\)
\(572\) 67.0374i 0.117198i
\(573\) −377.136 368.306i −0.658177 0.642767i
\(574\) −243.810 + 196.508i −0.424756 + 0.342349i
\(575\) 2.74960i 0.00478192i
\(576\) 61.4836 37.4669i 0.106742 0.0650467i
\(577\) −0.145650 0.252273i −0.000252426 0.000437215i 0.865899 0.500219i \(-0.166747\pi\)
−0.866152 + 0.499781i \(0.833414\pi\)
\(578\) 456.773i 0.790266i
\(579\) −237.430 60.6143i −0.410069 0.104688i
\(580\) 86.9782 + 150.651i 0.149962 + 0.259743i
\(581\) −261.417 324.343i −0.449943 0.558249i
\(582\) 652.424 183.126i 1.12100 0.314649i
\(583\) −76.1321 131.865i −0.130587 0.226183i
\(584\) 21.4062 12.3589i 0.0366545 0.0211625i
\(585\) −59.2997 + 108.571i −0.101367 + 0.185591i
\(586\) 183.389 317.638i 0.312950 0.542045i
\(587\) 316.757 + 182.880i 0.539621 + 0.311550i 0.744925 0.667148i \(-0.232485\pi\)
−0.205304 + 0.978698i \(0.565818\pi\)
\(588\) 161.908 + 245.401i 0.275354 + 0.417349i
\(589\) −13.9445 24.1526i −0.0236749 0.0410061i
\(590\) 77.0663i 0.130621i
\(591\) −920.991 + 258.509i −1.55836 + 0.437409i
\(592\) −128.483 −0.217032
\(593\) 248.305 + 143.359i 0.418726 + 0.241752i 0.694532 0.719462i \(-0.255611\pi\)
−0.275806 + 0.961213i \(0.588945\pi\)
\(594\) −50.0209 + 217.287i −0.0842103 + 0.365803i
\(595\) −63.9294 409.721i −0.107444 0.688606i
\(596\) −12.7850 7.38142i −0.0214513 0.0123849i
\(597\) −787.600 + 806.483i −1.31926 + 1.35089i
\(598\) −0.579283 + 1.00335i −0.000968700 + 0.00167784i
\(599\) 31.3304 + 18.0886i 0.0523046 + 0.0301980i 0.525924 0.850531i \(-0.323720\pi\)
−0.473620 + 0.880729i \(0.657053\pi\)
\(600\) −157.392 + 44.1777i −0.262320 + 0.0736294i
\(601\) 450.390 780.099i 0.749402 1.29800i −0.198708 0.980059i \(-0.563675\pi\)
0.948110 0.317943i \(-0.102992\pi\)
\(602\) −286.362 + 740.909i −0.475684 + 1.23075i
\(603\) −14.9739 631.965i −0.0248323 1.04803i
\(604\) 34.5368 59.8194i 0.0571801 0.0990388i
\(605\) 208.098i 0.343964i
\(606\) −377.410 + 386.458i −0.622789 + 0.637720i
\(607\) 15.7658 0.0259734 0.0129867 0.999916i \(-0.495866\pi\)
0.0129867 + 0.999916i \(0.495866\pi\)
\(608\) −10.4724 + 6.04623i −0.0172243 + 0.00994445i
\(609\) −442.426 + 621.339i −0.726480 + 1.02026i
\(610\) 173.838 301.097i 0.284981 0.493601i
\(611\) −304.109 175.578i −0.497724 0.287361i
\(612\) −231.718 380.251i −0.378624 0.621325i
\(613\) 44.9747 + 77.8984i 0.0733681 + 0.127077i 0.900375 0.435114i \(-0.143292\pi\)
−0.827007 + 0.562191i \(0.809959\pi\)
\(614\) −227.679 + 131.451i −0.370813 + 0.214089i
\(615\) −158.772 + 162.578i −0.258165 + 0.264355i
\(616\) −107.840 41.6801i −0.175064 0.0676626i
\(617\) −871.820 + 503.346i −1.41300 + 0.815795i −0.995670 0.0929603i \(-0.970367\pi\)
−0.417329 + 0.908755i \(0.637034\pi\)
\(618\) 148.665 + 145.184i 0.240559 + 0.234926i
\(619\) 151.087 0.244083 0.122041 0.992525i \(-0.461056\pi\)
0.122041 + 0.992525i \(0.461056\pi\)
\(620\) −54.1124 + 31.2418i −0.0872780 + 0.0503900i
\(621\) 2.62628 2.81989i 0.00422911 0.00454088i
\(622\) 9.81499 0.0157797
\(623\) 480.276 + 595.883i 0.770908 + 0.956474i
\(624\) −66.7406 17.0384i −0.106956 0.0273052i
\(625\) 227.807 0.364491
\(626\) 485.136 + 280.094i 0.774978 + 0.447434i
\(627\) 9.26314 36.2843i 0.0147737 0.0578697i
\(628\) 192.632 + 333.649i 0.306739 + 0.531288i
\(629\) 794.614i 1.26330i
\(630\) 137.783 + 162.896i 0.218703 + 0.258565i
\(631\) 318.002 0.503965 0.251982 0.967732i \(-0.418917\pi\)
0.251982 + 0.967732i \(0.418917\pi\)
\(632\) −152.584 + 88.0944i −0.241430 + 0.139390i
\(633\) 546.012 559.102i 0.862577 0.883258i
\(634\) 39.9494 69.1944i 0.0630117 0.109139i
\(635\) 77.7030i 0.122367i
\(636\) −150.631 + 42.2799i −0.236841 + 0.0664778i
\(637\) 59.7410 274.847i 0.0937849 0.431471i
\(638\) 299.952i 0.470144i
\(639\) 472.046 + 774.633i 0.738727 + 1.21226i
\(640\) 13.5462 + 23.4627i 0.0211659 + 0.0366604i
\(641\) 435.010i 0.678643i 0.940671 + 0.339321i \(0.110197\pi\)
−0.940671 + 0.339321i \(0.889803\pi\)
\(642\) 154.175 + 549.280i 0.240148 + 0.855577i
\(643\) −267.589 463.477i −0.416157 0.720805i 0.579392 0.815049i \(-0.303290\pi\)
−0.995549 + 0.0942441i \(0.969957\pi\)
\(644\) 1.25387 + 1.55569i 0.00194700 + 0.00241567i
\(645\) −142.586 + 558.518i −0.221064 + 0.865919i
\(646\) 37.3935 + 64.7674i 0.0578846 + 0.100259i
\(647\) 217.880 125.793i 0.336755 0.194425i −0.322081 0.946712i \(-0.604382\pi\)
0.658836 + 0.752287i \(0.271049\pi\)
\(648\) 203.611 + 105.026i 0.314215 + 0.162077i
\(649\) 66.4425 115.082i 0.102377 0.177322i
\(650\) 135.441 + 78.1966i 0.208370 + 0.120302i
\(651\) −223.179 158.916i −0.342825 0.244110i
\(652\) −226.076 391.575i −0.346742 0.600575i
\(653\) 670.666i 1.02705i −0.858074 0.513526i \(-0.828339\pi\)
0.858074 0.513526i \(-0.171661\pi\)
\(654\) −174.360 + 682.979i −0.266606 + 1.04431i
\(655\) 438.221 0.669039
\(656\) −109.577 63.2645i −0.167039 0.0964398i
\(657\) 69.0266 + 37.7013i 0.105063 + 0.0573840i
\(658\) −471.521 + 380.041i −0.716597 + 0.577570i
\(659\) −240.616 138.920i −0.365123 0.210804i 0.306203 0.951966i \(-0.400942\pi\)
−0.671326 + 0.741162i \(0.734275\pi\)
\(660\) −81.2926 20.7535i −0.123171 0.0314446i
\(661\) 391.617 678.301i 0.592462 1.02617i −0.401438 0.915886i \(-0.631490\pi\)
0.993900 0.110287i \(-0.0351771\pi\)
\(662\) −270.499 156.173i −0.408609 0.235911i
\(663\) −105.376 + 412.764i −0.158938 + 0.622569i
\(664\) 84.1614 145.772i 0.126749 0.219536i
\(665\) −22.4862 27.8989i −0.0338139 0.0419533i
\(666\) −212.744 349.116i −0.319436 0.524198i
\(667\) −2.59194 + 4.48937i −0.00388597 + 0.00673069i
\(668\) 261.772i 0.391875i
\(669\) 690.623 + 176.311i 1.03232 + 0.263545i
\(670\) 237.864 0.355021
\(671\) −519.179 + 299.748i −0.773739 + 0.446718i
\(672\) −68.9045 + 96.7687i −0.102536 + 0.144001i
\(673\) 292.102 505.936i 0.434030 0.751762i −0.563186 0.826330i \(-0.690425\pi\)
0.997216 + 0.0745684i \(0.0237579\pi\)
\(674\) 419.919 + 242.441i 0.623026 + 0.359704i
\(675\) −380.653 354.518i −0.563930 0.525212i
\(676\) −136.051 235.648i −0.201259 0.348591i
\(677\) 166.562 96.1649i 0.246030 0.142046i −0.371915 0.928267i \(-0.621299\pi\)
0.617945 + 0.786221i \(0.287965\pi\)
\(678\) −829.040 211.649i −1.22277 0.312166i
\(679\) −870.497 + 701.611i −1.28203 + 1.03330i
\(680\) 145.107 83.7777i 0.213393 0.123202i
\(681\) 681.733 191.353i 1.00108 0.280988i
\(682\) 107.740 0.157977
\(683\) −715.412 + 413.043i −1.04746 + 0.604749i −0.921936 0.387343i \(-0.873393\pi\)
−0.125519 + 0.992091i \(0.540060\pi\)
\(684\) −33.7693 18.4442i −0.0493703 0.0269653i
\(685\) −73.8140 −0.107758
\(686\) −404.989 266.987i −0.590363 0.389194i
\(687\) −322.878 1150.32i −0.469982 1.67441i
\(688\) −320.955 −0.466505
\(689\) 129.622 + 74.8375i 0.188131 + 0.108618i
\(690\) 1.03737 + 1.01308i 0.00150343 + 0.00146823i
\(691\) 475.146 + 822.976i 0.687620 + 1.19099i 0.972606 + 0.232461i \(0.0746780\pi\)
−0.284985 + 0.958532i \(0.591989\pi\)
\(692\) 160.350i 0.231720i
\(693\) −65.3091 362.039i −0.0942411 0.522422i
\(694\) 516.814 0.744689
\(695\) −115.244 + 66.5362i −0.165819 + 0.0957356i
\(696\) −298.624 76.2367i −0.429057 0.109536i
\(697\) −391.265 + 677.692i −0.561356 + 0.972298i
\(698\) 7.42760i 0.0106413i
\(699\) 112.995 442.607i 0.161652 0.633201i
\(700\) 210.000 169.258i 0.300001 0.241797i
\(701\) 275.965i 0.393673i 0.980436 + 0.196836i \(0.0630668\pi\)
−0.980436 + 0.196836i \(0.936933\pi\)
\(702\) −64.2132 209.561i −0.0914718 0.298520i
\(703\) 34.3316 + 59.4641i 0.0488359 + 0.0845863i
\(704\) 46.7152i 0.0663568i
\(705\) −307.059 + 314.421i −0.435545 + 0.445987i
\(706\) 106.134 + 183.830i 0.150332 + 0.260382i
\(707\) 321.302 831.310i 0.454458 1.17583i
\(708\) −97.6850 95.3978i −0.137973 0.134743i
\(709\) 234.272 + 405.770i 0.330425 + 0.572314i 0.982595 0.185759i \(-0.0594745\pi\)
−0.652170 + 0.758073i \(0.726141\pi\)
\(710\) −295.607 + 170.669i −0.416347 + 0.240378i
\(711\) −492.023 268.735i −0.692016 0.377968i
\(712\) −154.622 + 267.812i −0.217165 + 0.376141i
\(713\) −1.61254 0.931002i −0.00226163 0.00130575i
\(714\) 598.475 + 426.146i 0.838200 + 0.596843i
\(715\) 40.1328 + 69.5120i 0.0561297 + 0.0972196i
\(716\) 209.396i 0.292452i
\(717\) −148.841 145.357i −0.207589 0.202729i
\(718\) 34.4649 0.0480012
\(719\) 946.861 + 546.670i 1.31691 + 0.760321i 0.983231 0.182365i \(-0.0583752\pi\)
0.333683 + 0.942685i \(0.391709\pi\)
\(720\) −41.3231 + 75.6578i −0.0573932 + 0.105080i
\(721\) −319.794 123.601i −0.443542 0.171429i
\(722\) −436.536 252.034i −0.604621 0.349078i
\(723\) −24.9318 88.8247i −0.0344838 0.122856i
\(724\) −177.386 + 307.241i −0.245008 + 0.424367i
\(725\) 606.015 + 349.883i 0.835882 + 0.482597i
\(726\) −263.774 257.598i −0.363325 0.354818i
\(727\) 437.186 757.228i 0.601356 1.04158i −0.391260 0.920280i \(-0.627961\pi\)
0.992616 0.121299i \(-0.0387061\pi\)
\(728\) 112.289 17.5207i 0.154244 0.0240669i
\(729\) 51.7658 + 727.160i 0.0710093 + 0.997476i
\(730\) −14.7976 + 25.6302i −0.0202707 + 0.0351099i
\(731\) 1984.98i 2.71543i
\(732\) 166.465 + 593.065i 0.227411 + 0.810198i
\(733\) 331.228 0.451880 0.225940 0.974141i \(-0.427455\pi\)
0.225940 + 0.974141i \(0.427455\pi\)
\(734\) 665.992 384.511i 0.907346 0.523856i
\(735\) −314.797 157.532i −0.428295 0.214329i
\(736\) −0.403675 + 0.699185i −0.000548471 + 0.000949979i
\(737\) −355.198 205.074i −0.481952 0.278255i
\(738\) −9.53688 402.500i −0.0129226 0.545393i
\(739\) −626.471 1085.08i −0.847729 1.46831i −0.883230 0.468939i \(-0.844636\pi\)
0.0355017 0.999370i \(-0.488697\pi\)
\(740\) 133.226 76.9178i 0.180035 0.103943i
\(741\) 9.94793 + 35.4415i 0.0134250 + 0.0478293i
\(742\) 200.979 161.987i 0.270861 0.218311i
\(743\) −567.386 + 327.580i −0.763642 + 0.440889i −0.830602 0.556867i \(-0.812003\pi\)
0.0669598 + 0.997756i \(0.478670\pi\)
\(744\) 27.3835 107.263i 0.0368058 0.144171i
\(745\) 17.6759 0.0237260
\(746\) −357.492 + 206.398i −0.479212 + 0.276673i
\(747\) 535.450 12.6870i 0.716800 0.0169840i
\(748\) −288.915 −0.386249
\(749\) −590.691 732.877i −0.788640 0.978474i
\(750\) 314.213 321.746i 0.418951 0.428995i
\(751\) −1497.02 −1.99337 −0.996683 0.0813774i \(-0.974068\pi\)
−0.996683 + 0.0813774i \(0.974068\pi\)
\(752\) −211.919 122.352i −0.281808 0.162702i
\(753\) −860.274 + 241.467i −1.14246 + 0.320673i
\(754\) 147.426 + 255.349i 0.195525 + 0.338659i
\(755\) 82.7035i 0.109541i
\(756\) −377.035 26.9969i −0.498723 0.0357102i
\(757\) 1042.92 1.37771 0.688853 0.724901i \(-0.258115\pi\)
0.688853 + 0.724901i \(0.258115\pi\)
\(758\) 474.692 274.064i 0.626243 0.361562i
\(759\) −0.675660 2.40718i −0.000890198 0.00317151i
\(760\) 7.23930 12.5388i 0.00952539 0.0164985i
\(761\) 1095.82i 1.43998i 0.693985 + 0.719989i \(0.255853\pi\)
−0.693985 + 0.719989i \(0.744147\pi\)
\(762\) 98.4920 + 96.1860i 0.129255 + 0.126228i
\(763\) −179.295 1149.10i −0.234987 1.50602i
\(764\) 351.429i 0.459986i
\(765\) 467.913 + 255.567i 0.611651 + 0.334074i
\(766\) 247.782 + 429.171i 0.323475 + 0.560276i
\(767\) 130.625i 0.170307i
\(768\) −46.5083 11.8733i −0.0605577 0.0154600i
\(769\) 176.993 + 306.561i 0.230160 + 0.398649i 0.957855 0.287252i \(-0.0927418\pi\)
−0.727695 + 0.685901i \(0.759408\pi\)
\(770\) 136.773 21.3409i 0.177627 0.0277154i
\(771\) 304.928 85.5888i 0.395496 0.111010i
\(772\) 81.6816 + 141.477i 0.105805 + 0.183260i
\(773\) 40.8414 23.5798i 0.0528349 0.0305043i −0.473350 0.880875i \(-0.656955\pi\)
0.526185 + 0.850370i \(0.323622\pi\)
\(774\) −531.444 872.105i −0.686620 1.12675i
\(775\) −125.675 + 217.675i −0.162161 + 0.280871i
\(776\) −391.234 225.879i −0.504167 0.291081i
\(777\) 549.471 + 391.253i 0.707170 + 0.503543i
\(778\) 363.412 + 629.448i 0.467111 + 0.809059i
\(779\) 67.6191i 0.0868025i
\(780\) 79.4045 22.2877i 0.101801 0.0285740i
\(781\) 588.566 0.753605
\(782\) 4.32418 + 2.49656i 0.00552964 + 0.00319254i
\(783\) −287.315 937.660i −0.366942 1.19752i
\(784\) 41.6306 191.528i 0.0531003 0.244296i
\(785\) −399.486 230.643i −0.508899 0.293813i
\(786\) −542.459 + 555.464i −0.690151 + 0.706697i
\(787\) 341.919 592.220i 0.434458 0.752504i −0.562793 0.826598i \(-0.690273\pi\)
0.997251 + 0.0740942i \(0.0236066\pi\)
\(788\) 552.283 + 318.861i 0.700867 + 0.404646i
\(789\) 306.485 86.0260i 0.388448 0.109032i
\(790\) 105.478 182.693i 0.133516 0.231256i
\(791\) 1394.84 217.639i 1.76339 0.275144i
\(792\) 126.935 77.3519i 0.160272 0.0976665i
\(793\) 294.651 510.350i 0.371564 0.643569i
\(794\) 632.959i 0.797177i
\(795\) 130.880 134.018i 0.164629 0.168576i
\(796\) 751.511 0.944109
\(797\) 173.916 100.410i 0.218213 0.125985i −0.386910 0.922118i \(-0.626457\pi\)
0.605123 + 0.796132i \(0.293124\pi\)
\(798\) 63.1981 + 6.03285i 0.0791956 + 0.00755996i
\(799\) −756.695 + 1310.64i −0.947053 + 1.64034i
\(800\) 94.3821 + 54.4915i 0.117978 + 0.0681144i
\(801\) −983.729 + 23.3086i −1.22813 + 0.0290994i
\(802\) −220.434 381.804i −0.274856 0.476064i
\(803\) 44.1940 25.5154i 0.0550361 0.0317751i
\(804\) −294.444 + 301.503i −0.366224 + 0.375004i
\(805\) −2.23148 0.862471i −0.00277203 0.00107139i
\(806\) −91.7189 + 52.9539i −0.113795 + 0.0656997i
\(807\) −483.730 472.405i −0.599418 0.585384i
\(808\) 360.116 0.445688
\(809\) −264.760 + 152.859i −0.327268 + 0.188948i −0.654628 0.755951i \(-0.727175\pi\)
0.327359 + 0.944900i \(0.393841\pi\)
\(810\) −274.002 + 12.9918i −0.338274 + 0.0160392i
\(811\) −902.926 −1.11335 −0.556674 0.830731i \(-0.687923\pi\)
−0.556674 + 0.830731i \(0.687923\pi\)
\(812\) 502.427 78.3946i 0.618753 0.0965450i
\(813\) 488.397 + 124.684i 0.600734 + 0.153363i
\(814\) −265.258 −0.325869
\(815\) 468.842 + 270.686i 0.575266 + 0.332130i
\(816\) −73.4314 + 287.635i −0.0899895 + 0.352494i
\(817\) 85.7618 + 148.544i 0.104972 + 0.181816i
\(818\) 418.450i 0.511552i
\(819\) 233.539 + 276.104i 0.285151 + 0.337123i
\(820\) 151.496 0.184752
\(821\) −41.3545 + 23.8760i −0.0503708 + 0.0290816i −0.524974 0.851118i \(-0.675925\pi\)
0.474603 + 0.880200i \(0.342592\pi\)
\(822\) 91.3718 93.5625i 0.111158 0.113823i
\(823\) −740.074 + 1281.85i −0.899239 + 1.55753i −0.0707708 + 0.997493i \(0.522546\pi\)
−0.828469 + 0.560036i \(0.810787\pi\)
\(824\) 138.532i 0.168121i
\(825\) −324.942 + 91.2065i −0.393869 + 0.110553i
\(826\) 210.130 + 81.2155i 0.254395 + 0.0983239i
\(827\) 1050.14i 1.26982i −0.772587 0.634909i \(-0.781038\pi\)
0.772587 0.634909i \(-0.218962\pi\)
\(828\) −2.56825 + 0.0608524i −0.00310175 + 7.34932e-5i
\(829\) 182.182 + 315.549i 0.219762 + 0.380638i 0.954735 0.297458i \(-0.0961387\pi\)
−0.734973 + 0.678096i \(0.762805\pi\)
\(830\) 201.537i 0.242816i
\(831\) −272.029 969.159i −0.327351 1.16626i
\(832\) 22.9604 + 39.7686i 0.0275966 + 0.0477987i
\(833\) −1184.52 257.469i −1.42200 0.309086i
\(834\) 58.3192 228.440i 0.0699271 0.273909i
\(835\) −156.713 271.435i −0.187680 0.325072i
\(836\) −21.6206 + 12.4827i −0.0258620 + 0.0149314i
\(837\) 336.799 103.201i 0.402388 0.123299i
\(838\) 267.173 462.757i 0.318822 0.552216i
\(839\) 1021.16 + 589.566i 1.21711 + 0.702701i 0.964299 0.264814i \(-0.0853106\pi\)
0.252814 + 0.967515i \(0.418644\pi\)
\(840\) 13.5162 141.591i 0.0160907 0.168561i
\(841\) 239.140 + 414.203i 0.284352 + 0.492513i
\(842\) 797.716i 0.947407i
\(843\) −401.765 + 1573.74i −0.476590 + 1.86683i
\(844\) −520.992 −0.617289
\(845\) 282.147 + 162.898i 0.333902 + 0.192778i
\(846\) −18.4440 778.423i −0.0218015 0.920121i
\(847\) 567.404 + 219.302i 0.669899 + 0.258916i
\(848\) 90.3276 + 52.1507i 0.106518 + 0.0614984i
\(849\) 920.021 + 234.875i 1.08365 + 0.276649i
\(850\) 337.008 583.715i 0.396480 0.686723i
\(851\) 3.97011 + 2.29214i 0.00466522 + 0.00269347i
\(852\) 149.592 585.959i 0.175577 0.687746i
\(853\) 152.043 263.345i 0.178244 0.308729i −0.763035 0.646357i \(-0.776292\pi\)
0.941279 + 0.337629i \(0.109625\pi\)
\(854\) −637.777 791.297i −0.746811 0.926577i
\(855\) 46.0577 1.09130i 0.0538686 0.00127637i
\(856\) 190.169 329.383i 0.222160 0.384793i
\(857\) 1528.94i 1.78406i −0.451980 0.892028i \(-0.649282\pi\)
0.451980 0.892028i \(-0.350718\pi\)
\(858\) −137.789 35.1765i −0.160593 0.0409983i
\(859\) −454.355 −0.528935 −0.264467 0.964395i \(-0.585196\pi\)
−0.264467 + 0.964395i \(0.585196\pi\)
\(860\) 332.803 192.144i 0.386980 0.223423i
\(861\) 275.968 + 604.240i 0.320521 + 0.701789i
\(862\) −531.933 + 921.335i −0.617092 + 1.06883i
\(863\) 190.804 + 110.161i 0.221094 + 0.127649i 0.606457 0.795116i \(-0.292590\pi\)
−0.385363 + 0.922765i \(0.625924\pi\)
\(864\) −44.7471 146.033i −0.0517907 0.169020i
\(865\) −95.9957 166.269i −0.110978 0.192219i
\(866\) 552.680 319.090i 0.638199 0.368464i
\(867\) 938.851 + 239.683i 1.08287 + 0.276450i
\(868\) 28.1586 + 180.467i 0.0324408 + 0.207912i
\(869\) −315.016 + 181.874i −0.362504 + 0.209292i
\(870\) 355.287 99.7239i 0.408376 0.114625i
\(871\) 403.173 0.462885
\(872\) 406.965 234.961i 0.466703 0.269451i
\(873\) −34.0504 1437.08i −0.0390039 1.64614i
\(874\) 0.431460 0.000493662
\(875\) −267.501 + 692.109i −0.305715 + 0.790982i
\(876\) −14.1700 50.4834i −0.0161757 0.0576294i
\(877\) −1648.07 −1.87921 −0.939606 0.342259i \(-0.888808\pi\)
−0.939606 + 0.342259i \(0.888808\pi\)
\(878\) −162.803 93.9944i −0.185425 0.107055i
\(879\) −556.644 543.611i −0.633269 0.618442i
\(880\) 27.9666 + 48.4396i 0.0317802 + 0.0550450i
\(881\) 1387.66i 1.57510i −0.616252 0.787549i \(-0.711350\pi\)
0.616252 0.787549i \(-0.288650\pi\)
\(882\) 589.355 204.016i 0.668203 0.231310i
\(883\) −117.311 −0.132855 −0.0664274 0.997791i \(-0.521160\pi\)
−0.0664274 + 0.997791i \(0.521160\pi\)
\(884\) 245.952 142.001i 0.278227 0.160634i
\(885\) 158.402 + 40.4390i 0.178985 + 0.0456938i
\(886\) 293.628 508.578i 0.331408 0.574016i
\(887\) 369.393i 0.416453i −0.978081 0.208226i \(-0.933231\pi\)
0.978081 0.208226i \(-0.0667690\pi\)
\(888\) −67.4187 + 264.083i −0.0759220 + 0.297391i
\(889\) −211.866 81.8865i −0.238320 0.0921107i
\(890\) 370.264i 0.416027i
\(891\) 420.364 + 216.830i 0.471789 + 0.243356i
\(892\) −237.591 411.520i −0.266358 0.461345i
\(893\) 130.773i 0.146443i
\(894\) −21.8804 + 22.4050i −0.0244747 + 0.0250615i
\(895\) 125.357 + 217.125i 0.140064 + 0.242598i
\(896\) 78.2492 12.2093i 0.0873317 0.0136265i
\(897\) 1.75831 + 1.71714i 0.00196021 + 0.00191432i
\(898\) 185.850 + 321.902i 0.206960 + 0.358466i
\(899\) −410.387 + 236.937i −0.456493 + 0.263556i
\(900\) 8.21439 + 346.685i 0.00912710 + 0.385205i
\(901\) 322.531 558.640i 0.357970 0.620022i
\(902\) −226.227 130.612i −0.250806 0.144803i
\(903\) 1372.60 + 977.365i 1.52004 + 1.08235i
\(904\) 285.210 + 493.998i 0.315498 + 0.546458i
\(905\) 424.777i 0.469367i
\(906\) −104.830 102.376i −0.115707 0.112998i
\(907\) −595.216 −0.656247 −0.328124 0.944635i \(-0.606416\pi\)
−0.328124 + 0.944635i \(0.606416\pi\)
\(908\) −408.810 236.026i −0.450231 0.259941i
\(909\) 596.287 + 978.513i 0.655981 + 1.07647i
\(910\) −105.945 + 85.3909i −0.116424 + 0.0938362i
\(911\) −451.079 260.431i −0.495148 0.285874i 0.231560 0.972821i \(-0.425617\pi\)
−0.726707 + 0.686947i \(0.758950\pi\)
\(912\) 6.93224 + 24.6975i 0.00760114 + 0.0270806i
\(913\) 173.754 300.952i 0.190312 0.329629i
\(914\) −619.753 357.815i −0.678067 0.391482i
\(915\) −527.655 515.301i −0.576672 0.563170i
\(916\) −398.258 + 689.803i −0.434779 + 0.753060i
\(917\) 461.814 1194.86i 0.503614 1.30301i
\(918\) −903.156 + 276.743i −0.983830 + 0.301463i
\(919\) −430.710 + 746.012i −0.468673 + 0.811765i −0.999359 0.0358037i \(-0.988601\pi\)
0.530686 + 0.847568i \(0.321934\pi\)
\(920\) 0.966659i 0.00105072i
\(921\) 150.713 + 536.947i 0.163641 + 0.583004i
\(922\) −1078.16 −1.16937
\(923\) −501.045 + 289.278i −0.542844 + 0.313411i
\(924\) −142.256 + 199.783i −0.153957 + 0.216215i
\(925\) 309.413 535.919i 0.334501 0.579372i
\(926\) 34.8096 + 20.0973i 0.0375913 + 0.0217034i
\(927\) 376.421 229.384i 0.406063 0.247447i
\(928\) 102.734 + 177.940i 0.110705 + 0.191746i
\(929\) −739.874 + 427.167i −0.796420 + 0.459813i −0.842218 0.539137i \(-0.818750\pi\)
0.0457978 + 0.998951i \(0.485417\pi\)
\(930\) 35.8199 + 127.616i 0.0385161 + 0.137221i
\(931\) −99.7665 + 31.9104i −0.107161 + 0.0342754i
\(932\) −263.735 + 152.268i −0.282978 + 0.163377i
\(933\) 5.15021 20.1737i 0.00552006 0.0216224i
\(934\) −206.835 −0.221450
\(935\) 299.579 172.962i 0.320406 0.184986i
\(936\) −70.0415 + 128.238i −0.0748307 + 0.137006i
\(937\) −336.030 −0.358623 −0.179311 0.983792i \(-0.557387\pi\)
−0.179311 + 0.983792i \(0.557387\pi\)
\(938\) 250.670 648.564i 0.267239 0.691433i
\(939\) 830.269 850.175i 0.884206 0.905404i
\(940\) 292.989 0.311691
\(941\) 1212.36 + 699.955i 1.28837 + 0.743842i 0.978364 0.206892i \(-0.0663350\pi\)
0.310008 + 0.950734i \(0.399668\pi\)
\(942\) 786.861 220.860i 0.835309 0.234459i
\(943\) 2.25729 + 3.90973i 0.00239373 + 0.00414606i
\(944\) 91.0265i 0.0964264i
\(945\) 407.114 197.723i 0.430809 0.209231i
\(946\) −662.624 −0.700449
\(947\) 696.571 402.166i 0.735556 0.424673i −0.0848954 0.996390i \(-0.527056\pi\)
0.820451 + 0.571717i \(0.193722\pi\)
\(948\) 101.004 + 359.847i 0.106544 + 0.379585i
\(949\) −25.0815 + 43.4425i −0.0264294 + 0.0457771i
\(950\) 58.2423i 0.0613077i
\(951\) −121.259 118.420i −0.127507 0.124522i
\(952\) −75.5099 483.939i −0.0793171 0.508340i
\(953\) 998.754i 1.04801i 0.851715 + 0.524005i \(0.175563\pi\)
−0.851715 + 0.524005i \(0.824437\pi\)
\(954\) 7.86152 + 331.792i 0.00824058 + 0.347790i
\(955\) −210.387 364.402i −0.220301 0.381572i
\(956\) 138.696i 0.145079i
\(957\) −616.521 157.394i −0.644222 0.164466i
\(958\) 38.9630 + 67.4858i 0.0406712 + 0.0704445i
\(959\) −77.7880 + 201.262i −0.0811137 + 0.209867i
\(960\) 55.3332 15.5312i 0.0576388 0.0161784i
\(961\) 395.394 + 684.843i 0.411441 + 0.712636i
\(962\) 225.813 130.373i 0.234733 0.135523i
\(963\) 1209.89 28.6673i 1.25638 0.0297687i
\(964\) −30.7525 + 53.2648i −0.0319009 + 0.0552540i
\(965\) −169.393 97.7994i −0.175537 0.101347i
\(966\) 3.85550 1.76088i 0.00399120 0.00182286i
\(967\) 568.912 + 985.384i 0.588327 + 1.01901i 0.994452 + 0.105194i \(0.0335464\pi\)
−0.406125 + 0.913818i \(0.633120\pi\)
\(968\) 245.794i 0.253920i
\(969\) 152.744 42.8731i 0.157631 0.0442447i
\(970\) 540.901 0.557630
\(971\) −1389.34 802.138i −1.43084 0.826095i −0.433653 0.901080i \(-0.642776\pi\)
−0.997185 + 0.0749853i \(0.976109\pi\)
\(972\) 322.711 363.392i 0.332007 0.373860i
\(973\) 59.9699 + 384.345i 0.0616341 + 0.395010i
\(974\) −585.257 337.898i −0.600880 0.346918i
\(975\) 231.795 237.352i 0.237738 0.243438i
\(976\) 205.328 355.639i 0.210377 0.364384i
\(977\) 978.287 + 564.814i 1.00132 + 0.578111i 0.908638 0.417585i \(-0.137123\pi\)
0.0926796 + 0.995696i \(0.470457\pi\)
\(978\) −923.471 + 259.205i −0.944244 + 0.265036i
\(979\) −319.222 + 552.909i −0.326070 + 0.564769i
\(980\) 71.4931 + 223.520i 0.0729521 + 0.228082i
\(981\) 1312.30 + 716.759i 1.33772 + 0.730641i
\(982\) −336.681 + 583.149i −0.342852 + 0.593838i
\(983\) 559.556i 0.569233i 0.958641 + 0.284617i \(0.0918663\pi\)
−0.958641 + 0.284617i \(0.908134\pi\)
\(984\) −187.532 + 192.028i −0.190581 + 0.195151i
\(985\) −763.560 −0.775188
\(986\) 1100.49 635.367i 1.11611 0.644389i
\(987\) 533.714 + 1168.58i 0.540744 + 1.18397i
\(988\) 12.2704 21.2530i 0.0124194 0.0215111i
\(989\) 9.91748 + 5.72586i 0.0100278 + 0.00578955i
\(990\) −85.3132 + 156.199i −0.0861750 + 0.157776i
\(991\) −820.211 1420.65i −0.827660 1.43355i −0.899870 0.436159i \(-0.856338\pi\)
0.0722098 0.997389i \(-0.476995\pi\)
\(992\) −63.9146 + 36.9011i −0.0644300 + 0.0371987i
\(993\) −462.937 + 474.035i −0.466200 + 0.477377i
\(994\) 153.826 + 985.863i 0.154754 + 0.991814i
\(995\) −779.252 + 449.901i −0.783167 + 0.452162i
\(996\) −255.457 249.476i −0.256483 0.250478i
\(997\) 78.3056 0.0785412 0.0392706 0.999229i \(-0.487497\pi\)
0.0392706 + 0.999229i \(0.487497\pi\)
\(998\) −61.1832 + 35.3241i −0.0613058 + 0.0353949i
\(999\) −829.204 + 254.083i −0.830034 + 0.254337i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.i.a.65.5 32
3.2 odd 2 378.3.i.a.359.11 32
7.4 even 3 126.3.r.a.11.6 yes 32
9.4 even 3 378.3.r.a.233.6 32
9.5 odd 6 126.3.r.a.23.14 yes 32
21.11 odd 6 378.3.r.a.305.14 32
63.4 even 3 378.3.i.a.179.14 32
63.32 odd 6 inner 126.3.i.a.95.5 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.5 32 1.1 even 1 trivial
126.3.i.a.95.5 yes 32 63.32 odd 6 inner
126.3.r.a.11.6 yes 32 7.4 even 3
126.3.r.a.23.14 yes 32 9.5 odd 6
378.3.i.a.179.14 32 63.4 even 3
378.3.i.a.359.11 32 3.2 odd 2
378.3.r.a.233.6 32 9.4 even 3
378.3.r.a.305.14 32 21.11 odd 6