Properties

Label 378.3.r.a.233.15
Level $378$
Weight $3$
Character 378.233
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(233,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.233"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 233.15
Character \(\chi\) \(=\) 378.233
Dual form 378.3.r.a.305.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +(7.20455 - 4.15955i) q^{5} +(5.54044 + 4.27827i) q^{7} -2.82843i q^{8} +(5.88249 + 10.1888i) q^{10} +(-9.13192 - 5.27232i) q^{11} +(1.24066 - 2.14889i) q^{13} +(-6.05038 + 7.83536i) q^{14} +4.00000 q^{16} +(27.5318 - 15.8955i) q^{17} +(6.85989 - 11.8817i) q^{19} +(-14.4091 + 8.31909i) q^{20} +(7.45618 - 12.9145i) q^{22} +(-27.8304 + 16.0679i) q^{23} +(22.1037 - 38.2847i) q^{25} +(3.03899 + 1.75456i) q^{26} +(-11.0809 - 8.55653i) q^{28} +(-2.05673 + 1.18745i) q^{29} +20.7685 q^{31} +5.65685i q^{32} +(22.4796 + 38.9358i) q^{34} +(57.7120 + 7.77726i) q^{35} +(5.23692 - 9.07061i) q^{37} +(16.8032 + 9.70134i) q^{38} +(-11.7650 - 20.3775i) q^{40} +(43.1999 + 24.9415i) q^{41} +(16.3930 + 28.3936i) q^{43} +(18.2638 + 10.5446i) q^{44} +(-22.7234 - 39.3581i) q^{46} +41.5702i q^{47} +(12.3929 + 47.4069i) q^{49} +(54.1427 + 31.2593i) q^{50} +(-2.48133 + 4.29779i) q^{52} +(-67.8875 + 39.1948i) q^{53} -87.7218 q^{55} +(12.1008 - 15.6707i) q^{56} +(-1.67931 - 2.90865i) q^{58} -71.7399i q^{59} +66.1453 q^{61} +29.3711i q^{62} -8.00000 q^{64} -20.6424i q^{65} -24.9448 q^{67} +(-55.0636 + 31.7910i) q^{68} +(-10.9987 + 81.6171i) q^{70} -23.3875i q^{71} +(19.5871 + 33.9258i) q^{73} +(12.8278 + 7.40612i) q^{74} +(-13.7198 + 23.7633i) q^{76} +(-28.0385 - 68.2797i) q^{77} -10.0737 q^{79} +(28.8182 - 16.6382i) q^{80} +(-35.2726 + 61.0939i) q^{82} +(-95.0843 + 54.8969i) q^{83} +(132.236 - 229.040i) q^{85} +(-40.1546 + 23.1833i) q^{86} +(-14.9124 + 25.8290i) q^{88} +(-36.4975 - 21.0718i) q^{89} +(16.0674 - 6.59792i) q^{91} +(55.6607 - 32.1357i) q^{92} -58.7892 q^{94} -114.136i q^{95} +(-37.7643 - 65.4097i) q^{97} +(-67.0435 + 17.5262i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 2 q^{7} + 36 q^{11} + 10 q^{13} - 36 q^{14} + 128 q^{16} + 54 q^{17} + 28 q^{19} + 126 q^{23} + 80 q^{25} + 72 q^{26} - 4 q^{28} - 36 q^{29} + 16 q^{31} + 90 q^{35} + 22 q^{37} - 72 q^{41}+ \cdots - 288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 7.20455 4.15955i 1.44091 0.831909i 0.442999 0.896522i \(-0.353915\pi\)
0.997910 + 0.0646127i \(0.0205812\pi\)
\(6\) 0 0
\(7\) 5.54044 + 4.27827i 0.791491 + 0.611181i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 5.88249 + 10.1888i 0.588249 + 1.01888i
\(11\) −9.13192 5.27232i −0.830174 0.479301i 0.0237379 0.999718i \(-0.492443\pi\)
−0.853912 + 0.520417i \(0.825777\pi\)
\(12\) 0 0
\(13\) 1.24066 2.14889i 0.0954357 0.165300i −0.814355 0.580368i \(-0.802909\pi\)
0.909790 + 0.415068i \(0.136242\pi\)
\(14\) −6.05038 + 7.83536i −0.432170 + 0.559669i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 27.5318 15.8955i 1.61952 0.935029i 0.632473 0.774582i \(-0.282040\pi\)
0.987045 0.160446i \(-0.0512934\pi\)
\(18\) 0 0
\(19\) 6.85989 11.8817i 0.361047 0.625351i −0.627087 0.778949i \(-0.715753\pi\)
0.988133 + 0.153598i \(0.0490862\pi\)
\(20\) −14.4091 + 8.31909i −0.720455 + 0.415955i
\(21\) 0 0
\(22\) 7.45618 12.9145i 0.338917 0.587022i
\(23\) −27.8304 + 16.0679i −1.21002 + 0.698603i −0.962763 0.270348i \(-0.912861\pi\)
−0.247253 + 0.968951i \(0.579528\pi\)
\(24\) 0 0
\(25\) 22.1037 38.2847i 0.884147 1.53139i
\(26\) 3.03899 + 1.75456i 0.116884 + 0.0674832i
\(27\) 0 0
\(28\) −11.0809 8.55653i −0.395746 0.305590i
\(29\) −2.05673 + 1.18745i −0.0709216 + 0.0409466i −0.535041 0.844826i \(-0.679704\pi\)
0.464120 + 0.885772i \(0.346371\pi\)
\(30\) 0 0
\(31\) 20.7685 0.669952 0.334976 0.942227i \(-0.391272\pi\)
0.334976 + 0.942227i \(0.391272\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 22.4796 + 38.9358i 0.661165 + 1.14517i
\(35\) 57.7120 + 7.77726i 1.64891 + 0.222207i
\(36\) 0 0
\(37\) 5.23692 9.07061i 0.141538 0.245152i −0.786538 0.617542i \(-0.788128\pi\)
0.928076 + 0.372391i \(0.121462\pi\)
\(38\) 16.8032 + 9.70134i 0.442190 + 0.255298i
\(39\) 0 0
\(40\) −11.7650 20.3775i −0.294124 0.509438i
\(41\) 43.1999 + 24.9415i 1.05366 + 0.608329i 0.923671 0.383187i \(-0.125173\pi\)
0.129986 + 0.991516i \(0.458507\pi\)
\(42\) 0 0
\(43\) 16.3930 + 28.3936i 0.381234 + 0.660316i 0.991239 0.132081i \(-0.0421660\pi\)
−0.610005 + 0.792397i \(0.708833\pi\)
\(44\) 18.2638 + 10.5446i 0.415087 + 0.239651i
\(45\) 0 0
\(46\) −22.7234 39.3581i −0.493987 0.855610i
\(47\) 41.5702i 0.884473i 0.896899 + 0.442236i \(0.145815\pi\)
−0.896899 + 0.442236i \(0.854185\pi\)
\(48\) 0 0
\(49\) 12.3929 + 47.4069i 0.252916 + 0.967488i
\(50\) 54.1427 + 31.2593i 1.08285 + 0.625186i
\(51\) 0 0
\(52\) −2.48133 + 4.29779i −0.0477179 + 0.0826498i
\(53\) −67.8875 + 39.1948i −1.28090 + 0.739525i −0.977012 0.213184i \(-0.931617\pi\)
−0.303883 + 0.952709i \(0.598283\pi\)
\(54\) 0 0
\(55\) −87.7218 −1.59494
\(56\) 12.1008 15.6707i 0.216085 0.279834i
\(57\) 0 0
\(58\) −1.67931 2.90865i −0.0289536 0.0501491i
\(59\) 71.7399i 1.21593i −0.793964 0.607965i \(-0.791986\pi\)
0.793964 0.607965i \(-0.208014\pi\)
\(60\) 0 0
\(61\) 66.1453 1.08435 0.542175 0.840266i \(-0.317601\pi\)
0.542175 + 0.840266i \(0.317601\pi\)
\(62\) 29.3711i 0.473728i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 20.6424i 0.317575i
\(66\) 0 0
\(67\) −24.9448 −0.372311 −0.186155 0.982520i \(-0.559603\pi\)
−0.186155 + 0.982520i \(0.559603\pi\)
\(68\) −55.0636 + 31.7910i −0.809759 + 0.467514i
\(69\) 0 0
\(70\) −10.9987 + 81.6171i −0.157124 + 1.16596i
\(71\) 23.3875i 0.329402i −0.986344 0.164701i \(-0.947334\pi\)
0.986344 0.164701i \(-0.0526659\pi\)
\(72\) 0 0
\(73\) 19.5871 + 33.9258i 0.268316 + 0.464737i 0.968427 0.249297i \(-0.0801996\pi\)
−0.700111 + 0.714034i \(0.746866\pi\)
\(74\) 12.8278 + 7.40612i 0.173348 + 0.100083i
\(75\) 0 0
\(76\) −13.7198 + 23.7633i −0.180523 + 0.312676i
\(77\) −28.0385 68.2797i −0.364136 0.886750i
\(78\) 0 0
\(79\) −10.0737 −0.127516 −0.0637579 0.997965i \(-0.520309\pi\)
−0.0637579 + 0.997965i \(0.520309\pi\)
\(80\) 28.8182 16.6382i 0.360227 0.207977i
\(81\) 0 0
\(82\) −35.2726 + 61.0939i −0.430154 + 0.745048i
\(83\) −95.0843 + 54.8969i −1.14559 + 0.661409i −0.947810 0.318837i \(-0.896708\pi\)
−0.197784 + 0.980246i \(0.563375\pi\)
\(84\) 0 0
\(85\) 132.236 229.040i 1.55572 2.69458i
\(86\) −40.1546 + 23.1833i −0.466914 + 0.269573i
\(87\) 0 0
\(88\) −14.9124 + 25.8290i −0.169459 + 0.293511i
\(89\) −36.4975 21.0718i −0.410084 0.236762i 0.280742 0.959783i \(-0.409420\pi\)
−0.690826 + 0.723021i \(0.742753\pi\)
\(90\) 0 0
\(91\) 16.0674 6.59792i 0.176564 0.0725046i
\(92\) 55.6607 32.1357i 0.605008 0.349302i
\(93\) 0 0
\(94\) −58.7892 −0.625417
\(95\) 114.136i 1.20143i
\(96\) 0 0
\(97\) −37.7643 65.4097i −0.389322 0.674326i 0.603036 0.797714i \(-0.293957\pi\)
−0.992359 + 0.123388i \(0.960624\pi\)
\(98\) −67.0435 + 17.5262i −0.684117 + 0.178839i
\(99\) 0 0
\(100\) −44.2073 + 76.5693i −0.442073 + 0.765693i
\(101\) −113.453 65.5019i −1.12329 0.648534i −0.181054 0.983473i \(-0.557951\pi\)
−0.942240 + 0.334939i \(0.891284\pi\)
\(102\) 0 0
\(103\) 16.6112 + 28.7715i 0.161274 + 0.279335i 0.935326 0.353788i \(-0.115106\pi\)
−0.774052 + 0.633122i \(0.781773\pi\)
\(104\) −6.07799 3.50913i −0.0584422 0.0337416i
\(105\) 0 0
\(106\) −55.4299 96.0074i −0.522923 0.905730i
\(107\) −46.8532 27.0507i −0.437881 0.252810i 0.264818 0.964299i \(-0.414688\pi\)
−0.702698 + 0.711488i \(0.748022\pi\)
\(108\) 0 0
\(109\) −14.9320 25.8630i −0.136991 0.237275i 0.789365 0.613924i \(-0.210410\pi\)
−0.926356 + 0.376648i \(0.877076\pi\)
\(110\) 124.057i 1.12779i
\(111\) 0 0
\(112\) 22.1617 + 17.1131i 0.197873 + 0.152795i
\(113\) 160.151 + 92.4632i 1.41726 + 0.818258i 0.996058 0.0887062i \(-0.0282732\pi\)
0.421207 + 0.906964i \(0.361607\pi\)
\(114\) 0 0
\(115\) −133.670 + 231.523i −1.16235 + 2.01325i
\(116\) 4.11345 2.37490i 0.0354608 0.0204733i
\(117\) 0 0
\(118\) 101.455 0.859792
\(119\) 220.543 + 29.7204i 1.85331 + 0.249751i
\(120\) 0 0
\(121\) −4.90537 8.49634i −0.0405402 0.0702177i
\(122\) 93.5436i 0.766751i
\(123\) 0 0
\(124\) −41.5370 −0.334976
\(125\) 159.788i 1.27830i
\(126\) 0 0
\(127\) −111.511 −0.878041 −0.439020 0.898477i \(-0.644674\pi\)
−0.439020 + 0.898477i \(0.644674\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 29.1928 0.224560
\(131\) −49.0008 + 28.2906i −0.374052 + 0.215959i −0.675227 0.737610i \(-0.735954\pi\)
0.301175 + 0.953569i \(0.402621\pi\)
\(132\) 0 0
\(133\) 88.8397 36.4812i 0.667968 0.274295i
\(134\) 35.2773i 0.263263i
\(135\) 0 0
\(136\) −44.9592 77.8717i −0.330583 0.572586i
\(137\) −57.1869 33.0169i −0.417423 0.240999i 0.276551 0.960999i \(-0.410808\pi\)
−0.693974 + 0.720000i \(0.744142\pi\)
\(138\) 0 0
\(139\) 45.2312 78.3427i 0.325404 0.563617i −0.656190 0.754596i \(-0.727833\pi\)
0.981594 + 0.190979i \(0.0611663\pi\)
\(140\) −115.424 15.5545i −0.824457 0.111104i
\(141\) 0 0
\(142\) 33.0749 0.232922
\(143\) −22.6593 + 13.0823i −0.158457 + 0.0914850i
\(144\) 0 0
\(145\) −9.87852 + 17.1101i −0.0681277 + 0.118001i
\(146\) −47.9783 + 27.7003i −0.328618 + 0.189728i
\(147\) 0 0
\(148\) −10.4738 + 18.1412i −0.0707692 + 0.122576i
\(149\) −85.3457 + 49.2744i −0.572790 + 0.330701i −0.758263 0.651949i \(-0.773952\pi\)
0.185473 + 0.982649i \(0.440618\pi\)
\(150\) 0 0
\(151\) 19.7972 34.2897i 0.131107 0.227084i −0.792997 0.609226i \(-0.791480\pi\)
0.924104 + 0.382142i \(0.124813\pi\)
\(152\) −33.6064 19.4027i −0.221095 0.127649i
\(153\) 0 0
\(154\) 96.5621 39.6524i 0.627027 0.257483i
\(155\) 149.628 86.3876i 0.965341 0.557340i
\(156\) 0 0
\(157\) −249.558 −1.58954 −0.794772 0.606909i \(-0.792409\pi\)
−0.794772 + 0.606909i \(0.792409\pi\)
\(158\) 14.2464i 0.0901673i
\(159\) 0 0
\(160\) 23.5300 + 40.7551i 0.147062 + 0.254719i
\(161\) −222.935 30.0427i −1.38469 0.186600i
\(162\) 0 0
\(163\) −121.137 + 209.816i −0.743175 + 1.28722i 0.207868 + 0.978157i \(0.433348\pi\)
−0.951043 + 0.309060i \(0.899986\pi\)
\(164\) −86.3999 49.8830i −0.526828 0.304165i
\(165\) 0 0
\(166\) −77.6360 134.469i −0.467687 0.810057i
\(167\) 84.4167 + 48.7380i 0.505489 + 0.291844i 0.730977 0.682402i \(-0.239064\pi\)
−0.225488 + 0.974246i \(0.572398\pi\)
\(168\) 0 0
\(169\) 81.4215 + 141.026i 0.481784 + 0.834474i
\(170\) 323.911 + 187.010i 1.90536 + 1.10006i
\(171\) 0 0
\(172\) −32.7861 56.7872i −0.190617 0.330158i
\(173\) 53.6007i 0.309830i −0.987928 0.154915i \(-0.950490\pi\)
0.987928 0.154915i \(-0.0495104\pi\)
\(174\) 0 0
\(175\) 286.256 117.548i 1.63575 0.671706i
\(176\) −36.5277 21.0893i −0.207544 0.119825i
\(177\) 0 0
\(178\) 29.8001 51.6152i 0.167416 0.289973i
\(179\) −122.940 + 70.9794i −0.686815 + 0.396533i −0.802418 0.596763i \(-0.796453\pi\)
0.115603 + 0.993296i \(0.463120\pi\)
\(180\) 0 0
\(181\) −207.905 −1.14864 −0.574322 0.818629i \(-0.694734\pi\)
−0.574322 + 0.818629i \(0.694734\pi\)
\(182\) 9.33087 + 22.7227i 0.0512685 + 0.124850i
\(183\) 0 0
\(184\) 45.4468 + 78.7162i 0.246993 + 0.427805i
\(185\) 87.1329i 0.470989i
\(186\) 0 0
\(187\) −335.224 −1.79264
\(188\) 83.1404i 0.442236i
\(189\) 0 0
\(190\) 161.413 0.849541
\(191\) 307.887i 1.61197i 0.591934 + 0.805987i \(0.298365\pi\)
−0.591934 + 0.805987i \(0.701635\pi\)
\(192\) 0 0
\(193\) −165.134 −0.855617 −0.427808 0.903869i \(-0.640714\pi\)
−0.427808 + 0.903869i \(0.640714\pi\)
\(194\) 92.5032 53.4068i 0.476821 0.275293i
\(195\) 0 0
\(196\) −24.7858 94.8138i −0.126458 0.483744i
\(197\) 86.2870i 0.438005i −0.975724 0.219003i \(-0.929720\pi\)
0.975724 0.219003i \(-0.0702803\pi\)
\(198\) 0 0
\(199\) −164.720 285.304i −0.827739 1.43369i −0.899808 0.436287i \(-0.856293\pi\)
0.0720681 0.997400i \(-0.477040\pi\)
\(200\) −108.285 62.5186i −0.541427 0.312593i
\(201\) 0 0
\(202\) 92.6337 160.446i 0.458583 0.794289i
\(203\) −16.4754 2.22022i −0.0811596 0.0109370i
\(204\) 0 0
\(205\) 414.981 2.02430
\(206\) −40.6890 + 23.4918i −0.197519 + 0.114038i
\(207\) 0 0
\(208\) 4.96266 8.59557i 0.0238589 0.0413249i
\(209\) −125.288 + 72.3350i −0.599463 + 0.346100i
\(210\) 0 0
\(211\) −40.7068 + 70.5063i −0.192923 + 0.334153i −0.946218 0.323530i \(-0.895130\pi\)
0.753294 + 0.657683i \(0.228464\pi\)
\(212\) 135.775 78.3897i 0.640448 0.369763i
\(213\) 0 0
\(214\) 38.2555 66.2605i 0.178764 0.309628i
\(215\) 236.209 + 136.375i 1.09865 + 0.634304i
\(216\) 0 0
\(217\) 115.067 + 88.8533i 0.530261 + 0.409462i
\(218\) 36.5758 21.1171i 0.167779 0.0968673i
\(219\) 0 0
\(220\) 175.444 0.797471
\(221\) 78.8839i 0.356941i
\(222\) 0 0
\(223\) 93.2204 + 161.462i 0.418029 + 0.724047i 0.995741 0.0921934i \(-0.0293878\pi\)
−0.577712 + 0.816240i \(0.696054\pi\)
\(224\) −24.2015 + 31.3414i −0.108043 + 0.139917i
\(225\) 0 0
\(226\) −130.763 + 226.488i −0.578596 + 1.00216i
\(227\) −35.3648 20.4179i −0.155792 0.0899465i 0.420077 0.907488i \(-0.362003\pi\)
−0.575869 + 0.817542i \(0.695336\pi\)
\(228\) 0 0
\(229\) 35.6011 + 61.6629i 0.155463 + 0.269270i 0.933228 0.359286i \(-0.116980\pi\)
−0.777764 + 0.628556i \(0.783646\pi\)
\(230\) −327.424 189.038i −1.42358 0.821905i
\(231\) 0 0
\(232\) 3.35862 + 5.81730i 0.0144768 + 0.0250746i
\(233\) 6.66414 + 3.84755i 0.0286015 + 0.0165131i 0.514233 0.857651i \(-0.328077\pi\)
−0.485631 + 0.874164i \(0.661410\pi\)
\(234\) 0 0
\(235\) 172.913 + 299.495i 0.735801 + 1.27445i
\(236\) 143.480i 0.607965i
\(237\) 0 0
\(238\) −42.0310 + 311.895i −0.176601 + 1.31048i
\(239\) 204.678 + 118.171i 0.856392 + 0.494438i 0.862802 0.505541i \(-0.168707\pi\)
−0.00641057 + 0.999979i \(0.502041\pi\)
\(240\) 0 0
\(241\) −63.2926 + 109.626i −0.262625 + 0.454880i −0.966939 0.255009i \(-0.917921\pi\)
0.704314 + 0.709889i \(0.251255\pi\)
\(242\) 12.0156 6.93724i 0.0496514 0.0286663i
\(243\) 0 0
\(244\) −132.291 −0.542175
\(245\) 286.476 + 289.997i 1.16929 + 1.18366i
\(246\) 0 0
\(247\) −17.0216 29.4823i −0.0689135 0.119362i
\(248\) 58.7423i 0.236864i
\(249\) 0 0
\(250\) 225.974 0.903895
\(251\) 318.476i 1.26883i 0.772993 + 0.634414i \(0.218759\pi\)
−0.772993 + 0.634414i \(0.781241\pi\)
\(252\) 0 0
\(253\) 338.860 1.33937
\(254\) 157.701i 0.620869i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 421.007 243.069i 1.63816 0.945792i 0.656694 0.754157i \(-0.271954\pi\)
0.981466 0.191635i \(-0.0613789\pi\)
\(258\) 0 0
\(259\) 67.8213 27.8502i 0.261858 0.107530i
\(260\) 41.2848i 0.158788i
\(261\) 0 0
\(262\) −40.0090 69.2976i −0.152706 0.264495i
\(263\) 302.149 + 174.446i 1.14885 + 0.663291i 0.948608 0.316454i \(-0.102492\pi\)
0.200247 + 0.979746i \(0.435826\pi\)
\(264\) 0 0
\(265\) −326.066 + 564.762i −1.23044 + 2.13118i
\(266\) 51.5923 + 125.638i 0.193956 + 0.472324i
\(267\) 0 0
\(268\) 49.8896 0.186155
\(269\) −335.922 + 193.945i −1.24878 + 0.720985i −0.970867 0.239621i \(-0.922977\pi\)
−0.277916 + 0.960606i \(0.589644\pi\)
\(270\) 0 0
\(271\) 118.336 204.964i 0.436664 0.756324i −0.560766 0.827974i \(-0.689493\pi\)
0.997430 + 0.0716504i \(0.0228266\pi\)
\(272\) 110.127 63.5820i 0.404879 0.233757i
\(273\) 0 0
\(274\) 46.6929 80.8745i 0.170412 0.295162i
\(275\) −403.698 + 233.075i −1.46799 + 0.847546i
\(276\) 0 0
\(277\) 101.755 176.246i 0.367348 0.636266i −0.621802 0.783175i \(-0.713599\pi\)
0.989150 + 0.146909i \(0.0469324\pi\)
\(278\) 110.793 + 63.9665i 0.398537 + 0.230095i
\(279\) 0 0
\(280\) 21.9974 163.234i 0.0785621 0.582979i
\(281\) −45.9455 + 26.5266i −0.163507 + 0.0944008i −0.579521 0.814958i \(-0.696760\pi\)
0.416014 + 0.909358i \(0.363427\pi\)
\(282\) 0 0
\(283\) −47.8110 −0.168944 −0.0844718 0.996426i \(-0.526920\pi\)
−0.0844718 + 0.996426i \(0.526920\pi\)
\(284\) 46.7750i 0.164701i
\(285\) 0 0
\(286\) −18.5012 32.0451i −0.0646896 0.112046i
\(287\) 132.640 + 323.008i 0.462161 + 1.12546i
\(288\) 0 0
\(289\) 360.833 624.982i 1.24856 2.16257i
\(290\) −24.1973 13.9703i −0.0834391 0.0481736i
\(291\) 0 0
\(292\) −39.1741 67.8515i −0.134158 0.232368i
\(293\) 10.7293 + 6.19459i 0.0366189 + 0.0211419i 0.518198 0.855261i \(-0.326603\pi\)
−0.481579 + 0.876403i \(0.659936\pi\)
\(294\) 0 0
\(295\) −298.405 516.853i −1.01154 1.75204i
\(296\) −25.6556 14.8122i −0.0866742 0.0500414i
\(297\) 0 0
\(298\) −69.6845 120.697i −0.233841 0.405024i
\(299\) 79.7393i 0.266687i
\(300\) 0 0
\(301\) −30.6507 + 227.447i −0.101829 + 0.755637i
\(302\) 48.4930 + 27.9974i 0.160573 + 0.0927067i
\(303\) 0 0
\(304\) 27.4395 47.5267i 0.0902616 0.156338i
\(305\) 476.547 275.135i 1.56245 0.902081i
\(306\) 0 0
\(307\) 420.839 1.37081 0.685406 0.728161i \(-0.259625\pi\)
0.685406 + 0.728161i \(0.259625\pi\)
\(308\) 56.0769 + 136.559i 0.182068 + 0.443375i
\(309\) 0 0
\(310\) 122.171 + 211.606i 0.394099 + 0.682599i
\(311\) 465.113i 1.49554i −0.663957 0.747771i \(-0.731124\pi\)
0.663957 0.747771i \(-0.268876\pi\)
\(312\) 0 0
\(313\) −364.970 −1.16604 −0.583019 0.812459i \(-0.698129\pi\)
−0.583019 + 0.812459i \(0.698129\pi\)
\(314\) 352.929i 1.12398i
\(315\) 0 0
\(316\) 20.1475 0.0637579
\(317\) 23.8488i 0.0752329i −0.999292 0.0376164i \(-0.988023\pi\)
0.999292 0.0376164i \(-0.0119765\pi\)
\(318\) 0 0
\(319\) 25.0425 0.0785030
\(320\) −57.6364 + 33.2764i −0.180114 + 0.103989i
\(321\) 0 0
\(322\) 42.4868 315.278i 0.131946 0.979123i
\(323\) 436.165i 1.35036i
\(324\) 0 0
\(325\) −54.8465 94.9969i −0.168758 0.292298i
\(326\) −296.725 171.314i −0.910200 0.525504i
\(327\) 0 0
\(328\) 70.5452 122.188i 0.215077 0.372524i
\(329\) −177.848 + 230.317i −0.540573 + 0.700052i
\(330\) 0 0
\(331\) 226.135 0.683188 0.341594 0.939848i \(-0.389033\pi\)
0.341594 + 0.939848i \(0.389033\pi\)
\(332\) 190.169 109.794i 0.572797 0.330704i
\(333\) 0 0
\(334\) −68.9259 + 119.383i −0.206365 + 0.357435i
\(335\) −179.716 + 103.759i −0.536466 + 0.309729i
\(336\) 0 0
\(337\) 151.164 261.824i 0.448558 0.776926i −0.549734 0.835340i \(-0.685271\pi\)
0.998292 + 0.0584139i \(0.0186043\pi\)
\(338\) −199.441 + 115.147i −0.590063 + 0.340673i
\(339\) 0 0
\(340\) −264.472 + 458.079i −0.777859 + 1.34729i
\(341\) −189.656 109.498i −0.556177 0.321109i
\(342\) 0 0
\(343\) −134.157 + 315.675i −0.391129 + 0.920336i
\(344\) 80.3092 46.3665i 0.233457 0.134786i
\(345\) 0 0
\(346\) 75.8028 0.219083
\(347\) 176.421i 0.508417i 0.967149 + 0.254209i \(0.0818150\pi\)
−0.967149 + 0.254209i \(0.918185\pi\)
\(348\) 0 0
\(349\) −87.3168 151.237i −0.250191 0.433344i 0.713387 0.700770i \(-0.247160\pi\)
−0.963578 + 0.267426i \(0.913827\pi\)
\(350\) 166.239 + 404.827i 0.474968 + 1.15665i
\(351\) 0 0
\(352\) 29.8247 51.6579i 0.0847293 0.146756i
\(353\) 123.536 + 71.3235i 0.349960 + 0.202050i 0.664668 0.747139i \(-0.268573\pi\)
−0.314708 + 0.949189i \(0.601906\pi\)
\(354\) 0 0
\(355\) −97.2815 168.496i −0.274032 0.474638i
\(356\) 72.9950 + 42.1437i 0.205042 + 0.118381i
\(357\) 0 0
\(358\) −100.380 173.863i −0.280391 0.485652i
\(359\) −529.406 305.653i −1.47467 0.851401i −0.475077 0.879944i \(-0.657580\pi\)
−0.999593 + 0.0285432i \(0.990913\pi\)
\(360\) 0 0
\(361\) 86.3839 + 149.621i 0.239291 + 0.414464i
\(362\) 294.022i 0.812215i
\(363\) 0 0
\(364\) −32.1347 + 13.1958i −0.0882822 + 0.0362523i
\(365\) 282.232 + 162.947i 0.773238 + 0.446429i
\(366\) 0 0
\(367\) −84.4264 + 146.231i −0.230045 + 0.398449i −0.957821 0.287365i \(-0.907221\pi\)
0.727776 + 0.685815i \(0.240554\pi\)
\(368\) −111.321 + 64.2715i −0.302504 + 0.174651i
\(369\) 0 0
\(370\) 123.224 0.333039
\(371\) −543.812 73.2840i −1.46580 0.197531i
\(372\) 0 0
\(373\) −162.732 281.861i −0.436280 0.755659i 0.561119 0.827735i \(-0.310371\pi\)
−0.997399 + 0.0720763i \(0.977037\pi\)
\(374\) 474.079i 1.26759i
\(375\) 0 0
\(376\) 117.578 0.312708
\(377\) 5.89291i 0.0156311i
\(378\) 0 0
\(379\) 7.72342 0.0203784 0.0101892 0.999948i \(-0.496757\pi\)
0.0101892 + 0.999948i \(0.496757\pi\)
\(380\) 228.272i 0.600716i
\(381\) 0 0
\(382\) −435.418 −1.13984
\(383\) −561.085 + 323.943i −1.46498 + 0.845804i −0.999235 0.0391176i \(-0.987545\pi\)
−0.465740 + 0.884921i \(0.654212\pi\)
\(384\) 0 0
\(385\) −486.017 375.297i −1.26238 0.974798i
\(386\) 233.535i 0.605012i
\(387\) 0 0
\(388\) 75.5286 + 130.819i 0.194661 + 0.337163i
\(389\) −129.356 74.6840i −0.332536 0.191990i 0.324431 0.945910i \(-0.394827\pi\)
−0.656966 + 0.753920i \(0.728161\pi\)
\(390\) 0 0
\(391\) −510.813 + 884.755i −1.30643 + 2.26280i
\(392\) 134.087 35.0524i 0.342059 0.0894193i
\(393\) 0 0
\(394\) 122.028 0.309716
\(395\) −72.5768 + 41.9022i −0.183739 + 0.106082i
\(396\) 0 0
\(397\) 47.6251 82.4890i 0.119962 0.207781i −0.799790 0.600280i \(-0.795056\pi\)
0.919753 + 0.392499i \(0.128389\pi\)
\(398\) 403.480 232.949i 1.01377 0.585300i
\(399\) 0 0
\(400\) 88.4147 153.139i 0.221037 0.382847i
\(401\) 315.630 182.229i 0.787108 0.454437i −0.0518355 0.998656i \(-0.516507\pi\)
0.838943 + 0.544219i \(0.183174\pi\)
\(402\) 0 0
\(403\) 25.7668 44.6293i 0.0639374 0.110743i
\(404\) 226.905 + 131.004i 0.561647 + 0.324267i
\(405\) 0 0
\(406\) 3.13987 23.2997i 0.00773366 0.0573885i
\(407\) −95.6463 + 55.2214i −0.235003 + 0.135679i
\(408\) 0 0
\(409\) 781.333 1.91035 0.955174 0.296044i \(-0.0956675\pi\)
0.955174 + 0.296044i \(0.0956675\pi\)
\(410\) 586.872i 1.43140i
\(411\) 0 0
\(412\) −33.2224 57.5429i −0.0806369 0.139667i
\(413\) 306.922 397.470i 0.743153 0.962398i
\(414\) 0 0
\(415\) −456.693 + 791.015i −1.10046 + 1.90606i
\(416\) 12.1560 + 7.01826i 0.0292211 + 0.0168708i
\(417\) 0 0
\(418\) −102.297 177.184i −0.244730 0.423885i
\(419\) 401.472 + 231.790i 0.958167 + 0.553198i 0.895608 0.444843i \(-0.146741\pi\)
0.0625584 + 0.998041i \(0.480074\pi\)
\(420\) 0 0
\(421\) 299.652 + 519.012i 0.711762 + 1.23281i 0.964195 + 0.265194i \(0.0854359\pi\)
−0.252433 + 0.967614i \(0.581231\pi\)
\(422\) −99.7110 57.5682i −0.236282 0.136417i
\(423\) 0 0
\(424\) 110.860 + 192.015i 0.261462 + 0.452865i
\(425\) 1405.39i 3.30681i
\(426\) 0 0
\(427\) 366.474 + 282.987i 0.858253 + 0.662734i
\(428\) 93.7064 + 54.1014i 0.218940 + 0.126405i
\(429\) 0 0
\(430\) −192.864 + 334.050i −0.448520 + 0.776860i
\(431\) 261.400 150.919i 0.606496 0.350161i −0.165097 0.986277i \(-0.552794\pi\)
0.771593 + 0.636117i \(0.219460\pi\)
\(432\) 0 0
\(433\) 582.634 1.34557 0.672787 0.739836i \(-0.265097\pi\)
0.672787 + 0.739836i \(0.265097\pi\)
\(434\) −125.657 + 162.729i −0.289533 + 0.374951i
\(435\) 0 0
\(436\) 29.8640 + 51.7260i 0.0684955 + 0.118638i
\(437\) 440.895i 1.00891i
\(438\) 0 0
\(439\) 56.3737 0.128414 0.0642069 0.997937i \(-0.479548\pi\)
0.0642069 + 0.997937i \(0.479548\pi\)
\(440\) 248.115i 0.563897i
\(441\) 0 0
\(442\) 111.559 0.252395
\(443\) 190.861i 0.430838i −0.976522 0.215419i \(-0.930888\pi\)
0.976522 0.215419i \(-0.0691116\pi\)
\(444\) 0 0
\(445\) −350.597 −0.787859
\(446\) −228.342 + 131.834i −0.511979 + 0.295591i
\(447\) 0 0
\(448\) −44.3235 34.2261i −0.0989364 0.0763976i
\(449\) 4.42392i 0.00985283i 0.999988 + 0.00492642i \(0.00156813\pi\)
−0.999988 + 0.00492642i \(0.998432\pi\)
\(450\) 0 0
\(451\) −262.999 455.527i −0.583146 1.01004i
\(452\) −320.302 184.926i −0.708632 0.409129i
\(453\) 0 0
\(454\) 28.8752 50.0133i 0.0636018 0.110162i
\(455\) 88.3137 114.368i 0.194096 0.251358i
\(456\) 0 0
\(457\) −674.875 −1.47675 −0.738375 0.674390i \(-0.764407\pi\)
−0.738375 + 0.674390i \(0.764407\pi\)
\(458\) −87.2045 + 50.3475i −0.190403 + 0.109929i
\(459\) 0 0
\(460\) 267.340 463.047i 0.581174 1.00662i
\(461\) −365.804 + 211.197i −0.793501 + 0.458128i −0.841194 0.540734i \(-0.818147\pi\)
0.0476924 + 0.998862i \(0.484813\pi\)
\(462\) 0 0
\(463\) 40.8889 70.8216i 0.0883129 0.152962i −0.818485 0.574528i \(-0.805186\pi\)
0.906798 + 0.421565i \(0.138519\pi\)
\(464\) −8.22690 + 4.74980i −0.0177304 + 0.0102366i
\(465\) 0 0
\(466\) −5.44125 + 9.42452i −0.0116765 + 0.0202243i
\(467\) 484.152 + 279.525i 1.03673 + 0.598555i 0.918905 0.394480i \(-0.129075\pi\)
0.117823 + 0.993035i \(0.462409\pi\)
\(468\) 0 0
\(469\) −138.205 106.721i −0.294681 0.227549i
\(470\) −423.549 + 244.536i −0.901169 + 0.520290i
\(471\) 0 0
\(472\) −202.911 −0.429896
\(473\) 345.717i 0.730903i
\(474\) 0 0
\(475\) −303.257 525.257i −0.638436 1.10580i
\(476\) −441.087 59.4407i −0.926653 0.124876i
\(477\) 0 0
\(478\) −167.119 + 289.458i −0.349620 + 0.605560i
\(479\) −69.6614 40.2190i −0.145431 0.0839646i 0.425519 0.904950i \(-0.360092\pi\)
−0.570950 + 0.820985i \(0.693425\pi\)
\(480\) 0 0
\(481\) −12.9945 22.5072i −0.0270156 0.0467925i
\(482\) −155.035 89.5092i −0.321648 0.185704i
\(483\) 0 0
\(484\) 9.81073 + 16.9927i 0.0202701 + 0.0351089i
\(485\) −544.149 314.165i −1.12196 0.647762i
\(486\) 0 0
\(487\) 201.883 + 349.672i 0.414544 + 0.718011i 0.995380 0.0960090i \(-0.0306078\pi\)
−0.580836 + 0.814020i \(0.697274\pi\)
\(488\) 187.087i 0.383376i
\(489\) 0 0
\(490\) −410.117 + 405.139i −0.836974 + 0.826814i
\(491\) −708.736 409.189i −1.44345 0.833378i −0.445375 0.895344i \(-0.646930\pi\)
−0.998078 + 0.0619657i \(0.980263\pi\)
\(492\) 0 0
\(493\) −37.7502 + 65.3853i −0.0765725 + 0.132627i
\(494\) 41.6943 24.0722i 0.0844014 0.0487292i
\(495\) 0 0
\(496\) 83.0741 0.167488
\(497\) 100.058 129.577i 0.201324 0.260718i
\(498\) 0 0
\(499\) −187.514 324.785i −0.375780 0.650871i 0.614663 0.788790i \(-0.289292\pi\)
−0.990444 + 0.137919i \(0.955959\pi\)
\(500\) 319.575i 0.639150i
\(501\) 0 0
\(502\) −450.393 −0.897197
\(503\) 434.043i 0.862909i 0.902135 + 0.431454i \(0.141999\pi\)
−0.902135 + 0.431454i \(0.858001\pi\)
\(504\) 0 0
\(505\) −1089.83 −2.15809
\(506\) 479.220i 0.947075i
\(507\) 0 0
\(508\) 223.022 0.439020
\(509\) 156.206 90.1855i 0.306888 0.177182i −0.338645 0.940914i \(-0.609969\pi\)
0.645533 + 0.763732i \(0.276635\pi\)
\(510\) 0 0
\(511\) −36.6226 + 271.762i −0.0716685 + 0.531824i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 343.751 + 595.394i 0.668776 + 1.15835i
\(515\) 239.352 + 138.190i 0.464762 + 0.268331i
\(516\) 0 0
\(517\) 219.171 379.616i 0.423929 0.734267i
\(518\) 39.3862 + 95.9138i 0.0760351 + 0.185162i
\(519\) 0 0
\(520\) −58.3855 −0.112280
\(521\) −296.089 + 170.947i −0.568310 + 0.328114i −0.756474 0.654024i \(-0.773080\pi\)
0.188164 + 0.982138i \(0.439746\pi\)
\(522\) 0 0
\(523\) −189.342 + 327.951i −0.362031 + 0.627057i −0.988295 0.152555i \(-0.951250\pi\)
0.626264 + 0.779611i \(0.284583\pi\)
\(524\) 98.0016 56.5812i 0.187026 0.107979i
\(525\) 0 0
\(526\) −246.703 + 427.303i −0.469018 + 0.812363i
\(527\) 571.795 330.126i 1.08500 0.626425i
\(528\) 0 0
\(529\) 251.853 436.222i 0.476092 0.824616i
\(530\) −798.694 461.126i −1.50697 0.870050i
\(531\) 0 0
\(532\) −177.679 + 72.9625i −0.333984 + 0.137147i
\(533\) 107.193 61.8880i 0.201113 0.116113i
\(534\) 0 0
\(535\) −450.075 −0.841262
\(536\) 70.5546i 0.131632i
\(537\) 0 0
\(538\) −274.279 475.066i −0.509813 0.883022i
\(539\) 136.773 498.255i 0.253754 0.924407i
\(540\) 0 0
\(541\) 143.032 247.739i 0.264385 0.457928i −0.703017 0.711173i \(-0.748164\pi\)
0.967402 + 0.253244i \(0.0814977\pi\)
\(542\) 289.863 + 167.352i 0.534802 + 0.308768i
\(543\) 0 0
\(544\) 89.9185 + 155.743i 0.165291 + 0.286293i
\(545\) −215.157 124.221i −0.394783 0.227928i
\(546\) 0 0
\(547\) −318.027 550.839i −0.581402 1.00702i −0.995313 0.0967009i \(-0.969171\pi\)
0.413911 0.910317i \(-0.364162\pi\)
\(548\) 114.374 + 66.0338i 0.208711 + 0.120500i
\(549\) 0 0
\(550\) −329.618 570.915i −0.599305 1.03803i
\(551\) 32.5831i 0.0591345i
\(552\) 0 0
\(553\) −55.8130 43.0982i −0.100928 0.0779352i
\(554\) 249.249 + 143.904i 0.449908 + 0.259754i
\(555\) 0 0
\(556\) −90.4624 + 156.685i −0.162702 + 0.281808i
\(557\) −2.15468 + 1.24401i −0.00386837 + 0.00223341i −0.501933 0.864907i \(-0.667378\pi\)
0.498065 + 0.867140i \(0.334044\pi\)
\(558\) 0 0
\(559\) 81.3531 0.145533
\(560\) 230.848 + 31.1090i 0.412228 + 0.0555518i
\(561\) 0 0
\(562\) −37.5143 64.9767i −0.0667515 0.115617i
\(563\) 346.115i 0.614769i −0.951585 0.307385i \(-0.900546\pi\)
0.951585 0.307385i \(-0.0994538\pi\)
\(564\) 0 0
\(565\) 1538.42 2.72287
\(566\) 67.6150i 0.119461i
\(567\) 0 0
\(568\) −66.1499 −0.116461
\(569\) 965.866i 1.69748i 0.528810 + 0.848740i \(0.322638\pi\)
−0.528810 + 0.848740i \(0.677362\pi\)
\(570\) 0 0
\(571\) 165.110 0.289159 0.144579 0.989493i \(-0.453817\pi\)
0.144579 + 0.989493i \(0.453817\pi\)
\(572\) 45.3186 26.1647i 0.0792283 0.0457425i
\(573\) 0 0
\(574\) −456.802 + 187.582i −0.795822 + 0.326797i
\(575\) 1420.64i 2.47067i
\(576\) 0 0
\(577\) −449.998 779.419i −0.779892 1.35081i −0.932004 0.362449i \(-0.881941\pi\)
0.152112 0.988363i \(-0.451393\pi\)
\(578\) 883.857 + 510.295i 1.52916 + 0.882864i
\(579\) 0 0
\(580\) 19.7570 34.2202i 0.0340639 0.0590003i
\(581\) −761.672 102.643i −1.31097 0.176666i
\(582\) 0 0
\(583\) 826.590 1.41782
\(584\) 95.9566 55.4006i 0.164309 0.0948640i
\(585\) 0 0
\(586\) −8.76047 + 15.1736i −0.0149496 + 0.0258935i
\(587\) 829.734 479.047i 1.41352 0.816094i 0.417799 0.908540i \(-0.362802\pi\)
0.995718 + 0.0924455i \(0.0294684\pi\)
\(588\) 0 0
\(589\) 142.470 246.765i 0.241884 0.418955i
\(590\) 730.941 422.009i 1.23888 0.715269i
\(591\) 0 0
\(592\) 20.9477 36.2825i 0.0353846 0.0612879i
\(593\) 362.413 + 209.239i 0.611151 + 0.352848i 0.773416 0.633899i \(-0.218547\pi\)
−0.162265 + 0.986747i \(0.551880\pi\)
\(594\) 0 0
\(595\) 1712.54 703.239i 2.87822 1.18191i
\(596\) 170.691 98.5488i 0.286395 0.165350i
\(597\) 0 0
\(598\) −112.768 −0.188576
\(599\) 12.6522i 0.0211222i −0.999944 0.0105611i \(-0.996638\pi\)
0.999944 0.0105611i \(-0.00336176\pi\)
\(600\) 0 0
\(601\) 77.9185 + 134.959i 0.129648 + 0.224557i 0.923540 0.383502i \(-0.125282\pi\)
−0.793892 + 0.608059i \(0.791949\pi\)
\(602\) −321.658 43.3466i −0.534316 0.0720043i
\(603\) 0 0
\(604\) −39.5943 + 68.5794i −0.0655535 + 0.113542i
\(605\) −70.6819 40.8082i −0.116830 0.0674516i
\(606\) 0 0
\(607\) 215.508 + 373.270i 0.355037 + 0.614943i 0.987124 0.159955i \(-0.0511348\pi\)
−0.632087 + 0.774897i \(0.717801\pi\)
\(608\) 67.2129 + 38.8054i 0.110547 + 0.0638246i
\(609\) 0 0
\(610\) 389.099 + 673.939i 0.637867 + 1.10482i
\(611\) 89.3300 + 51.5747i 0.146203 + 0.0844103i
\(612\) 0 0
\(613\) 438.082 + 758.781i 0.714653 + 1.23781i 0.963093 + 0.269168i \(0.0867486\pi\)
−0.248441 + 0.968647i \(0.579918\pi\)
\(614\) 595.157i 0.969310i
\(615\) 0 0
\(616\) −193.124 + 79.3047i −0.313513 + 0.128741i
\(617\) 311.826 + 180.033i 0.505390 + 0.291787i 0.730937 0.682445i \(-0.239083\pi\)
−0.225546 + 0.974232i \(0.572417\pi\)
\(618\) 0 0
\(619\) −28.2684 + 48.9623i −0.0456679 + 0.0790991i −0.887956 0.459929i \(-0.847875\pi\)
0.842288 + 0.539028i \(0.181208\pi\)
\(620\) −299.256 + 172.775i −0.482670 + 0.278670i
\(621\) 0 0
\(622\) 657.770 1.05751
\(623\) −112.061 272.893i −0.179873 0.438031i
\(624\) 0 0
\(625\) −112.052 194.080i −0.179284 0.310529i
\(626\) 516.145i 0.824513i
\(627\) 0 0
\(628\) 499.117 0.794772
\(629\) 332.974i 0.529370i
\(630\) 0 0
\(631\) −632.353 −1.00214 −0.501072 0.865406i \(-0.667061\pi\)
−0.501072 + 0.865406i \(0.667061\pi\)
\(632\) 28.4929i 0.0450836i
\(633\) 0 0
\(634\) 33.7273 0.0531977
\(635\) −803.388 + 463.836i −1.26518 + 0.730450i
\(636\) 0 0
\(637\) 117.248 + 32.1851i 0.184063 + 0.0505260i
\(638\) 35.4154i 0.0555100i
\(639\) 0 0
\(640\) −47.0599 81.5101i −0.0735311 0.127360i
\(641\) −446.899 258.017i −0.697191 0.402523i 0.109109 0.994030i \(-0.465200\pi\)
−0.806300 + 0.591506i \(0.798533\pi\)
\(642\) 0 0
\(643\) 273.812 474.257i 0.425836 0.737569i −0.570662 0.821185i \(-0.693313\pi\)
0.996498 + 0.0836157i \(0.0266468\pi\)
\(644\) 445.870 + 60.0854i 0.692345 + 0.0933002i
\(645\) 0 0
\(646\) 616.830 0.954846
\(647\) −186.510 + 107.681i −0.288268 + 0.166432i −0.637161 0.770731i \(-0.719891\pi\)
0.348892 + 0.937163i \(0.386558\pi\)
\(648\) 0 0
\(649\) −378.235 + 655.123i −0.582797 + 1.00943i
\(650\) 134.346 77.5646i 0.206686 0.119330i
\(651\) 0 0
\(652\) 242.275 419.633i 0.371587 0.643608i
\(653\) 278.235 160.639i 0.426088 0.246002i −0.271591 0.962413i \(-0.587550\pi\)
0.697679 + 0.716411i \(0.254216\pi\)
\(654\) 0 0
\(655\) −235.352 + 407.642i −0.359317 + 0.622355i
\(656\) 172.800 + 99.7660i 0.263414 + 0.152082i
\(657\) 0 0
\(658\) −325.718 251.516i −0.495012 0.382243i
\(659\) 346.818 200.235i 0.526279 0.303847i −0.213221 0.977004i \(-0.568395\pi\)
0.739500 + 0.673157i \(0.235062\pi\)
\(660\) 0 0
\(661\) 575.452 0.870577 0.435289 0.900291i \(-0.356646\pi\)
0.435289 + 0.900291i \(0.356646\pi\)
\(662\) 319.803i 0.483087i
\(663\) 0 0
\(664\) 155.272 + 268.939i 0.233843 + 0.405029i
\(665\) 488.304 632.364i 0.734292 0.950923i
\(666\) 0 0
\(667\) 38.1596 66.0944i 0.0572108 0.0990921i
\(668\) −168.833 97.4760i −0.252744 0.145922i
\(669\) 0 0
\(670\) −146.738 254.157i −0.219011 0.379339i
\(671\) −604.034 348.739i −0.900199 0.519730i
\(672\) 0 0
\(673\) 473.931 + 820.873i 0.704207 + 1.21972i 0.966977 + 0.254864i \(0.0820307\pi\)
−0.262770 + 0.964859i \(0.584636\pi\)
\(674\) 370.275 + 213.778i 0.549369 + 0.317179i
\(675\) 0 0
\(676\) −162.843 282.052i −0.240892 0.417237i
\(677\) 1306.26i 1.92948i 0.263203 + 0.964741i \(0.415221\pi\)
−0.263203 + 0.964741i \(0.584779\pi\)
\(678\) 0 0
\(679\) 70.6092 523.964i 0.103990 0.771670i
\(680\) −647.822 374.020i −0.952679 0.550030i
\(681\) 0 0
\(682\) 154.854 268.215i 0.227058 0.393277i
\(683\) 617.670 356.612i 0.904349 0.522126i 0.0257402 0.999669i \(-0.491806\pi\)
0.878609 + 0.477543i \(0.158472\pi\)
\(684\) 0 0
\(685\) −549.341 −0.801958
\(686\) −446.432 189.727i −0.650776 0.276570i
\(687\) 0 0
\(688\) 65.5722 + 113.574i 0.0953084 + 0.165079i
\(689\) 194.511i 0.282309i
\(690\) 0 0
\(691\) 364.791 0.527918 0.263959 0.964534i \(-0.414972\pi\)
0.263959 + 0.964534i \(0.414972\pi\)
\(692\) 107.201i 0.154915i
\(693\) 0 0
\(694\) −249.497 −0.359505
\(695\) 752.565i 1.08283i
\(696\) 0 0
\(697\) 1585.83 2.27522
\(698\) 213.882 123.485i 0.306421 0.176912i
\(699\) 0 0
\(700\) −572.512 + 235.097i −0.817874 + 0.335853i
\(701\) 944.475i 1.34732i 0.739039 + 0.673662i \(0.235280\pi\)
−0.739039 + 0.673662i \(0.764720\pi\)
\(702\) 0 0
\(703\) −71.8494 124.447i −0.102204 0.177022i
\(704\) 73.0554 + 42.1785i 0.103772 + 0.0599127i
\(705\) 0 0
\(706\) −100.867 + 174.706i −0.142871 + 0.247459i
\(707\) −348.343 848.290i −0.492706 1.19984i
\(708\) 0 0
\(709\) −1031.54 −1.45493 −0.727464 0.686146i \(-0.759301\pi\)
−0.727464 + 0.686146i \(0.759301\pi\)
\(710\) 238.290 137.577i 0.335620 0.193770i
\(711\) 0 0
\(712\) −59.6001 + 103.230i −0.0837081 + 0.144987i
\(713\) −577.996 + 333.706i −0.810653 + 0.468031i
\(714\) 0 0
\(715\) −108.833 + 188.505i −0.152214 + 0.263643i
\(716\) 245.880 141.959i 0.343408 0.198266i
\(717\) 0 0
\(718\) 432.259 748.694i 0.602031 1.04275i
\(719\) 27.9770 + 16.1525i 0.0389109 + 0.0224652i 0.519329 0.854574i \(-0.326182\pi\)
−0.480418 + 0.877039i \(0.659515\pi\)
\(720\) 0 0
\(721\) −31.0586 + 230.474i −0.0430771 + 0.319658i
\(722\) −211.597 + 122.165i −0.293070 + 0.169204i
\(723\) 0 0
\(724\) 415.809 0.574322
\(725\) 104.988i 0.144811i
\(726\) 0 0
\(727\) −102.737 177.945i −0.141316 0.244767i 0.786676 0.617366i \(-0.211800\pi\)
−0.927992 + 0.372599i \(0.878467\pi\)
\(728\) −18.6617 45.4454i −0.0256342 0.0624249i
\(729\) 0 0
\(730\) −230.441 + 399.136i −0.315673 + 0.546762i
\(731\) 902.660 + 521.151i 1.23483 + 0.712929i
\(732\) 0 0
\(733\) 293.871 + 509.000i 0.400916 + 0.694407i 0.993837 0.110854i \(-0.0353587\pi\)
−0.592921 + 0.805261i \(0.702025\pi\)
\(734\) −206.802 119.397i −0.281746 0.162666i
\(735\) 0 0
\(736\) −90.8936 157.432i −0.123497 0.213903i
\(737\) 227.794 + 131.517i 0.309083 + 0.178449i
\(738\) 0 0
\(739\) −395.335 684.741i −0.534960 0.926578i −0.999165 0.0408504i \(-0.986993\pi\)
0.464205 0.885728i \(-0.346340\pi\)
\(740\) 174.266i 0.235494i
\(741\) 0 0
\(742\) 103.639 769.066i 0.139676 1.03648i
\(743\) 15.5592 + 8.98312i 0.0209411 + 0.0120903i 0.510434 0.859917i \(-0.329485\pi\)
−0.489493 + 0.872007i \(0.662818\pi\)
\(744\) 0 0
\(745\) −409.918 + 709.999i −0.550226 + 0.953019i
\(746\) 398.611 230.138i 0.534331 0.308496i
\(747\) 0 0
\(748\) 670.448 0.896321
\(749\) −143.857 350.323i −0.192066 0.467721i
\(750\) 0 0
\(751\) −397.119 687.830i −0.528787 0.915886i −0.999437 0.0335656i \(-0.989314\pi\)
0.470650 0.882320i \(-0.344020\pi\)
\(752\) 166.281i 0.221118i
\(753\) 0 0
\(754\) −8.33384 −0.0110528
\(755\) 329.389i 0.436277i
\(756\) 0 0
\(757\) 99.2649 0.131129 0.0655647 0.997848i \(-0.479115\pi\)
0.0655647 + 0.997848i \(0.479115\pi\)
\(758\) 10.9226i 0.0144097i
\(759\) 0 0
\(760\) −322.826 −0.424770
\(761\) −636.996 + 367.770i −0.837051 + 0.483272i −0.856261 0.516544i \(-0.827218\pi\)
0.0192098 + 0.999815i \(0.493885\pi\)
\(762\) 0 0
\(763\) 27.9189 207.176i 0.0365910 0.271528i
\(764\) 615.774i 0.805987i
\(765\) 0 0
\(766\) −458.124 793.495i −0.598074 1.03589i
\(767\) −154.161 89.0051i −0.200993 0.116043i
\(768\) 0 0
\(769\) −239.582 + 414.969i −0.311550 + 0.539621i −0.978698 0.205304i \(-0.934182\pi\)
0.667148 + 0.744925i \(0.267515\pi\)
\(770\) 530.750 687.332i 0.689286 0.892639i
\(771\) 0 0
\(772\) 330.268 0.427808
\(773\) 100.386 57.9577i 0.129865 0.0749776i −0.433660 0.901077i \(-0.642778\pi\)
0.563525 + 0.826099i \(0.309445\pi\)
\(774\) 0 0
\(775\) 459.060 795.116i 0.592336 1.02596i
\(776\) −185.006 + 106.814i −0.238410 + 0.137646i
\(777\) 0 0
\(778\) 105.619 182.938i 0.135757 0.235138i
\(779\) 592.693 342.192i 0.760838 0.439270i
\(780\) 0 0
\(781\) −123.306 + 213.573i −0.157883 + 0.273461i
\(782\) −1251.23 722.399i −1.60004 0.923784i
\(783\) 0 0
\(784\) 49.5716 + 189.628i 0.0632290 + 0.241872i
\(785\) −1797.95 + 1038.05i −2.29039 + 1.32236i
\(786\) 0 0
\(787\) 977.438 1.24198 0.620990 0.783818i \(-0.286731\pi\)
0.620990 + 0.783818i \(0.286731\pi\)
\(788\) 172.574i 0.219003i
\(789\) 0 0
\(790\) −59.2587 102.639i −0.0750110 0.129923i
\(791\) 491.724 + 1197.45i 0.621649 + 1.51385i
\(792\) 0 0
\(793\) 82.0642 142.139i 0.103486 0.179242i
\(794\) 116.657 + 67.3520i 0.146923 + 0.0848262i
\(795\) 0 0
\(796\) 329.440 + 570.607i 0.413870 + 0.716843i
\(797\) 982.477 + 567.234i 1.23272 + 0.711711i 0.967596 0.252503i \(-0.0812539\pi\)
0.265124 + 0.964214i \(0.414587\pi\)
\(798\) 0 0
\(799\) 660.779 + 1144.50i 0.827008 + 1.43242i
\(800\) 216.571 + 125.037i 0.270714 + 0.156297i
\(801\) 0 0
\(802\) 257.711 + 446.369i 0.321335 + 0.556569i
\(803\) 413.077i 0.514417i
\(804\) 0 0
\(805\) −1731.11 + 710.865i −2.15045 + 0.883062i
\(806\) 63.1154 + 36.4397i 0.0783070 + 0.0452106i
\(807\) 0 0
\(808\) −185.267 + 320.893i −0.229291 + 0.397144i
\(809\) −751.325 + 433.778i −0.928708 + 0.536190i −0.886403 0.462915i \(-0.846804\pi\)
−0.0423053 + 0.999105i \(0.513470\pi\)
\(810\) 0 0
\(811\) −329.692 −0.406525 −0.203263 0.979124i \(-0.565155\pi\)
−0.203263 + 0.979124i \(0.565155\pi\)
\(812\) 32.9508 + 4.44044i 0.0405798 + 0.00546852i
\(813\) 0 0
\(814\) −78.0949 135.264i −0.0959396 0.166172i
\(815\) 2015.51i 2.47302i
\(816\) 0 0
\(817\) 449.818 0.550572
\(818\) 1104.97i 1.35082i
\(819\) 0 0
\(820\) −829.963 −1.01215
\(821\) 1028.55i 1.25281i −0.779500 0.626403i \(-0.784527\pi\)
0.779500 0.626403i \(-0.215473\pi\)
\(822\) 0 0
\(823\) −1250.00 −1.51883 −0.759415 0.650607i \(-0.774515\pi\)
−0.759415 + 0.650607i \(0.774515\pi\)
\(824\) 81.3780 46.9836i 0.0987597 0.0570189i
\(825\) 0 0
\(826\) 562.108 + 434.054i 0.680518 + 0.525489i
\(827\) 1582.29i 1.91329i −0.291248 0.956647i \(-0.594071\pi\)
0.291248 0.956647i \(-0.405929\pi\)
\(828\) 0 0
\(829\) −275.656 477.450i −0.332516 0.575935i 0.650488 0.759516i \(-0.274564\pi\)
−0.983004 + 0.183581i \(0.941231\pi\)
\(830\) −1118.66 645.861i −1.34779 0.778146i
\(831\) 0 0
\(832\) −9.92531 + 17.1911i −0.0119295 + 0.0206624i
\(833\) 1094.75 + 1108.21i 1.31423 + 1.33038i
\(834\) 0 0
\(835\) 810.912 0.971152
\(836\) 250.576 144.670i 0.299732 0.173050i
\(837\) 0 0
\(838\) −327.800 + 567.767i −0.391170 + 0.677526i
\(839\) 1220.53 704.672i 1.45474 0.839895i 0.455997 0.889981i \(-0.349283\pi\)
0.998745 + 0.0500860i \(0.0159495\pi\)
\(840\) 0 0
\(841\) −417.680 + 723.443i −0.496647 + 0.860217i
\(842\) −733.994 + 423.772i −0.871727 + 0.503292i
\(843\) 0 0
\(844\) 81.4137 141.013i 0.0964617 0.167077i
\(845\) 1173.21 + 677.353i 1.38841 + 0.801601i
\(846\) 0 0
\(847\) 9.17174 68.0599i 0.0108285 0.0803541i
\(848\) −271.550 + 156.779i −0.320224 + 0.184881i
\(849\) 0 0
\(850\) 1987.53 2.33827
\(851\) 336.585i 0.395517i
\(852\) 0 0
\(853\) −305.025 528.318i −0.357590 0.619365i 0.629967 0.776622i \(-0.283068\pi\)
−0.987558 + 0.157257i \(0.949735\pi\)
\(854\) −400.204 + 518.273i −0.468624 + 0.606877i
\(855\) 0 0
\(856\) −76.5110 + 132.521i −0.0893820 + 0.154814i
\(857\) 938.243 + 541.695i 1.09480 + 0.632083i 0.934850 0.355043i \(-0.115534\pi\)
0.159949 + 0.987125i \(0.448867\pi\)
\(858\) 0 0
\(859\) −698.024 1209.01i −0.812601 1.40747i −0.911038 0.412322i \(-0.864718\pi\)
0.0984373 0.995143i \(-0.468616\pi\)
\(860\) −472.418 272.751i −0.549323 0.317152i
\(861\) 0 0
\(862\) 213.432 + 369.675i 0.247601 + 0.428857i
\(863\) −33.5922 19.3944i −0.0389249 0.0224733i 0.480411 0.877043i \(-0.340487\pi\)
−0.519336 + 0.854570i \(0.673821\pi\)
\(864\) 0 0
\(865\) −222.954 386.168i −0.257751 0.446438i
\(866\) 823.969i 0.951465i
\(867\) 0 0
\(868\) −230.133 177.707i −0.265131 0.204731i
\(869\) 91.9926 + 53.1120i 0.105860 + 0.0611185i
\(870\) 0 0
\(871\) −30.9481 + 53.6038i −0.0355317 + 0.0615428i
\(872\) −73.1517 + 42.2341i −0.0838895 + 0.0484336i
\(873\) 0 0
\(874\) −623.520 −0.713409
\(875\) 683.614 885.293i 0.781273 1.01176i
\(876\) 0 0
\(877\) −625.286 1083.03i −0.712982 1.23492i −0.963733 0.266870i \(-0.914011\pi\)
0.250750 0.968052i \(-0.419323\pi\)
\(878\) 79.7244i 0.0908023i
\(879\) 0 0
\(880\) −350.887 −0.398735
\(881\) 844.579i 0.958659i −0.877635 0.479329i \(-0.840880\pi\)
0.877635 0.479329i \(-0.159120\pi\)
\(882\) 0 0
\(883\) −378.496 −0.428648 −0.214324 0.976763i \(-0.568755\pi\)
−0.214324 + 0.976763i \(0.568755\pi\)
\(884\) 157.768i 0.178470i
\(885\) 0 0
\(886\) 269.918 0.304648
\(887\) 1003.41 579.319i 1.13124 0.653121i 0.186993 0.982361i \(-0.440126\pi\)
0.944246 + 0.329240i \(0.106792\pi\)
\(888\) 0 0
\(889\) −617.821 477.074i −0.694961 0.536642i
\(890\) 495.819i 0.557100i
\(891\) 0 0
\(892\) −186.441 322.925i −0.209014 0.362023i
\(893\) 493.924 + 285.167i 0.553106 + 0.319336i
\(894\) 0 0
\(895\) −590.484 + 1022.75i −0.659759 + 1.14274i
\(896\) 48.4030 62.6829i 0.0540213 0.0699586i
\(897\) 0 0
\(898\) −6.25637 −0.00696700
\(899\) −42.7152 + 24.6616i −0.0475141 + 0.0274323i
\(900\) 0 0
\(901\) −1246.04 + 2158.21i −1.38296 + 2.39535i
\(902\) 644.213 371.937i 0.714205 0.412347i
\(903\) 0 0
\(904\) 261.525 452.975i 0.289298 0.501079i
\(905\) −1497.86 + 864.789i −1.65509 + 0.955568i
\(906\) 0 0
\(907\) 140.650 243.613i 0.155072 0.268593i −0.778013 0.628248i \(-0.783772\pi\)
0.933085 + 0.359655i \(0.117106\pi\)
\(908\) 70.7295 + 40.8357i 0.0778960 + 0.0449733i
\(909\) 0 0
\(910\) 161.741 + 124.894i 0.177737 + 0.137247i
\(911\) −176.629 + 101.977i −0.193885 + 0.111939i −0.593800 0.804613i \(-0.702373\pi\)
0.399915 + 0.916552i \(0.369040\pi\)
\(912\) 0 0
\(913\) 1157.74 1.26806
\(914\) 954.417i 1.04422i
\(915\) 0 0
\(916\) −71.2022 123.326i −0.0777316 0.134635i
\(917\) −392.521 52.8960i −0.428049 0.0576838i
\(918\) 0 0
\(919\) −499.667 + 865.449i −0.543708 + 0.941730i 0.454979 + 0.890502i \(0.349647\pi\)
−0.998687 + 0.0512275i \(0.983687\pi\)
\(920\) 654.847 + 378.076i 0.711790 + 0.410952i
\(921\) 0 0
\(922\) −298.678 517.325i −0.323946 0.561090i
\(923\) −50.2573 29.0161i −0.0544499 0.0314367i
\(924\) 0 0
\(925\) −231.510 400.988i −0.250281 0.433500i
\(926\) 100.157 + 57.8256i 0.108161 + 0.0624466i
\(927\) 0 0
\(928\) −6.71724 11.6346i −0.00723840 0.0125373i
\(929\) 61.1046i 0.0657746i 0.999459 + 0.0328873i \(0.0104702\pi\)
−0.999459 + 0.0328873i \(0.989530\pi\)
\(930\) 0 0
\(931\) 648.287 + 177.958i 0.696334 + 0.191147i
\(932\) −13.3283 7.69509i −0.0143007 0.00825653i
\(933\) 0 0
\(934\) −395.308 + 684.694i −0.423242 + 0.733077i
\(935\) −2415.14 + 1394.38i −2.58304 + 1.49132i
\(936\) 0 0
\(937\) −233.228 −0.248909 −0.124455 0.992225i \(-0.539718\pi\)
−0.124455 + 0.992225i \(0.539718\pi\)
\(938\) 150.926 195.452i 0.160902 0.208371i
\(939\) 0 0
\(940\) −345.827 598.989i −0.367901 0.637223i
\(941\) 822.293i 0.873851i −0.899498 0.436925i \(-0.856067\pi\)
0.899498 0.436925i \(-0.143933\pi\)
\(942\) 0 0
\(943\) −1603.03 −1.69992
\(944\) 286.959i 0.303982i
\(945\) 0 0
\(946\) 488.918 0.516827
\(947\) 1566.48i 1.65415i −0.562092 0.827075i \(-0.690003\pi\)
0.562092 0.827075i \(-0.309997\pi\)
\(948\) 0 0
\(949\) 97.2038 0.102428
\(950\) 742.825 428.870i 0.781922 0.451443i
\(951\) 0 0
\(952\) 84.0619 623.791i 0.0883003 0.655242i
\(953\) 852.327i 0.894362i −0.894443 0.447181i \(-0.852428\pi\)
0.894443 0.447181i \(-0.147572\pi\)
\(954\) 0 0
\(955\) 1280.67 + 2218.19i 1.34102 + 2.32271i
\(956\) −409.355 236.341i −0.428196 0.247219i
\(957\) 0 0
\(958\) 56.8783 98.5161i 0.0593719 0.102835i
\(959\) −175.586 427.589i −0.183092 0.445869i
\(960\) 0 0
\(961\) −529.668 −0.551164
\(962\) 31.8299 18.3770i 0.0330873 0.0191029i
\(963\) 0 0
\(964\) 126.585 219.252i 0.131312 0.227440i
\(965\) −1189.72 + 686.883i −1.23287 + 0.711796i
\(966\) 0 0
\(967\) −553.241 + 958.241i −0.572121 + 0.990942i 0.424227 + 0.905556i \(0.360546\pi\)
−0.996348 + 0.0853865i \(0.972787\pi\)
\(968\) −24.0313 + 13.8745i −0.0248257 + 0.0143331i
\(969\) 0 0
\(970\) 444.296 769.543i 0.458037 0.793343i
\(971\) −479.817 277.023i −0.494148 0.285296i 0.232146 0.972681i \(-0.425425\pi\)
−0.726293 + 0.687385i \(0.758759\pi\)
\(972\) 0 0
\(973\) 585.771 240.542i 0.602026 0.247217i
\(974\) −494.510 + 285.506i −0.507711 + 0.293127i
\(975\) 0 0
\(976\) 264.581 0.271087
\(977\) 173.601i 0.177688i −0.996046 0.0888439i \(-0.971683\pi\)
0.996046 0.0888439i \(-0.0283172\pi\)
\(978\) 0 0
\(979\) 222.195 + 384.853i 0.226961 + 0.393108i
\(980\) −572.953 579.993i −0.584646 0.591830i
\(981\) 0 0
\(982\) 578.680 1002.30i 0.589287 1.02068i
\(983\) −1189.13 686.542i −1.20969 0.698415i −0.246999 0.969016i \(-0.579444\pi\)
−0.962692 + 0.270600i \(0.912778\pi\)
\(984\) 0 0
\(985\) −358.915 621.659i −0.364381 0.631126i
\(986\) −92.4688 53.3869i −0.0937818 0.0541449i
\(987\) 0 0
\(988\) 34.0433 + 58.9647i 0.0344567 + 0.0596808i
\(989\) −912.449 526.803i −0.922597 0.532662i
\(990\) 0 0
\(991\) −523.608 906.916i −0.528364 0.915153i −0.999453 0.0330672i \(-0.989472\pi\)
0.471090 0.882085i \(-0.343861\pi\)
\(992\) 117.485i 0.118432i
\(993\) 0 0
\(994\) 183.250 + 141.503i 0.184356 + 0.142358i
\(995\) −2373.47 1370.32i −2.38540 1.37721i
\(996\) 0 0
\(997\) −94.6794 + 163.990i −0.0949643 + 0.164483i −0.909594 0.415499i \(-0.863607\pi\)
0.814629 + 0.579982i \(0.196940\pi\)
\(998\) 459.315 265.185i 0.460235 0.265717i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.r.a.233.15 32
3.2 odd 2 126.3.r.a.23.7 yes 32
7.4 even 3 378.3.i.a.179.7 32
9.2 odd 6 378.3.i.a.359.2 32
9.7 even 3 126.3.i.a.65.13 32
21.11 odd 6 126.3.i.a.95.13 yes 32
63.11 odd 6 inner 378.3.r.a.305.7 32
63.25 even 3 126.3.r.a.11.15 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.13 32 9.7 even 3
126.3.i.a.95.13 yes 32 21.11 odd 6
126.3.r.a.11.15 yes 32 63.25 even 3
126.3.r.a.23.7 yes 32 3.2 odd 2
378.3.i.a.179.7 32 7.4 even 3
378.3.i.a.359.2 32 9.2 odd 6
378.3.r.a.233.15 32 1.1 even 1 trivial
378.3.r.a.305.7 32 63.11 odd 6 inner