Properties

Label 378.3.i.a.179.7
Level $378$
Weight $3$
Character 378.179
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(179,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.179"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.7
Character \(\chi\) \(=\) 378.179
Dual form 378.3.i.a.359.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 0.707107i) q^{2} +(1.00000 + 1.73205i) q^{4} +8.31909i q^{5} +(0.934868 + 6.93729i) q^{7} -2.82843i q^{8} +(5.88249 - 10.1888i) q^{10} +10.5446i q^{11} +(1.24066 - 2.14889i) q^{13} +(3.76043 - 9.15746i) q^{14} +(-2.00000 + 3.46410i) q^{16} +(-27.5318 - 15.8955i) q^{17} +(6.85989 + 11.8817i) q^{19} +(-14.4091 + 8.31909i) q^{20} +(7.45618 - 12.9145i) q^{22} -32.1357i q^{23} -44.2073 q^{25} +(-3.03899 + 1.75456i) q^{26} +(-11.0809 + 8.55653i) q^{28} +(-2.05673 + 1.18745i) q^{29} +(-10.3843 - 17.9861i) q^{31} +(4.89898 - 2.82843i) q^{32} +(22.4796 + 38.9358i) q^{34} +(-57.7120 + 7.77726i) q^{35} +(5.23692 + 9.07061i) q^{37} -19.4027i q^{38} +23.5300 q^{40} +(43.1999 + 24.9415i) q^{41} +(16.3930 + 28.3936i) q^{43} +(-18.2638 + 10.5446i) q^{44} +(-22.7234 + 39.3581i) q^{46} +(-36.0009 - 20.7851i) q^{47} +(-47.2520 + 12.9709i) q^{49} +(54.1427 + 31.2593i) q^{50} +4.96266 q^{52} +(67.8875 + 39.1948i) q^{53} -87.7218 q^{55} +(19.6216 - 2.64421i) q^{56} +3.35862 q^{58} +(-62.1285 + 35.8699i) q^{59} +(-33.0727 + 57.2835i) q^{61} +29.3711i q^{62} -8.00000 q^{64} +(17.8768 + 10.3212i) q^{65} +(12.4724 + 21.6028i) q^{67} -63.5820i q^{68} +(76.1818 + 31.2834i) q^{70} -23.3875i q^{71} +(19.5871 - 33.9258i) q^{73} -14.8122i q^{74} +(-13.7198 + 23.7633i) q^{76} +(-73.1512 + 9.85784i) q^{77} +(5.03687 - 8.72412i) q^{79} +(-28.8182 - 16.6382i) q^{80} +(-35.2726 - 61.0939i) q^{82} +(-95.0843 + 54.8969i) q^{83} +(132.236 - 229.040i) q^{85} -46.3665i q^{86} +29.8247 q^{88} +(36.4975 - 21.0718i) q^{89} +(16.0674 + 6.59792i) q^{91} +(55.6607 - 32.1357i) q^{92} +(29.3946 + 50.9129i) q^{94} +(-98.8447 + 57.0680i) q^{95} +(-37.7643 - 65.4097i) q^{97} +(67.0435 + 17.5262i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{4} + 2 q^{7} + 10 q^{13} - 36 q^{14} - 64 q^{16} - 54 q^{17} + 28 q^{19} - 160 q^{25} - 72 q^{26} - 4 q^{28} - 36 q^{29} - 8 q^{31} - 90 q^{35} + 22 q^{37} - 72 q^{41} + 16 q^{43} + 72 q^{44}+ \cdots + 288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 0.707107i −0.612372 0.353553i
\(3\) 0 0
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) 8.31909i 1.66382i 0.554911 + 0.831909i \(0.312752\pi\)
−0.554911 + 0.831909i \(0.687248\pi\)
\(6\) 0 0
\(7\) 0.934868 + 6.93729i 0.133553 + 0.991042i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 5.88249 10.1888i 0.588249 1.01888i
\(11\) 10.5446i 0.958603i 0.877650 + 0.479301i \(0.159110\pi\)
−0.877650 + 0.479301i \(0.840890\pi\)
\(12\) 0 0
\(13\) 1.24066 2.14889i 0.0954357 0.165300i −0.814355 0.580368i \(-0.802909\pi\)
0.909790 + 0.415068i \(0.136242\pi\)
\(14\) 3.76043 9.15746i 0.268602 0.654105i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) −27.5318 15.8955i −1.61952 0.935029i −0.987045 0.160446i \(-0.948707\pi\)
−0.632473 0.774582i \(-0.717960\pi\)
\(18\) 0 0
\(19\) 6.85989 + 11.8817i 0.361047 + 0.625351i 0.988133 0.153598i \(-0.0490862\pi\)
−0.627087 + 0.778949i \(0.715753\pi\)
\(20\) −14.4091 + 8.31909i −0.720455 + 0.415955i
\(21\) 0 0
\(22\) 7.45618 12.9145i 0.338917 0.587022i
\(23\) 32.1357i 1.39721i −0.715509 0.698603i \(-0.753805\pi\)
0.715509 0.698603i \(-0.246195\pi\)
\(24\) 0 0
\(25\) −44.2073 −1.76829
\(26\) −3.03899 + 1.75456i −0.116884 + 0.0674832i
\(27\) 0 0
\(28\) −11.0809 + 8.55653i −0.395746 + 0.305590i
\(29\) −2.05673 + 1.18745i −0.0709216 + 0.0409466i −0.535041 0.844826i \(-0.679704\pi\)
0.464120 + 0.885772i \(0.346371\pi\)
\(30\) 0 0
\(31\) −10.3843 17.9861i −0.334976 0.580196i 0.648504 0.761211i \(-0.275395\pi\)
−0.983480 + 0.181015i \(0.942062\pi\)
\(32\) 4.89898 2.82843i 0.153093 0.0883883i
\(33\) 0 0
\(34\) 22.4796 + 38.9358i 0.661165 + 1.14517i
\(35\) −57.7120 + 7.77726i −1.64891 + 0.222207i
\(36\) 0 0
\(37\) 5.23692 + 9.07061i 0.141538 + 0.245152i 0.928076 0.372391i \(-0.121462\pi\)
−0.786538 + 0.617542i \(0.788128\pi\)
\(38\) 19.4027i 0.510597i
\(39\) 0 0
\(40\) 23.5300 0.588249
\(41\) 43.1999 + 24.9415i 1.05366 + 0.608329i 0.923671 0.383187i \(-0.125173\pi\)
0.129986 + 0.991516i \(0.458507\pi\)
\(42\) 0 0
\(43\) 16.3930 + 28.3936i 0.381234 + 0.660316i 0.991239 0.132081i \(-0.0421660\pi\)
−0.610005 + 0.792397i \(0.708833\pi\)
\(44\) −18.2638 + 10.5446i −0.415087 + 0.239651i
\(45\) 0 0
\(46\) −22.7234 + 39.3581i −0.493987 + 0.855610i
\(47\) −36.0009 20.7851i −0.765976 0.442236i 0.0654613 0.997855i \(-0.479148\pi\)
−0.831437 + 0.555619i \(0.812481\pi\)
\(48\) 0 0
\(49\) −47.2520 + 12.9709i −0.964327 + 0.264712i
\(50\) 54.1427 + 31.2593i 1.08285 + 0.625186i
\(51\) 0 0
\(52\) 4.96266 0.0954357
\(53\) 67.8875 + 39.1948i 1.28090 + 0.739525i 0.977012 0.213184i \(-0.0683834\pi\)
0.303883 + 0.952709i \(0.401717\pi\)
\(54\) 0 0
\(55\) −87.7218 −1.59494
\(56\) 19.6216 2.64421i 0.350386 0.0472180i
\(57\) 0 0
\(58\) 3.35862 0.0579072
\(59\) −62.1285 + 35.8699i −1.05303 + 0.607965i −0.923495 0.383610i \(-0.874681\pi\)
−0.129531 + 0.991575i \(0.541347\pi\)
\(60\) 0 0
\(61\) −33.0727 + 57.2835i −0.542175 + 0.939074i 0.456604 + 0.889670i \(0.349066\pi\)
−0.998779 + 0.0494044i \(0.984268\pi\)
\(62\) 29.3711i 0.473728i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 17.8768 + 10.3212i 0.275028 + 0.158788i
\(66\) 0 0
\(67\) 12.4724 + 21.6028i 0.186155 + 0.322431i 0.943965 0.330045i \(-0.107064\pi\)
−0.757810 + 0.652475i \(0.773731\pi\)
\(68\) 63.5820i 0.935029i
\(69\) 0 0
\(70\) 76.1818 + 31.2834i 1.08831 + 0.446905i
\(71\) 23.3875i 0.329402i −0.986344 0.164701i \(-0.947334\pi\)
0.986344 0.164701i \(-0.0526659\pi\)
\(72\) 0 0
\(73\) 19.5871 33.9258i 0.268316 0.464737i −0.700111 0.714034i \(-0.746866\pi\)
0.968427 + 0.249297i \(0.0801996\pi\)
\(74\) 14.8122i 0.200166i
\(75\) 0 0
\(76\) −13.7198 + 23.7633i −0.180523 + 0.312676i
\(77\) −73.1512 + 9.85784i −0.950015 + 0.128024i
\(78\) 0 0
\(79\) 5.03687 8.72412i 0.0637579 0.110432i −0.832384 0.554199i \(-0.813025\pi\)
0.896142 + 0.443767i \(0.146358\pi\)
\(80\) −28.8182 16.6382i −0.360227 0.207977i
\(81\) 0 0
\(82\) −35.2726 61.0939i −0.430154 0.745048i
\(83\) −95.0843 + 54.8969i −1.14559 + 0.661409i −0.947810 0.318837i \(-0.896708\pi\)
−0.197784 + 0.980246i \(0.563375\pi\)
\(84\) 0 0
\(85\) 132.236 229.040i 1.55572 2.69458i
\(86\) 46.3665i 0.539146i
\(87\) 0 0
\(88\) 29.8247 0.338917
\(89\) 36.4975 21.0718i 0.410084 0.236762i −0.280742 0.959783i \(-0.590580\pi\)
0.690826 + 0.723021i \(0.257247\pi\)
\(90\) 0 0
\(91\) 16.0674 + 6.59792i 0.176564 + 0.0725046i
\(92\) 55.6607 32.1357i 0.605008 0.349302i
\(93\) 0 0
\(94\) 29.3946 + 50.9129i 0.312708 + 0.541627i
\(95\) −98.8447 + 57.0680i −1.04047 + 0.600716i
\(96\) 0 0
\(97\) −37.7643 65.4097i −0.389322 0.674326i 0.603036 0.797714i \(-0.293957\pi\)
−0.992359 + 0.123388i \(0.960624\pi\)
\(98\) 67.0435 + 17.5262i 0.684117 + 0.178839i
\(99\) 0 0
\(100\) −44.2073 76.5693i −0.442073 0.765693i
\(101\) 131.004i 1.29707i 0.761186 + 0.648534i \(0.224618\pi\)
−0.761186 + 0.648534i \(0.775382\pi\)
\(102\) 0 0
\(103\) −33.2224 −0.322548 −0.161274 0.986910i \(-0.551560\pi\)
−0.161274 + 0.986910i \(0.551560\pi\)
\(104\) −6.07799 3.50913i −0.0584422 0.0337416i
\(105\) 0 0
\(106\) −55.4299 96.0074i −0.522923 0.905730i
\(107\) 46.8532 27.0507i 0.437881 0.252810i −0.264818 0.964299i \(-0.585312\pi\)
0.702698 + 0.711488i \(0.251978\pi\)
\(108\) 0 0
\(109\) −14.9320 + 25.8630i −0.136991 + 0.237275i −0.926356 0.376648i \(-0.877076\pi\)
0.789365 + 0.613924i \(0.210410\pi\)
\(110\) 107.437 + 62.0287i 0.976698 + 0.563897i
\(111\) 0 0
\(112\) −25.9012 10.6361i −0.231261 0.0949652i
\(113\) 160.151 + 92.4632i 1.41726 + 0.818258i 0.996058 0.0887062i \(-0.0282732\pi\)
0.421207 + 0.906964i \(0.361607\pi\)
\(114\) 0 0
\(115\) 267.340 2.32470
\(116\) −4.11345 2.37490i −0.0354608 0.0204733i
\(117\) 0 0
\(118\) 101.455 0.859792
\(119\) 84.5331 205.856i 0.710362 1.72988i
\(120\) 0 0
\(121\) 9.81073 0.0810804
\(122\) 81.0112 46.7718i 0.664026 0.383376i
\(123\) 0 0
\(124\) 20.7685 35.9721i 0.167488 0.290098i
\(125\) 159.788i 1.27830i
\(126\) 0 0
\(127\) −111.511 −0.878041 −0.439020 0.898477i \(-0.644674\pi\)
−0.439020 + 0.898477i \(0.644674\pi\)
\(128\) 9.79796 + 5.65685i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −14.5964 25.2817i −0.112280 0.194474i
\(131\) 56.5812i 0.431918i −0.976402 0.215959i \(-0.930712\pi\)
0.976402 0.215959i \(-0.0692877\pi\)
\(132\) 0 0
\(133\) −76.0135 + 58.6968i −0.571530 + 0.441329i
\(134\) 35.2773i 0.263263i
\(135\) 0 0
\(136\) −44.9592 + 77.8717i −0.330583 + 0.572586i
\(137\) 66.0338i 0.481998i 0.970525 + 0.240999i \(0.0774751\pi\)
−0.970525 + 0.240999i \(0.922525\pi\)
\(138\) 0 0
\(139\) 45.2312 78.3427i 0.325404 0.563617i −0.656190 0.754596i \(-0.727833\pi\)
0.981594 + 0.190979i \(0.0611663\pi\)
\(140\) −71.1826 92.1828i −0.508447 0.658449i
\(141\) 0 0
\(142\) −16.5375 + 28.6437i −0.116461 + 0.201717i
\(143\) 22.6593 + 13.0823i 0.158457 + 0.0914850i
\(144\) 0 0
\(145\) −9.87852 17.1101i −0.0681277 0.118001i
\(146\) −47.9783 + 27.7003i −0.328618 + 0.189728i
\(147\) 0 0
\(148\) −10.4738 + 18.1412i −0.0707692 + 0.122576i
\(149\) 98.5488i 0.661401i −0.943736 0.330701i \(-0.892715\pi\)
0.943736 0.330701i \(-0.107285\pi\)
\(150\) 0 0
\(151\) −39.5943 −0.262214 −0.131107 0.991368i \(-0.541853\pi\)
−0.131107 + 0.991368i \(0.541853\pi\)
\(152\) 33.6064 19.4027i 0.221095 0.127649i
\(153\) 0 0
\(154\) 96.5621 + 39.6524i 0.627027 + 0.257483i
\(155\) 149.628 86.3876i 0.965341 0.557340i
\(156\) 0 0
\(157\) 124.779 + 216.124i 0.794772 + 1.37658i 0.922984 + 0.384838i \(0.125743\pi\)
−0.128213 + 0.991747i \(0.540924\pi\)
\(158\) −12.3378 + 7.12321i −0.0780872 + 0.0450836i
\(159\) 0 0
\(160\) 23.5300 + 40.7551i 0.147062 + 0.254719i
\(161\) 222.935 30.0427i 1.38469 0.186600i
\(162\) 0 0
\(163\) −121.137 209.816i −0.743175 1.28722i −0.951043 0.309060i \(-0.899986\pi\)
0.207868 0.978157i \(-0.433348\pi\)
\(164\) 99.7660i 0.608329i
\(165\) 0 0
\(166\) 155.272 0.935373
\(167\) 84.4167 + 48.7380i 0.505489 + 0.291844i 0.730977 0.682402i \(-0.239064\pi\)
−0.225488 + 0.974246i \(0.572398\pi\)
\(168\) 0 0
\(169\) 81.4215 + 141.026i 0.481784 + 0.834474i
\(170\) −323.911 + 187.010i −1.90536 + 1.10006i
\(171\) 0 0
\(172\) −32.7861 + 56.7872i −0.190617 + 0.330158i
\(173\) 46.4195 + 26.8003i 0.268321 + 0.154915i 0.628124 0.778113i \(-0.283823\pi\)
−0.359803 + 0.933028i \(0.617156\pi\)
\(174\) 0 0
\(175\) −41.3280 306.679i −0.236160 1.75245i
\(176\) −36.5277 21.0893i −0.207544 0.119825i
\(177\) 0 0
\(178\) −59.6001 −0.334832
\(179\) 122.940 + 70.9794i 0.686815 + 0.396533i 0.802418 0.596763i \(-0.203547\pi\)
−0.115603 + 0.993296i \(0.536880\pi\)
\(180\) 0 0
\(181\) −207.905 −1.14864 −0.574322 0.818629i \(-0.694734\pi\)
−0.574322 + 0.818629i \(0.694734\pi\)
\(182\) −15.0130 19.4421i −0.0824889 0.106825i
\(183\) 0 0
\(184\) −90.8936 −0.493987
\(185\) −75.4593 + 43.5664i −0.407888 + 0.235494i
\(186\) 0 0
\(187\) 167.612 290.313i 0.896321 1.55247i
\(188\) 83.1404i 0.442236i
\(189\) 0 0
\(190\) 161.413 0.849541
\(191\) −266.638 153.943i −1.39601 0.805987i −0.402038 0.915623i \(-0.631698\pi\)
−0.993972 + 0.109637i \(0.965031\pi\)
\(192\) 0 0
\(193\) 82.5670 + 143.010i 0.427808 + 0.740986i 0.996678 0.0814418i \(-0.0259525\pi\)
−0.568870 + 0.822428i \(0.692619\pi\)
\(194\) 106.814i 0.550585i
\(195\) 0 0
\(196\) −69.7183 68.8720i −0.355706 0.351388i
\(197\) 86.2870i 0.438005i −0.975724 0.219003i \(-0.929720\pi\)
0.975724 0.219003i \(-0.0702803\pi\)
\(198\) 0 0
\(199\) −164.720 + 285.304i −0.827739 + 1.43369i 0.0720681 + 0.997400i \(0.477040\pi\)
−0.899808 + 0.436287i \(0.856293\pi\)
\(200\) 125.037i 0.625186i
\(201\) 0 0
\(202\) 92.6337 160.446i 0.458583 0.794289i
\(203\) −10.1605 13.1580i −0.0500515 0.0648177i
\(204\) 0 0
\(205\) −207.491 + 359.384i −1.01215 + 1.75309i
\(206\) 40.6890 + 23.4918i 0.197519 + 0.114038i
\(207\) 0 0
\(208\) 4.96266 + 8.59557i 0.0238589 + 0.0413249i
\(209\) −125.288 + 72.3350i −0.599463 + 0.346100i
\(210\) 0 0
\(211\) −40.7068 + 70.5063i −0.192923 + 0.334153i −0.946218 0.323530i \(-0.895130\pi\)
0.753294 + 0.657683i \(0.228464\pi\)
\(212\) 156.779i 0.739525i
\(213\) 0 0
\(214\) −76.5110 −0.357528
\(215\) −236.209 + 136.375i −1.09865 + 0.634304i
\(216\) 0 0
\(217\) 115.067 88.8533i 0.530261 0.409462i
\(218\) 36.5758 21.1171i 0.167779 0.0968673i
\(219\) 0 0
\(220\) −87.7218 151.939i −0.398735 0.690630i
\(221\) −68.3154 + 39.4419i −0.309120 + 0.178470i
\(222\) 0 0
\(223\) 93.2204 + 161.462i 0.418029 + 0.724047i 0.995741 0.0921934i \(-0.0293878\pi\)
−0.577712 + 0.816240i \(0.696054\pi\)
\(224\) 24.2015 + 31.3414i 0.108043 + 0.139917i
\(225\) 0 0
\(226\) −130.763 226.488i −0.578596 1.00216i
\(227\) 40.8357i 0.179893i 0.995947 + 0.0899465i \(0.0286696\pi\)
−0.995947 + 0.0899465i \(0.971330\pi\)
\(228\) 0 0
\(229\) −71.2022 −0.310926 −0.155463 0.987842i \(-0.549687\pi\)
−0.155463 + 0.987842i \(0.549687\pi\)
\(230\) −327.424 189.038i −1.42358 0.821905i
\(231\) 0 0
\(232\) 3.35862 + 5.81730i 0.0144768 + 0.0250746i
\(233\) −6.66414 + 3.84755i −0.0286015 + 0.0165131i −0.514233 0.857651i \(-0.671923\pi\)
0.485631 + 0.874164i \(0.338590\pi\)
\(234\) 0 0
\(235\) 172.913 299.495i 0.735801 1.27445i
\(236\) −124.257 71.7399i −0.526513 0.303982i
\(237\) 0 0
\(238\) −249.094 + 192.348i −1.04661 + 0.808183i
\(239\) 204.678 + 118.171i 0.856392 + 0.494438i 0.862802 0.505541i \(-0.168707\pi\)
−0.00641057 + 0.999979i \(0.502041\pi\)
\(240\) 0 0
\(241\) 126.585 0.525250 0.262625 0.964898i \(-0.415412\pi\)
0.262625 + 0.964898i \(0.415412\pi\)
\(242\) −12.0156 6.93724i −0.0496514 0.0286663i
\(243\) 0 0
\(244\) −132.291 −0.542175
\(245\) −107.906 393.094i −0.440433 1.60447i
\(246\) 0 0
\(247\) 34.0433 0.137827
\(248\) −50.8723 + 29.3711i −0.205130 + 0.118432i
\(249\) 0 0
\(250\) −112.987 + 195.699i −0.451948 + 0.782796i
\(251\) 318.476i 1.26883i 0.772993 + 0.634414i \(0.218759\pi\)
−0.772993 + 0.634414i \(0.781241\pi\)
\(252\) 0 0
\(253\) 338.860 1.33937
\(254\) 136.573 + 78.8503i 0.537688 + 0.310434i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 486.137i 1.89158i 0.324773 + 0.945792i \(0.394712\pi\)
−0.324773 + 0.945792i \(0.605288\pi\)
\(258\) 0 0
\(259\) −58.0297 + 44.8099i −0.224053 + 0.173011i
\(260\) 41.2848i 0.158788i
\(261\) 0 0
\(262\) −40.0090 + 69.2976i −0.152706 + 0.264495i
\(263\) 348.891i 1.32658i −0.748361 0.663291i \(-0.769159\pi\)
0.748361 0.663291i \(-0.230841\pi\)
\(264\) 0 0
\(265\) −326.066 + 564.762i −1.23044 + 2.13118i
\(266\) 134.602 18.1390i 0.506023 0.0681915i
\(267\) 0 0
\(268\) −24.9448 + 43.2057i −0.0930777 + 0.161215i
\(269\) 335.922 + 193.945i 1.24878 + 0.720985i 0.970867 0.239621i \(-0.0770231\pi\)
0.277916 + 0.960606i \(0.410356\pi\)
\(270\) 0 0
\(271\) 118.336 + 204.964i 0.436664 + 0.756324i 0.997430 0.0716504i \(-0.0228266\pi\)
−0.560766 + 0.827974i \(0.689493\pi\)
\(272\) 110.127 63.5820i 0.404879 0.233757i
\(273\) 0 0
\(274\) 46.6929 80.8745i 0.170412 0.295162i
\(275\) 466.150i 1.69509i
\(276\) 0 0
\(277\) −203.511 −0.734697 −0.367348 0.930083i \(-0.619734\pi\)
−0.367348 + 0.930083i \(0.619734\pi\)
\(278\) −110.793 + 63.9665i −0.398537 + 0.230095i
\(279\) 0 0
\(280\) 21.9974 + 163.234i 0.0785621 + 0.582979i
\(281\) −45.9455 + 26.5266i −0.163507 + 0.0944008i −0.579521 0.814958i \(-0.696760\pi\)
0.416014 + 0.909358i \(0.363427\pi\)
\(282\) 0 0
\(283\) 23.9055 + 41.4056i 0.0844718 + 0.146309i 0.905166 0.425058i \(-0.139746\pi\)
−0.820694 + 0.571368i \(0.806413\pi\)
\(284\) 40.5084 23.3875i 0.142635 0.0823504i
\(285\) 0 0
\(286\) −18.5012 32.0451i −0.0646896 0.112046i
\(287\) −132.640 + 323.008i −0.462161 + 1.12546i
\(288\) 0 0
\(289\) 360.833 + 624.982i 1.24856 + 2.16257i
\(290\) 27.9407i 0.0963471i
\(291\) 0 0
\(292\) 78.3482 0.268316
\(293\) 10.7293 + 6.19459i 0.0366189 + 0.0211419i 0.518198 0.855261i \(-0.326603\pi\)
−0.481579 + 0.876403i \(0.659936\pi\)
\(294\) 0 0
\(295\) −298.405 516.853i −1.01154 1.75204i
\(296\) 25.6556 14.8122i 0.0866742 0.0500414i
\(297\) 0 0
\(298\) −69.6845 + 120.697i −0.233841 + 0.405024i
\(299\) −69.0563 39.8697i −0.230957 0.133343i
\(300\) 0 0
\(301\) −181.649 + 140.268i −0.603486 + 0.466005i
\(302\) 48.4930 + 27.9974i 0.160573 + 0.0927067i
\(303\) 0 0
\(304\) −54.8791 −0.180523
\(305\) −476.547 275.135i −1.56245 0.902081i
\(306\) 0 0
\(307\) 420.839 1.37081 0.685406 0.728161i \(-0.259625\pi\)
0.685406 + 0.728161i \(0.259625\pi\)
\(308\) −90.2255 116.844i −0.292940 0.379363i
\(309\) 0 0
\(310\) −244.341 −0.788197
\(311\) −402.800 + 232.557i −1.29518 + 0.747771i −0.979567 0.201118i \(-0.935542\pi\)
−0.315610 + 0.948889i \(0.602209\pi\)
\(312\) 0 0
\(313\) 182.485 316.073i 0.583019 1.00982i −0.412100 0.911139i \(-0.635205\pi\)
0.995119 0.0986800i \(-0.0314620\pi\)
\(314\) 352.929i 1.12398i
\(315\) 0 0
\(316\) 20.1475 0.0637579
\(317\) 20.6537 + 11.9244i 0.0651536 + 0.0376164i 0.532223 0.846604i \(-0.321357\pi\)
−0.467069 + 0.884221i \(0.654690\pi\)
\(318\) 0 0
\(319\) −12.5212 21.6874i −0.0392515 0.0679856i
\(320\) 66.5528i 0.207977i
\(321\) 0 0
\(322\) −294.282 120.844i −0.913919 0.375293i
\(323\) 436.165i 1.35036i
\(324\) 0 0
\(325\) −54.8465 + 94.9969i −0.168758 + 0.292298i
\(326\) 342.629i 1.05101i
\(327\) 0 0
\(328\) 70.5452 122.188i 0.215077 0.372524i
\(329\) 110.536 269.180i 0.335977 0.818176i
\(330\) 0 0
\(331\) −113.068 + 195.839i −0.341594 + 0.591658i −0.984729 0.174095i \(-0.944300\pi\)
0.643135 + 0.765753i \(0.277633\pi\)
\(332\) −190.169 109.794i −0.572797 0.330704i
\(333\) 0 0
\(334\) −68.9259 119.383i −0.206365 0.357435i
\(335\) −179.716 + 103.759i −0.536466 + 0.309729i
\(336\) 0 0
\(337\) 151.164 261.824i 0.448558 0.776926i −0.549734 0.835340i \(-0.685271\pi\)
0.998292 + 0.0584139i \(0.0186043\pi\)
\(338\) 230.295i 0.681346i
\(339\) 0 0
\(340\) 528.944 1.55572
\(341\) 189.656 109.498i 0.556177 0.321109i
\(342\) 0 0
\(343\) −134.157 315.675i −0.391129 0.920336i
\(344\) 80.3092 46.3665i 0.233457 0.134786i
\(345\) 0 0
\(346\) −37.9014 65.6471i −0.109542 0.189732i
\(347\) 152.785 88.2104i 0.440302 0.254209i −0.263423 0.964680i \(-0.584852\pi\)
0.703726 + 0.710472i \(0.251518\pi\)
\(348\) 0 0
\(349\) −87.3168 151.237i −0.250191 0.433344i 0.713387 0.700770i \(-0.247160\pi\)
−0.963578 + 0.267426i \(0.913827\pi\)
\(350\) −166.239 + 404.827i −0.474968 + 1.15665i
\(351\) 0 0
\(352\) 29.8247 + 51.6579i 0.0847293 + 0.146756i
\(353\) 142.647i 0.404099i −0.979375 0.202050i \(-0.935240\pi\)
0.979375 0.202050i \(-0.0647602\pi\)
\(354\) 0 0
\(355\) 194.563 0.548065
\(356\) 72.9950 + 42.1437i 0.205042 + 0.118381i
\(357\) 0 0
\(358\) −100.380 173.863i −0.280391 0.485652i
\(359\) 529.406 305.653i 1.47467 0.851401i 0.475077 0.879944i \(-0.342420\pi\)
0.999593 + 0.0285432i \(0.00908683\pi\)
\(360\) 0 0
\(361\) 86.3839 149.621i 0.239291 0.414464i
\(362\) 254.630 + 147.011i 0.703398 + 0.406107i
\(363\) 0 0
\(364\) 4.63943 + 34.4274i 0.0127457 + 0.0945808i
\(365\) 282.232 + 162.947i 0.773238 + 0.446429i
\(366\) 0 0
\(367\) 168.853 0.460090 0.230045 0.973180i \(-0.426113\pi\)
0.230045 + 0.973180i \(0.426113\pi\)
\(368\) 111.321 + 64.2715i 0.302504 + 0.174651i
\(369\) 0 0
\(370\) 123.224 0.333039
\(371\) −208.440 + 507.597i −0.561834 + 1.36819i
\(372\) 0 0
\(373\) 325.465 0.872559 0.436280 0.899811i \(-0.356296\pi\)
0.436280 + 0.899811i \(0.356296\pi\)
\(374\) −410.564 + 237.039i −1.09777 + 0.633795i
\(375\) 0 0
\(376\) −58.7892 + 101.826i −0.156354 + 0.270813i
\(377\) 5.89291i 0.0156311i
\(378\) 0 0
\(379\) 7.72342 0.0203784 0.0101892 0.999948i \(-0.496757\pi\)
0.0101892 + 0.999948i \(0.496757\pi\)
\(380\) −197.689 114.136i −0.520235 0.300358i
\(381\) 0 0
\(382\) 217.709 + 377.083i 0.569919 + 0.987128i
\(383\) 647.886i 1.69161i −0.533494 0.845804i \(-0.679121\pi\)
0.533494 0.845804i \(-0.320879\pi\)
\(384\) 0 0
\(385\) −82.0083 608.552i −0.213009 1.58065i
\(386\) 233.535i 0.605012i
\(387\) 0 0
\(388\) 75.5286 130.819i 0.194661 0.337163i
\(389\) 149.368i 0.383979i 0.981397 + 0.191990i \(0.0614940\pi\)
−0.981397 + 0.191990i \(0.938506\pi\)
\(390\) 0 0
\(391\) −510.813 + 884.755i −1.30643 + 2.26280i
\(392\) 36.6873 + 133.649i 0.0935900 + 0.340941i
\(393\) 0 0
\(394\) −61.0141 + 105.680i −0.154858 + 0.268222i
\(395\) 72.5768 + 41.9022i 0.183739 + 0.106082i
\(396\) 0 0
\(397\) 47.6251 + 82.4890i 0.119962 + 0.207781i 0.919753 0.392499i \(-0.128389\pi\)
−0.799790 + 0.600280i \(0.795056\pi\)
\(398\) 403.480 232.949i 1.01377 0.585300i
\(399\) 0 0
\(400\) 88.4147 153.139i 0.221037 0.382847i
\(401\) 364.458i 0.908874i 0.890779 + 0.454437i \(0.150160\pi\)
−0.890779 + 0.454437i \(0.849840\pi\)
\(402\) 0 0
\(403\) −51.5335 −0.127875
\(404\) −226.905 + 131.004i −0.561647 + 0.324267i
\(405\) 0 0
\(406\) 3.13987 + 23.2997i 0.00773366 + 0.0573885i
\(407\) −95.6463 + 55.2214i −0.235003 + 0.135679i
\(408\) 0 0
\(409\) −390.666 676.654i −0.955174 1.65441i −0.733969 0.679183i \(-0.762334\pi\)
−0.221206 0.975227i \(-0.570999\pi\)
\(410\) 508.246 293.436i 1.23962 0.715698i
\(411\) 0 0
\(412\) −33.2224 57.5429i −0.0806369 0.139667i
\(413\) −306.922 397.470i −0.743153 0.962398i
\(414\) 0 0
\(415\) −456.693 791.015i −1.10046 1.90606i
\(416\) 14.0365i 0.0337416i
\(417\) 0 0
\(418\) 204.594 0.489460
\(419\) 401.472 + 231.790i 0.958167 + 0.553198i 0.895608 0.444843i \(-0.146741\pi\)
0.0625584 + 0.998041i \(0.480074\pi\)
\(420\) 0 0
\(421\) 299.652 + 519.012i 0.711762 + 1.23281i 0.964195 + 0.265194i \(0.0854359\pi\)
−0.252433 + 0.967614i \(0.581231\pi\)
\(422\) 99.7110 57.5682i 0.236282 0.136417i
\(423\) 0 0
\(424\) 110.860 192.015i 0.261462 0.452865i
\(425\) 1217.11 + 702.697i 2.86378 + 1.65341i
\(426\) 0 0
\(427\) −428.311 175.882i −1.00307 0.411902i
\(428\) 93.7064 + 54.1014i 0.218940 + 0.126405i
\(429\) 0 0
\(430\) 385.728 0.897041
\(431\) −261.400 150.919i −0.606496 0.350161i 0.165097 0.986277i \(-0.447206\pi\)
−0.771593 + 0.636117i \(0.780540\pi\)
\(432\) 0 0
\(433\) 582.634 1.34557 0.672787 0.739836i \(-0.265097\pi\)
0.672787 + 0.739836i \(0.265097\pi\)
\(434\) −203.756 + 27.4581i −0.469484 + 0.0632676i
\(435\) 0 0
\(436\) −59.7281 −0.136991
\(437\) 381.826 220.447i 0.873744 0.504456i
\(438\) 0 0
\(439\) −28.1868 + 48.8210i −0.0642069 + 0.111210i −0.896342 0.443363i \(-0.853785\pi\)
0.832135 + 0.554573i \(0.187118\pi\)
\(440\) 248.115i 0.563897i
\(441\) 0 0
\(442\) 111.559 0.252395
\(443\) 165.291 + 95.4305i 0.373116 + 0.215419i 0.674819 0.737983i \(-0.264222\pi\)
−0.301703 + 0.953402i \(0.597555\pi\)
\(444\) 0 0
\(445\) 175.299 + 303.626i 0.393929 + 0.682306i
\(446\) 263.667i 0.591182i
\(447\) 0 0
\(448\) −7.47894 55.4983i −0.0166941 0.123880i
\(449\) 4.42392i 0.00985283i 0.999988 + 0.00492642i \(0.00156813\pi\)
−0.999988 + 0.00492642i \(0.998432\pi\)
\(450\) 0 0
\(451\) −262.999 + 455.527i −0.583146 + 1.01004i
\(452\) 369.853i 0.818258i
\(453\) 0 0
\(454\) 28.8752 50.0133i 0.0636018 0.110162i
\(455\) −54.8887 + 133.666i −0.120635 + 0.293771i
\(456\) 0 0
\(457\) 337.437 584.459i 0.738375 1.27890i −0.214851 0.976647i \(-0.568927\pi\)
0.953227 0.302257i \(-0.0977400\pi\)
\(458\) 87.2045 + 50.3475i 0.190403 + 0.109929i
\(459\) 0 0
\(460\) 267.340 + 463.047i 0.581174 + 1.00662i
\(461\) −365.804 + 211.197i −0.793501 + 0.458128i −0.841194 0.540734i \(-0.818147\pi\)
0.0476924 + 0.998862i \(0.484813\pi\)
\(462\) 0 0
\(463\) 40.8889 70.8216i 0.0883129 0.152962i −0.818485 0.574528i \(-0.805186\pi\)
0.906798 + 0.421565i \(0.138519\pi\)
\(464\) 9.49961i 0.0204733i
\(465\) 0 0
\(466\) 10.8825 0.0233530
\(467\) −484.152 + 279.525i −1.03673 + 0.598555i −0.918905 0.394480i \(-0.870925\pi\)
−0.117823 + 0.993035i \(0.537591\pi\)
\(468\) 0 0
\(469\) −138.205 + 106.721i −0.294681 + 0.227549i
\(470\) −423.549 + 244.536i −0.901169 + 0.520290i
\(471\) 0 0
\(472\) 101.455 + 175.726i 0.214948 + 0.372301i
\(473\) −299.400 + 172.859i −0.632981 + 0.365452i
\(474\) 0 0
\(475\) −303.257 525.257i −0.638436 1.10580i
\(476\) 441.087 59.4407i 0.926653 0.124876i
\(477\) 0 0
\(478\) −167.119 289.458i −0.349620 0.605560i
\(479\) 80.4381i 0.167929i 0.996469 + 0.0839646i \(0.0267583\pi\)
−0.996469 + 0.0839646i \(0.973242\pi\)
\(480\) 0 0
\(481\) 25.9890 0.0540313
\(482\) −155.035 89.5092i −0.321648 0.185704i
\(483\) 0 0
\(484\) 9.81073 + 16.9927i 0.0202701 + 0.0351089i
\(485\) 544.149 314.165i 1.12196 0.647762i
\(486\) 0 0
\(487\) 201.883 349.672i 0.414544 0.718011i −0.580836 0.814020i \(-0.697274\pi\)
0.995380 + 0.0960090i \(0.0306078\pi\)
\(488\) 162.022 + 93.5436i 0.332013 + 0.191688i
\(489\) 0 0
\(490\) −145.802 + 557.741i −0.297555 + 1.13825i
\(491\) −708.736 409.189i −1.44345 0.833378i −0.445375 0.895344i \(-0.646930\pi\)
−0.998078 + 0.0619657i \(0.980263\pi\)
\(492\) 0 0
\(493\) 75.5005 0.153145
\(494\) −41.6943 24.0722i −0.0844014 0.0487292i
\(495\) 0 0
\(496\) 83.0741 0.167488
\(497\) 162.246 21.8642i 0.326451 0.0439924i
\(498\) 0 0
\(499\) 375.029 0.751561 0.375780 0.926709i \(-0.377375\pi\)
0.375780 + 0.926709i \(0.377375\pi\)
\(500\) 276.760 159.788i 0.553520 0.319575i
\(501\) 0 0
\(502\) 225.196 390.052i 0.448599 0.776995i
\(503\) 434.043i 0.862909i 0.902135 + 0.431454i \(0.141999\pi\)
−0.902135 + 0.431454i \(0.858001\pi\)
\(504\) 0 0
\(505\) −1089.83 −2.15809
\(506\) −415.016 239.610i −0.820191 0.473537i
\(507\) 0 0
\(508\) −111.511 193.143i −0.219510 0.380203i
\(509\) 180.371i 0.354364i 0.984178 + 0.177182i \(0.0566980\pi\)
−0.984178 + 0.177182i \(0.943302\pi\)
\(510\) 0 0
\(511\) 253.664 + 104.165i 0.496408 + 0.203845i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 343.751 595.394i 0.668776 1.15835i
\(515\) 276.380i 0.536661i
\(516\) 0 0
\(517\) 219.171 379.616i 0.423929 0.734267i
\(518\) 102.757 13.8475i 0.198372 0.0267326i
\(519\) 0 0
\(520\) 29.1928 50.5634i 0.0561399 0.0972372i
\(521\) 296.089 + 170.947i 0.568310 + 0.328114i 0.756474 0.654024i \(-0.226920\pi\)
−0.188164 + 0.982138i \(0.560254\pi\)
\(522\) 0 0
\(523\) −189.342 327.951i −0.362031 0.627057i 0.626264 0.779611i \(-0.284583\pi\)
−0.988295 + 0.152555i \(0.951250\pi\)
\(524\) 98.0016 56.5812i 0.187026 0.107979i
\(525\) 0 0
\(526\) −246.703 + 427.303i −0.469018 + 0.812363i
\(527\) 660.252i 1.25285i
\(528\) 0 0
\(529\) −503.706 −0.952185
\(530\) 798.694 461.126i 1.50697 0.870050i
\(531\) 0 0
\(532\) −177.679 72.9625i −0.333984 0.137147i
\(533\) 107.193 61.8880i 0.201113 0.116113i
\(534\) 0 0
\(535\) 225.037 + 389.776i 0.420631 + 0.728554i
\(536\) 61.1021 35.2773i 0.113996 0.0658159i
\(537\) 0 0
\(538\) −274.279 475.066i −0.509813 0.883022i
\(539\) −136.773 498.255i −0.253754 0.924407i
\(540\) 0 0
\(541\) 143.032 + 247.739i 0.264385 + 0.457928i 0.967402 0.253244i \(-0.0814977\pi\)
−0.703017 + 0.711173i \(0.748164\pi\)
\(542\) 334.704i 0.617536i
\(543\) 0 0
\(544\) −179.837 −0.330583
\(545\) −215.157 124.221i −0.394783 0.227928i
\(546\) 0 0
\(547\) −318.027 550.839i −0.581402 1.00702i −0.995313 0.0967009i \(-0.969171\pi\)
0.413911 0.910317i \(-0.364162\pi\)
\(548\) −114.374 + 66.0338i −0.208711 + 0.120500i
\(549\) 0 0
\(550\) −329.618 + 570.915i −0.599305 + 1.03803i
\(551\) −28.2178 16.2916i −0.0512120 0.0295673i
\(552\) 0 0
\(553\) 65.2306 + 26.7864i 0.117958 + 0.0484383i
\(554\) 249.249 + 143.904i 0.449908 + 0.259754i
\(555\) 0 0
\(556\) 180.925 0.325404
\(557\) 2.15468 + 1.24401i 0.00386837 + 0.00223341i 0.501933 0.864907i \(-0.332622\pi\)
−0.498065 + 0.867140i \(0.665956\pi\)
\(558\) 0 0
\(559\) 81.3531 0.145533
\(560\) 88.4828 215.475i 0.158005 0.384776i
\(561\) 0 0
\(562\) 75.0286 0.133503
\(563\) −299.745 + 173.058i −0.532406 + 0.307385i −0.741996 0.670405i \(-0.766121\pi\)
0.209590 + 0.977789i \(0.432787\pi\)
\(564\) 0 0
\(565\) −769.210 + 1332.31i −1.36143 + 2.35807i
\(566\) 67.6150i 0.119461i
\(567\) 0 0
\(568\) −66.1499 −0.116461
\(569\) −836.465 482.933i −1.47006 0.848740i −0.470626 0.882333i \(-0.655972\pi\)
−0.999436 + 0.0335928i \(0.989305\pi\)
\(570\) 0 0
\(571\) −82.5549 142.989i −0.144579 0.250419i 0.784637 0.619956i \(-0.212850\pi\)
−0.929216 + 0.369537i \(0.879516\pi\)
\(572\) 52.3294i 0.0914850i
\(573\) 0 0
\(574\) 390.851 301.811i 0.680925 0.525803i
\(575\) 1420.64i 2.47067i
\(576\) 0 0
\(577\) −449.998 + 779.419i −0.779892 + 1.35081i 0.152112 + 0.988363i \(0.451393\pi\)
−0.932004 + 0.362449i \(0.881941\pi\)
\(578\) 1020.59i 1.76573i
\(579\) 0 0
\(580\) 19.7570 34.2202i 0.0340639 0.0590003i
\(581\) −469.727 608.306i −0.808481 1.04700i
\(582\) 0 0
\(583\) −413.295 + 715.848i −0.708911 + 1.22787i
\(584\) −95.9566 55.4006i −0.164309 0.0948640i
\(585\) 0 0
\(586\) −8.76047 15.1736i −0.0149496 0.0258935i
\(587\) 829.734 479.047i 1.41352 0.816094i 0.417799 0.908540i \(-0.362802\pi\)
0.995718 + 0.0924455i \(0.0294684\pi\)
\(588\) 0 0
\(589\) 142.470 246.765i 0.241884 0.418955i
\(590\) 844.018i 1.43054i
\(591\) 0 0
\(592\) −41.8954 −0.0707692
\(593\) −362.413 + 209.239i −0.611151 + 0.352848i −0.773416 0.633899i \(-0.781453\pi\)
0.162265 + 0.986747i \(0.448120\pi\)
\(594\) 0 0
\(595\) 1712.54 + 703.239i 2.87822 + 1.18191i
\(596\) 170.691 98.5488i 0.286395 0.165350i
\(597\) 0 0
\(598\) 56.3842 + 97.6603i 0.0942880 + 0.163312i
\(599\) −10.9571 + 6.32609i −0.0182923 + 0.0105611i −0.509118 0.860697i \(-0.670028\pi\)
0.490826 + 0.871258i \(0.336695\pi\)
\(600\) 0 0
\(601\) 77.9185 + 134.959i 0.129648 + 0.224557i 0.923540 0.383502i \(-0.125282\pi\)
−0.793892 + 0.608059i \(0.791949\pi\)
\(602\) 321.658 43.3466i 0.534316 0.0720043i
\(603\) 0 0
\(604\) −39.5943 68.5794i −0.0655535 0.113542i
\(605\) 81.6164i 0.134903i
\(606\) 0 0
\(607\) −431.015 −0.710075 −0.355037 0.934852i \(-0.615532\pi\)
−0.355037 + 0.934852i \(0.615532\pi\)
\(608\) 67.2129 + 38.8054i 0.110547 + 0.0638246i
\(609\) 0 0
\(610\) 389.099 + 673.939i 0.637867 + 1.10482i
\(611\) −89.3300 + 51.5747i −0.146203 + 0.0844103i
\(612\) 0 0
\(613\) 438.082 758.781i 0.714653 1.23781i −0.248441 0.968647i \(-0.579918\pi\)
0.963093 0.269168i \(-0.0867486\pi\)
\(614\) −515.421 297.578i −0.839447 0.484655i
\(615\) 0 0
\(616\) 27.8822 + 206.903i 0.0452633 + 0.335881i
\(617\) 311.826 + 180.033i 0.505390 + 0.291787i 0.730937 0.682445i \(-0.239083\pi\)
−0.225546 + 0.974232i \(0.572417\pi\)
\(618\) 0 0
\(619\) 56.5368 0.0913357 0.0456679 0.998957i \(-0.485458\pi\)
0.0456679 + 0.998957i \(0.485458\pi\)
\(620\) 299.256 + 172.775i 0.482670 + 0.278670i
\(621\) 0 0
\(622\) 657.770 1.05751
\(623\) 180.302 + 233.494i 0.289409 + 0.374790i
\(624\) 0 0
\(625\) 224.105 0.358568
\(626\) −446.995 + 258.073i −0.714050 + 0.412257i
\(627\) 0 0
\(628\) −249.558 + 432.248i −0.397386 + 0.688292i
\(629\) 332.974i 0.529370i
\(630\) 0 0
\(631\) −632.353 −1.00214 −0.501072 0.865406i \(-0.667061\pi\)
−0.501072 + 0.865406i \(0.667061\pi\)
\(632\) −24.6755 14.2464i −0.0390436 0.0225418i
\(633\) 0 0
\(634\) −16.8637 29.2087i −0.0265988 0.0460705i
\(635\) 927.672i 1.46090i
\(636\) 0 0
\(637\) −30.7508 + 117.632i −0.0482745 + 0.184666i
\(638\) 35.4154i 0.0555100i
\(639\) 0 0
\(640\) −47.0599 + 81.5101i −0.0735311 + 0.127360i
\(641\) 516.035i 0.805047i 0.915410 + 0.402523i \(0.131867\pi\)
−0.915410 + 0.402523i \(0.868133\pi\)
\(642\) 0 0
\(643\) 273.812 474.257i 0.425836 0.737569i −0.570662 0.821185i \(-0.693313\pi\)
0.996498 + 0.0836157i \(0.0266468\pi\)
\(644\) 274.970 + 356.092i 0.426973 + 0.552938i
\(645\) 0 0
\(646\) −308.415 + 534.191i −0.477423 + 0.826921i
\(647\) 186.510 + 107.681i 0.288268 + 0.166432i 0.637161 0.770731i \(-0.280109\pi\)
−0.348892 + 0.937163i \(0.613442\pi\)
\(648\) 0 0
\(649\) −378.235 655.123i −0.582797 1.00943i
\(650\) 134.346 77.5646i 0.206686 0.119330i
\(651\) 0 0
\(652\) 242.275 419.633i 0.371587 0.643608i
\(653\) 321.278i 0.492004i 0.969269 + 0.246002i \(0.0791169\pi\)
−0.969269 + 0.246002i \(0.920883\pi\)
\(654\) 0 0
\(655\) 470.705 0.718633
\(656\) −172.800 + 99.7660i −0.263414 + 0.152082i
\(657\) 0 0
\(658\) −325.718 + 251.516i −0.495012 + 0.382243i
\(659\) 346.818 200.235i 0.526279 0.303847i −0.213221 0.977004i \(-0.568395\pi\)
0.739500 + 0.673157i \(0.235062\pi\)
\(660\) 0 0
\(661\) −287.726 498.356i −0.435289 0.753942i 0.562030 0.827117i \(-0.310020\pi\)
−0.997319 + 0.0731743i \(0.976687\pi\)
\(662\) 276.958 159.902i 0.418365 0.241543i
\(663\) 0 0
\(664\) 155.272 + 268.939i 0.233843 + 0.405029i
\(665\) −488.304 632.364i −0.734292 0.950923i
\(666\) 0 0
\(667\) 38.1596 + 66.0944i 0.0572108 + 0.0990921i
\(668\) 194.952i 0.291844i
\(669\) 0 0
\(670\) 293.475 0.438023
\(671\) −604.034 348.739i −0.900199 0.519730i
\(672\) 0 0
\(673\) 473.931 + 820.873i 0.704207 + 1.21972i 0.966977 + 0.254864i \(0.0820307\pi\)
−0.262770 + 0.964859i \(0.584636\pi\)
\(674\) −370.275 + 213.778i −0.549369 + 0.317179i
\(675\) 0 0
\(676\) −162.843 + 282.052i −0.240892 + 0.417237i
\(677\) −1131.25 653.129i −1.67098 0.964741i −0.967091 0.254430i \(-0.918112\pi\)
−0.703889 0.710310i \(-0.748555\pi\)
\(678\) 0 0
\(679\) 418.461 323.131i 0.616290 0.475893i
\(680\) −647.822 374.020i −0.952679 0.550030i
\(681\) 0 0
\(682\) −309.708 −0.454117
\(683\) −617.670 356.612i −0.904349 0.522126i −0.0257402 0.999669i \(-0.508194\pi\)
−0.878609 + 0.477543i \(0.841528\pi\)
\(684\) 0 0
\(685\) −549.341 −0.801958
\(686\) −58.9075 + 481.485i −0.0858709 + 0.701873i
\(687\) 0 0
\(688\) −131.144 −0.190617
\(689\) 168.451 97.2553i 0.244486 0.141154i
\(690\) 0 0
\(691\) −182.396 + 315.919i −0.263959 + 0.457191i −0.967290 0.253672i \(-0.918362\pi\)
0.703331 + 0.710862i \(0.251695\pi\)
\(692\) 107.201i 0.154915i
\(693\) 0 0
\(694\) −249.497 −0.359505
\(695\) 651.740 + 376.282i 0.937756 + 0.541414i
\(696\) 0 0
\(697\) −792.915 1373.37i −1.13761 1.97040i
\(698\) 246.969i 0.353824i
\(699\) 0 0
\(700\) 489.856 378.261i 0.699794 0.540373i
\(701\) 944.475i 1.34732i 0.739039 + 0.673662i \(0.235280\pi\)
−0.739039 + 0.673662i \(0.764720\pi\)
\(702\) 0 0
\(703\) −71.8494 + 124.447i −0.102204 + 0.177022i
\(704\) 84.3571i 0.119825i
\(705\) 0 0
\(706\) −100.867 + 174.706i −0.142871 + 0.247459i
\(707\) −908.812 + 122.471i −1.28545 + 0.173227i
\(708\) 0 0
\(709\) 515.772 893.343i 0.727464 1.26000i −0.230488 0.973075i \(-0.574032\pi\)
0.957952 0.286929i \(-0.0926345\pi\)
\(710\) −238.290 137.577i −0.335620 0.193770i
\(711\) 0 0
\(712\) −59.6001 103.230i −0.0837081 0.144987i
\(713\) −577.996 + 333.706i −0.810653 + 0.468031i
\(714\) 0 0
\(715\) −108.833 + 188.505i −0.152214 + 0.263643i
\(716\) 283.918i 0.396533i
\(717\) 0 0
\(718\) −864.517 −1.20406
\(719\) −27.9770 + 16.1525i −0.0389109 + 0.0224652i −0.519329 0.854574i \(-0.673818\pi\)
0.480418 + 0.877039i \(0.340485\pi\)
\(720\) 0 0
\(721\) −31.0586 230.474i −0.0430771 0.319658i
\(722\) −211.597 + 122.165i −0.293070 + 0.169204i
\(723\) 0 0
\(724\) −207.905 360.102i −0.287161 0.497378i
\(725\) 90.9224 52.4940i 0.125410 0.0724056i
\(726\) 0 0
\(727\) −102.737 177.945i −0.141316 0.244767i 0.786676 0.617366i \(-0.211800\pi\)
−0.927992 + 0.372599i \(0.878467\pi\)
\(728\) 18.6617 45.4454i 0.0256342 0.0624249i
\(729\) 0 0
\(730\) −230.441 399.136i −0.315673 0.546762i
\(731\) 1042.30i 1.42586i
\(732\) 0 0
\(733\) −587.743 −0.801832 −0.400916 0.916115i \(-0.631308\pi\)
−0.400916 + 0.916115i \(0.631308\pi\)
\(734\) −206.802 119.397i −0.281746 0.162666i
\(735\) 0 0
\(736\) −90.8936 157.432i −0.123497 0.213903i
\(737\) −227.794 + 131.517i −0.309083 + 0.178449i
\(738\) 0 0
\(739\) −395.335 + 684.741i −0.534960 + 0.926578i 0.464205 + 0.885728i \(0.346340\pi\)
−0.999165 + 0.0408504i \(0.986993\pi\)
\(740\) −150.919 87.1329i −0.203944 0.117747i
\(741\) 0 0
\(742\) 614.211 474.287i 0.827778 0.639201i
\(743\) 15.5592 + 8.98312i 0.0209411 + 0.0120903i 0.510434 0.859917i \(-0.329485\pi\)
−0.489493 + 0.872007i \(0.662818\pi\)
\(744\) 0 0
\(745\) 819.836 1.10045
\(746\) −398.611 230.138i −0.534331 0.308496i
\(747\) 0 0
\(748\) 670.448 0.896321
\(749\) 231.460 + 299.746i 0.309026 + 0.400194i
\(750\) 0 0
\(751\) 794.238 1.05757 0.528787 0.848755i \(-0.322647\pi\)
0.528787 + 0.848755i \(0.322647\pi\)
\(752\) 144.003 83.1404i 0.191494 0.110559i
\(753\) 0 0
\(754\) 4.16692 7.21731i 0.00552642 0.00957204i
\(755\) 329.389i 0.436277i
\(756\) 0 0
\(757\) 99.2649 0.131129 0.0655647 0.997848i \(-0.479115\pi\)
0.0655647 + 0.997848i \(0.479115\pi\)
\(758\) −9.45922 5.46129i −0.0124792 0.00720486i
\(759\) 0 0
\(760\) 161.413 + 279.575i 0.212385 + 0.367862i
\(761\) 735.539i 0.966543i −0.875471 0.483272i \(-0.839448\pi\)
0.875471 0.483272i \(-0.160552\pi\)
\(762\) 0 0
\(763\) −193.379 79.4093i −0.253445 0.104075i
\(764\) 615.774i 0.805987i
\(765\) 0 0
\(766\) −458.124 + 793.495i −0.598074 + 1.03589i
\(767\) 178.010i 0.232086i
\(768\) 0 0
\(769\) −239.582 + 414.969i −0.311550 + 0.539621i −0.978698 0.205304i \(-0.934182\pi\)
0.667148 + 0.744925i \(0.267515\pi\)
\(770\) −329.872 + 803.309i −0.428405 + 1.04326i
\(771\) 0 0
\(772\) −165.134 + 286.021i −0.213904 + 0.370493i
\(773\) −100.386 57.9577i −0.129865 0.0749776i 0.433660 0.901077i \(-0.357222\pi\)
−0.563525 + 0.826099i \(0.690555\pi\)
\(774\) 0 0
\(775\) 459.060 + 795.116i 0.592336 + 1.02596i
\(776\) −185.006 + 106.814i −0.238410 + 0.137646i
\(777\) 0 0
\(778\) 105.619 182.938i 0.135757 0.235138i
\(779\) 684.383i 0.878541i
\(780\) 0 0
\(781\) 246.613 0.315765
\(782\) 1251.23 722.399i 1.60004 0.923784i
\(783\) 0 0
\(784\) 49.5716 189.628i 0.0632290 0.241872i
\(785\) −1797.95 + 1038.05i −2.29039 + 1.32236i
\(786\) 0 0
\(787\) −488.719 846.487i −0.620990 1.07559i −0.989302 0.145884i \(-0.953397\pi\)
0.368312 0.929702i \(-0.379936\pi\)
\(788\) 149.453 86.2870i 0.189662 0.109501i
\(789\) 0 0
\(790\) −59.2587 102.639i −0.0750110 0.129923i
\(791\) −491.724 + 1197.45i −0.621649 + 1.51385i
\(792\) 0 0
\(793\) 82.0642 + 142.139i 0.103486 + 0.179242i
\(794\) 134.704i 0.169652i
\(795\) 0 0
\(796\) −658.881 −0.827739
\(797\) 982.477 + 567.234i 1.23272 + 0.711711i 0.967596 0.252503i \(-0.0812539\pi\)
0.265124 + 0.964214i \(0.414587\pi\)
\(798\) 0 0
\(799\) 660.779 + 1144.50i 0.827008 + 1.43242i
\(800\) −216.571 + 125.037i −0.270714 + 0.156297i
\(801\) 0 0
\(802\) 257.711 446.369i 0.321335 0.556569i
\(803\) 357.735 + 206.538i 0.445498 + 0.257208i
\(804\) 0 0
\(805\) 249.928 + 1854.62i 0.310469 + 2.30387i
\(806\) 63.1154 + 36.4397i 0.0783070 + 0.0452106i
\(807\) 0 0
\(808\) 370.535 0.458583
\(809\) 751.325 + 433.778i 0.928708 + 0.536190i 0.886403 0.462915i \(-0.153196\pi\)
0.0423053 + 0.999105i \(0.486530\pi\)
\(810\) 0 0
\(811\) −329.692 −0.406525 −0.203263 0.979124i \(-0.565155\pi\)
−0.203263 + 0.979124i \(0.565155\pi\)
\(812\) 12.6299 30.7564i 0.0155540 0.0378774i
\(813\) 0 0
\(814\) 156.190 0.191879
\(815\) 1745.48 1007.75i 2.14170 1.23651i
\(816\) 0 0
\(817\) −224.909 + 389.553i −0.275286 + 0.476810i
\(818\) 1104.97i 1.35082i
\(819\) 0 0
\(820\) −829.963 −1.01215
\(821\) 890.753 + 514.277i 1.08496 + 0.626403i 0.932230 0.361865i \(-0.117860\pi\)
0.152731 + 0.988268i \(0.451193\pi\)
\(822\) 0 0
\(823\) 624.999 + 1082.53i 0.759415 + 1.31535i 0.943149 + 0.332369i \(0.107848\pi\)
−0.183734 + 0.982976i \(0.558819\pi\)
\(824\) 93.9672i 0.114038i
\(825\) 0 0
\(826\) 94.8475 + 703.826i 0.114827 + 0.852090i
\(827\) 1582.29i 1.91329i −0.291248 0.956647i \(-0.594071\pi\)
0.291248 0.956647i \(-0.405929\pi\)
\(828\) 0 0
\(829\) −275.656 + 477.450i −0.332516 + 0.575935i −0.983004 0.183581i \(-0.941231\pi\)
0.650488 + 0.759516i \(0.274564\pi\)
\(830\) 1291.72i 1.55629i
\(831\) 0 0
\(832\) −9.92531 + 17.1911i −0.0119295 + 0.0206624i
\(833\) 1507.11 + 393.982i 1.80926 + 0.472968i
\(834\) 0 0
\(835\) −405.456 + 702.270i −0.485576 + 0.841042i
\(836\) −250.576 144.670i −0.299732 0.173050i
\(837\) 0 0
\(838\) −327.800 567.767i −0.391170 0.677526i
\(839\) 1220.53 704.672i 1.45474 0.839895i 0.455997 0.889981i \(-0.349283\pi\)
0.998745 + 0.0500860i \(0.0159495\pi\)
\(840\) 0 0
\(841\) −417.680 + 723.443i −0.496647 + 0.860217i
\(842\) 847.543i 1.00658i
\(843\) 0 0
\(844\) −162.827 −0.192923
\(845\) −1173.21 + 677.353i −1.38841 + 0.801601i
\(846\) 0 0
\(847\) 9.17174 + 68.0599i 0.0108285 + 0.0803541i
\(848\) −271.550 + 156.779i −0.320224 + 0.184881i
\(849\) 0 0
\(850\) −993.764 1721.25i −1.16913 2.02500i
\(851\) 291.491 168.292i 0.342527 0.197758i
\(852\) 0 0
\(853\) −305.025 528.318i −0.357590 0.619365i 0.629967 0.776622i \(-0.283068\pi\)
−0.987558 + 0.157257i \(0.949735\pi\)
\(854\) 400.204 + 518.273i 0.468624 + 0.606877i
\(855\) 0 0
\(856\) −76.5110 132.521i −0.0893820 0.154814i
\(857\) 1083.39i 1.26417i −0.774901 0.632083i \(-0.782200\pi\)
0.774901 0.632083i \(-0.217800\pi\)
\(858\) 0 0
\(859\) 1396.05 1.62520 0.812601 0.582821i \(-0.198051\pi\)
0.812601 + 0.582821i \(0.198051\pi\)
\(860\) −472.418 272.751i −0.549323 0.317152i
\(861\) 0 0
\(862\) 213.432 + 369.675i 0.247601 + 0.428857i
\(863\) 33.5922 19.3944i 0.0389249 0.0224733i −0.480411 0.877043i \(-0.659513\pi\)
0.519336 + 0.854570i \(0.326179\pi\)
\(864\) 0 0
\(865\) −222.954 + 386.168i −0.257751 + 0.446438i
\(866\) −713.578 411.984i −0.823993 0.475733i
\(867\) 0 0
\(868\) 268.965 + 110.448i 0.309868 + 0.127244i
\(869\) 91.9926 + 53.1120i 0.105860 + 0.0611185i
\(870\) 0 0
\(871\) 61.8963 0.0710635
\(872\) 73.1517 + 42.2341i 0.0838895 + 0.0484336i
\(873\) 0 0
\(874\) −623.520 −0.713409
\(875\) 1108.49 149.380i 1.26685 0.170720i
\(876\) 0 0
\(877\) 1250.57 1.42596 0.712982 0.701182i \(-0.247344\pi\)
0.712982 + 0.701182i \(0.247344\pi\)
\(878\) 69.0434 39.8622i 0.0786371 0.0454011i
\(879\) 0 0
\(880\) 175.444 303.877i 0.199368 0.345315i
\(881\) 844.579i 0.958659i −0.877635 0.479329i \(-0.840880\pi\)
0.877635 0.479329i \(-0.159120\pi\)
\(882\) 0 0
\(883\) −378.496 −0.428648 −0.214324 0.976763i \(-0.568755\pi\)
−0.214324 + 0.976763i \(0.568755\pi\)
\(884\) −136.631 78.8839i −0.154560 0.0892352i
\(885\) 0 0
\(886\) −134.959 233.756i −0.152324 0.263833i
\(887\) 1158.64i 1.30624i 0.757253 + 0.653121i \(0.226541\pi\)
−0.757253 + 0.653121i \(0.773459\pi\)
\(888\) 0 0
\(889\) −104.248 773.586i −0.117265 0.870175i
\(890\) 495.819i 0.557100i
\(891\) 0 0
\(892\) −186.441 + 322.925i −0.209014 + 0.362023i
\(893\) 570.334i 0.638672i
\(894\) 0 0
\(895\) −590.484 + 1022.75i −0.659759 + 1.14274i
\(896\) −30.0835 + 73.2597i −0.0335753 + 0.0817631i
\(897\) 0 0
\(898\) 3.12818 5.41817i 0.00348350 0.00603360i
\(899\) 42.7152 + 24.6616i 0.0475141 + 0.0274323i
\(900\) 0 0
\(901\) −1246.04 2158.21i −1.38296 2.39535i
\(902\) 644.213 371.937i 0.714205 0.412347i
\(903\) 0 0
\(904\) 261.525 452.975i 0.289298 0.501079i
\(905\) 1729.58i 1.91114i
\(906\) 0 0
\(907\) −281.301 −0.310144 −0.155072 0.987903i \(-0.549561\pi\)
−0.155072 + 0.987903i \(0.549561\pi\)
\(908\) −70.7295 + 40.8357i −0.0778960 + 0.0449733i
\(909\) 0 0
\(910\) 161.741 124.894i 0.177737 0.137247i
\(911\) −176.629 + 101.977i −0.193885 + 0.111939i −0.593800 0.804613i \(-0.702373\pi\)
0.399915 + 0.916552i \(0.369040\pi\)
\(912\) 0 0
\(913\) −578.868 1002.63i −0.634029 1.09817i
\(914\) −826.550 + 477.209i −0.904321 + 0.522110i
\(915\) 0 0
\(916\) −71.2022 123.326i −0.0777316 0.134635i
\(917\) 392.521 52.8960i 0.428049 0.0576838i
\(918\) 0 0
\(919\) −499.667 865.449i −0.543708 0.941730i −0.998687 0.0512275i \(-0.983687\pi\)
0.454979 0.890502i \(-0.349647\pi\)
\(920\) 756.152i 0.821905i
\(921\) 0 0
\(922\) 597.356 0.647891
\(923\) −50.2573 29.0161i −0.0544499 0.0314367i
\(924\) 0 0
\(925\) −231.510 400.988i −0.250281 0.433500i
\(926\) −100.157 + 57.8256i −0.108161 + 0.0624466i
\(927\) 0 0
\(928\) −6.71724 + 11.6346i −0.00723840 + 0.0125373i
\(929\) −52.9181 30.5523i −0.0569625 0.0328873i 0.471248 0.882001i \(-0.343804\pi\)
−0.528211 + 0.849113i \(0.677137\pi\)
\(930\) 0 0
\(931\) −478.260 472.454i −0.513705 0.507470i
\(932\) −13.3283 7.69509i −0.0143007 0.00825653i
\(933\) 0 0
\(934\) 790.616 0.846484
\(935\) 2415.14 + 1394.38i 2.58304 + 1.49132i
\(936\) 0 0
\(937\) −233.228 −0.248909 −0.124455 0.992225i \(-0.539718\pi\)
−0.124455 + 0.992225i \(0.539718\pi\)
\(938\) 244.729 32.9796i 0.260905 0.0351595i
\(939\) 0 0
\(940\) 691.653 0.735801
\(941\) −712.127 + 411.147i −0.756777 + 0.436925i −0.828137 0.560525i \(-0.810599\pi\)
0.0713605 + 0.997451i \(0.477266\pi\)
\(942\) 0 0
\(943\) 801.513 1388.26i 0.849961 1.47218i
\(944\) 286.959i 0.303982i
\(945\) 0 0
\(946\) 488.918 0.516827
\(947\) 1356.61 + 783.240i 1.43254 + 0.827075i 0.997314 0.0732485i \(-0.0233366\pi\)
0.435222 + 0.900323i \(0.356670\pi\)
\(948\) 0 0
\(949\) −48.6019 84.1810i −0.0512138 0.0887049i
\(950\) 857.741i 0.902885i
\(951\) 0 0
\(952\) −582.250 239.096i −0.611607 0.251151i
\(953\) 852.327i 0.894362i −0.894443 0.447181i \(-0.852428\pi\)
0.894443 0.447181i \(-0.147572\pi\)
\(954\) 0 0
\(955\) 1280.67 2218.19i 1.34102 2.32271i
\(956\) 472.683i 0.494438i
\(957\) 0 0
\(958\) 56.8783 98.5161i 0.0593719 0.102835i
\(959\) −458.096 + 61.7329i −0.477680 + 0.0643721i
\(960\) 0 0
\(961\) 264.834 458.706i 0.275582 0.477322i
\(962\) −31.8299 18.3770i −0.0330873 0.0191029i
\(963\) 0 0
\(964\) 126.585 + 219.252i 0.131312 + 0.227440i
\(965\) −1189.72 + 686.883i −1.23287 + 0.711796i
\(966\) 0 0
\(967\) −553.241 + 958.241i −0.572121 + 0.990942i 0.424227 + 0.905556i \(0.360546\pi\)
−0.996348 + 0.0853865i \(0.972787\pi\)
\(968\) 27.7489i 0.0286663i
\(969\) 0 0
\(970\) −888.592 −0.916074
\(971\) 479.817 277.023i 0.494148 0.285296i −0.232146 0.972681i \(-0.574575\pi\)
0.726293 + 0.687385i \(0.241241\pi\)
\(972\) 0 0
\(973\) 585.771 + 240.542i 0.602026 + 0.247217i
\(974\) −494.510 + 285.506i −0.507711 + 0.293127i
\(975\) 0 0
\(976\) −132.291 229.134i −0.135544 0.234769i
\(977\) −150.343 + 86.8005i −0.153882 + 0.0888439i −0.574964 0.818179i \(-0.694984\pi\)
0.421082 + 0.907023i \(0.361651\pi\)
\(978\) 0 0
\(979\) 222.195 + 384.853i 0.226961 + 0.393108i
\(980\) 572.953 579.993i 0.584646 0.591830i
\(981\) 0 0
\(982\) 578.680 + 1002.30i 0.589287 + 1.02068i
\(983\) 1373.08i 1.39683i 0.715693 + 0.698415i \(0.246111\pi\)
−0.715693 + 0.698415i \(0.753889\pi\)
\(984\) 0 0
\(985\) 717.830 0.728761
\(986\) −92.4688 53.3869i −0.0937818 0.0541449i
\(987\) 0 0
\(988\) 34.0433 + 58.9647i 0.0344567 + 0.0596808i
\(989\) 912.449 526.803i 0.922597 0.532662i
\(990\) 0 0
\(991\) −523.608 + 906.916i −0.528364 + 0.915153i 0.471090 + 0.882085i \(0.343861\pi\)
−0.999453 + 0.0330672i \(0.989472\pi\)
\(992\) −101.745 58.7423i −0.102565 0.0592160i
\(993\) 0 0
\(994\) −214.170 87.9472i −0.215463 0.0884780i
\(995\) −2373.47 1370.32i −2.38540 1.37721i
\(996\) 0 0
\(997\) 189.359 0.189929 0.0949643 0.995481i \(-0.469726\pi\)
0.0949643 + 0.995481i \(0.469726\pi\)
\(998\) −459.315 265.185i −0.460235 0.265717i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.i.a.179.7 32
3.2 odd 2 126.3.i.a.95.13 yes 32
7.2 even 3 378.3.r.a.233.15 32
9.2 odd 6 378.3.r.a.305.7 32
9.7 even 3 126.3.r.a.11.15 yes 32
21.2 odd 6 126.3.r.a.23.7 yes 32
63.2 odd 6 inner 378.3.i.a.359.2 32
63.16 even 3 126.3.i.a.65.13 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.13 32 63.16 even 3
126.3.i.a.95.13 yes 32 3.2 odd 2
126.3.r.a.11.15 yes 32 9.7 even 3
126.3.r.a.23.7 yes 32 21.2 odd 6
378.3.i.a.179.7 32 1.1 even 1 trivial
378.3.i.a.359.2 32 63.2 odd 6 inner
378.3.r.a.233.15 32 7.2 even 3
378.3.r.a.305.7 32 9.2 odd 6