Properties

Label 378.3.q.a.71.6
Level $378$
Weight $3$
Character 378.71
Analytic conductor $10.300$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(71,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.71"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 71.6
Character \(\chi\) \(=\) 378.71
Dual form 378.3.q.a.197.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} +(5.52056 + 3.18729i) q^{5} +(1.32288 + 2.29129i) q^{7} +2.82843i q^{8} -9.01503 q^{10} +(-14.5856 + 8.42098i) q^{11} +(-8.77375 + 15.1966i) q^{13} +(-3.24037 - 1.87083i) q^{14} +(-2.00000 - 3.46410i) q^{16} -13.4343i q^{17} +34.1905 q^{19} +(11.0411 - 6.37459i) q^{20} +(11.9091 - 20.6271i) q^{22} +(3.08155 + 1.77914i) q^{23} +(7.81769 + 13.5406i) q^{25} -24.8159i q^{26} +5.29150 q^{28} +(-29.4139 + 16.9821i) q^{29} +(-15.0078 + 25.9943i) q^{31} +(4.89898 + 2.82843i) q^{32} +(9.49945 + 16.4535i) q^{34} +16.8656i q^{35} -37.7845 q^{37} +(-41.8747 + 24.1764i) q^{38} +(-9.01503 + 15.6145i) q^{40} +(-28.4844 - 16.4455i) q^{41} +(34.9160 + 60.4762i) q^{43} +33.6839i q^{44} -5.03215 q^{46} +(22.9154 - 13.2302i) q^{47} +(-3.50000 + 6.06218i) q^{49} +(-19.1493 - 11.0559i) q^{50} +(17.5475 + 30.3931i) q^{52} +8.14401i q^{53} -107.360 q^{55} +(-6.48074 + 3.74166i) q^{56} +(24.0163 - 41.5975i) q^{58} +(87.5730 + 50.5603i) q^{59} +(8.32503 + 14.4194i) q^{61} -42.4484i q^{62} -8.00000 q^{64} +(-96.8719 + 55.9290i) q^{65} +(-21.0059 + 36.3833i) q^{67} +(-23.2688 - 13.4343i) q^{68} +(-11.9258 - 20.6560i) q^{70} +14.4296i q^{71} -42.4557 q^{73} +(46.2764 - 26.7177i) q^{74} +(34.1905 - 59.2197i) q^{76} +(-38.5898 - 22.2798i) q^{77} +(-27.1440 - 47.0147i) q^{79} -25.4984i q^{80} +46.5148 q^{82} +(33.4110 - 19.2899i) q^{83} +(42.8189 - 74.1645i) q^{85} +(-85.5263 - 49.3786i) q^{86} +(-23.8181 - 41.2542i) q^{88} +98.5144i q^{89} -46.4263 q^{91} +(6.16311 - 3.55827i) q^{92} +(-18.7103 + 32.4072i) q^{94} +(188.751 + 108.975i) q^{95} +(10.5777 + 18.3210i) q^{97} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 36 q^{5} - 48 q^{16} + 24 q^{19} - 72 q^{20} + 24 q^{22} + 72 q^{23} + 72 q^{25} + 108 q^{29} - 60 q^{31} - 48 q^{34} - 168 q^{37} - 144 q^{38} - 108 q^{41} + 60 q^{43} + 324 q^{47} - 84 q^{49}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 5.52056 + 3.18729i 1.10411 + 0.637459i 0.937298 0.348530i \(-0.113319\pi\)
0.166813 + 0.985989i \(0.446652\pi\)
\(6\) 0 0
\(7\) 1.32288 + 2.29129i 0.188982 + 0.327327i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −9.01503 −0.901503
\(11\) −14.5856 + 8.42098i −1.32596 + 0.765543i −0.984672 0.174416i \(-0.944196\pi\)
−0.341288 + 0.939959i \(0.610863\pi\)
\(12\) 0 0
\(13\) −8.77375 + 15.1966i −0.674904 + 1.16897i 0.301594 + 0.953437i \(0.402481\pi\)
−0.976497 + 0.215531i \(0.930852\pi\)
\(14\) −3.24037 1.87083i −0.231455 0.133631i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 13.4343i 0.790250i −0.918627 0.395125i \(-0.870701\pi\)
0.918627 0.395125i \(-0.129299\pi\)
\(18\) 0 0
\(19\) 34.1905 1.79950 0.899751 0.436404i \(-0.143748\pi\)
0.899751 + 0.436404i \(0.143748\pi\)
\(20\) 11.0411 6.37459i 0.552056 0.318729i
\(21\) 0 0
\(22\) 11.9091 20.6271i 0.541321 0.937595i
\(23\) 3.08155 + 1.77914i 0.133981 + 0.0773537i 0.565492 0.824754i \(-0.308686\pi\)
−0.431512 + 0.902107i \(0.642020\pi\)
\(24\) 0 0
\(25\) 7.81769 + 13.5406i 0.312707 + 0.541625i
\(26\) 24.8159i 0.954458i
\(27\) 0 0
\(28\) 5.29150 0.188982
\(29\) −29.4139 + 16.9821i −1.01427 + 0.585590i −0.912440 0.409211i \(-0.865804\pi\)
−0.101832 + 0.994802i \(0.532470\pi\)
\(30\) 0 0
\(31\) −15.0078 + 25.9943i −0.484122 + 0.838524i −0.999834 0.0182380i \(-0.994194\pi\)
0.515711 + 0.856762i \(0.327528\pi\)
\(32\) 4.89898 + 2.82843i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 9.49945 + 16.4535i 0.279396 + 0.483927i
\(35\) 16.8656i 0.481874i
\(36\) 0 0
\(37\) −37.7845 −1.02120 −0.510601 0.859818i \(-0.670577\pi\)
−0.510601 + 0.859818i \(0.670577\pi\)
\(38\) −41.8747 + 24.1764i −1.10197 + 0.636220i
\(39\) 0 0
\(40\) −9.01503 + 15.6145i −0.225376 + 0.390362i
\(41\) −28.4844 16.4455i −0.694742 0.401109i 0.110644 0.993860i \(-0.464709\pi\)
−0.805386 + 0.592751i \(0.798042\pi\)
\(42\) 0 0
\(43\) 34.9160 + 60.4762i 0.811999 + 1.40642i 0.911463 + 0.411383i \(0.134954\pi\)
−0.0994634 + 0.995041i \(0.531713\pi\)
\(44\) 33.6839i 0.765543i
\(45\) 0 0
\(46\) −5.03215 −0.109395
\(47\) 22.9154 13.2302i 0.487561 0.281494i −0.236001 0.971753i \(-0.575837\pi\)
0.723562 + 0.690259i \(0.242503\pi\)
\(48\) 0 0
\(49\) −3.50000 + 6.06218i −0.0714286 + 0.123718i
\(50\) −19.1493 11.0559i −0.382987 0.221118i
\(51\) 0 0
\(52\) 17.5475 + 30.3931i 0.337452 + 0.584484i
\(53\) 8.14401i 0.153661i 0.997044 + 0.0768303i \(0.0244800\pi\)
−0.997044 + 0.0768303i \(0.975520\pi\)
\(54\) 0 0
\(55\) −107.360 −1.95201
\(56\) −6.48074 + 3.74166i −0.115728 + 0.0668153i
\(57\) 0 0
\(58\) 24.0163 41.5975i 0.414075 0.717198i
\(59\) 87.5730 + 50.5603i 1.48429 + 0.856954i 0.999840 0.0178665i \(-0.00568740\pi\)
0.484447 + 0.874820i \(0.339021\pi\)
\(60\) 0 0
\(61\) 8.32503 + 14.4194i 0.136476 + 0.236383i 0.926160 0.377130i \(-0.123089\pi\)
−0.789684 + 0.613513i \(0.789756\pi\)
\(62\) 42.4484i 0.684652i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) −96.8719 + 55.9290i −1.49034 + 0.860446i
\(66\) 0 0
\(67\) −21.0059 + 36.3833i −0.313521 + 0.543035i −0.979122 0.203273i \(-0.934842\pi\)
0.665601 + 0.746308i \(0.268175\pi\)
\(68\) −23.2688 13.4343i −0.342188 0.197563i
\(69\) 0 0
\(70\) −11.9258 20.6560i −0.170368 0.295086i
\(71\) 14.4296i 0.203234i 0.994824 + 0.101617i \(0.0324017\pi\)
−0.994824 + 0.101617i \(0.967598\pi\)
\(72\) 0 0
\(73\) −42.4557 −0.581584 −0.290792 0.956786i \(-0.593919\pi\)
−0.290792 + 0.956786i \(0.593919\pi\)
\(74\) 46.2764 26.7177i 0.625357 0.361050i
\(75\) 0 0
\(76\) 34.1905 59.2197i 0.449875 0.779207i
\(77\) −38.5898 22.2798i −0.501166 0.289348i
\(78\) 0 0
\(79\) −27.1440 47.0147i −0.343594 0.595123i 0.641503 0.767121i \(-0.278311\pi\)
−0.985097 + 0.171998i \(0.944978\pi\)
\(80\) 25.4984i 0.318729i
\(81\) 0 0
\(82\) 46.5148 0.567254
\(83\) 33.4110 19.2899i 0.402543 0.232408i −0.285038 0.958516i \(-0.592006\pi\)
0.687580 + 0.726108i \(0.258673\pi\)
\(84\) 0 0
\(85\) 42.8189 74.1645i 0.503752 0.872524i
\(86\) −85.5263 49.3786i −0.994492 0.574170i
\(87\) 0 0
\(88\) −23.8181 41.2542i −0.270660 0.468798i
\(89\) 98.5144i 1.10690i 0.832881 + 0.553452i \(0.186690\pi\)
−0.832881 + 0.553452i \(0.813310\pi\)
\(90\) 0 0
\(91\) −46.4263 −0.510179
\(92\) 6.16311 3.55827i 0.0669903 0.0386769i
\(93\) 0 0
\(94\) −18.7103 + 32.4072i −0.199046 + 0.344758i
\(95\) 188.751 + 108.975i 1.98685 + 1.14711i
\(96\) 0 0
\(97\) 10.5777 + 18.3210i 0.109048 + 0.188877i 0.915385 0.402580i \(-0.131886\pi\)
−0.806337 + 0.591457i \(0.798553\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) 31.2707 0.312707
\(101\) 43.8679 25.3272i 0.434336 0.250764i −0.266856 0.963736i \(-0.585985\pi\)
0.701192 + 0.712972i \(0.252652\pi\)
\(102\) 0 0
\(103\) 100.159 173.480i 0.972413 1.68427i 0.284193 0.958767i \(-0.408274\pi\)
0.688220 0.725502i \(-0.258392\pi\)
\(104\) −42.9824 24.8159i −0.413292 0.238614i
\(105\) 0 0
\(106\) −5.75869 9.97434i −0.0543272 0.0940975i
\(107\) 49.8812i 0.466180i −0.972455 0.233090i \(-0.925116\pi\)
0.972455 0.233090i \(-0.0748836\pi\)
\(108\) 0 0
\(109\) 120.571 1.10616 0.553080 0.833128i \(-0.313452\pi\)
0.553080 + 0.833128i \(0.313452\pi\)
\(110\) 131.489 75.9153i 1.19536 0.690139i
\(111\) 0 0
\(112\) 5.29150 9.16515i 0.0472456 0.0818317i
\(113\) −18.6422 10.7631i −0.164975 0.0952482i 0.415239 0.909712i \(-0.363698\pi\)
−0.580214 + 0.814464i \(0.697031\pi\)
\(114\) 0 0
\(115\) 11.3413 + 19.6436i 0.0986196 + 0.170814i
\(116\) 67.9285i 0.585590i
\(117\) 0 0
\(118\) −143.006 −1.21192
\(119\) 30.7817 17.7718i 0.258670 0.149343i
\(120\) 0 0
\(121\) 81.3256 140.860i 0.672113 1.16413i
\(122\) −20.3921 11.7734i −0.167148 0.0965030i
\(123\) 0 0
\(124\) 30.0156 + 51.9885i 0.242061 + 0.419262i
\(125\) 59.6957i 0.477565i
\(126\) 0 0
\(127\) −71.9765 −0.566744 −0.283372 0.959010i \(-0.591453\pi\)
−0.283372 + 0.959010i \(0.591453\pi\)
\(128\) 9.79796 5.65685i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 79.0956 136.998i 0.608427 1.05383i
\(131\) 81.3545 + 46.9700i 0.621027 + 0.358550i 0.777269 0.629169i \(-0.216605\pi\)
−0.156242 + 0.987719i \(0.549938\pi\)
\(132\) 0 0
\(133\) 45.2298 + 78.3403i 0.340074 + 0.589025i
\(134\) 59.4137i 0.443386i
\(135\) 0 0
\(136\) 37.9978 0.279396
\(137\) 166.155 95.9298i 1.21281 0.700218i 0.249442 0.968390i \(-0.419753\pi\)
0.963371 + 0.268172i \(0.0864195\pi\)
\(138\) 0 0
\(139\) −65.4130 + 113.299i −0.470597 + 0.815098i −0.999435 0.0336248i \(-0.989295\pi\)
0.528837 + 0.848723i \(0.322628\pi\)
\(140\) 29.2120 + 16.8656i 0.208657 + 0.120468i
\(141\) 0 0
\(142\) −10.2033 17.6726i −0.0718541 0.124455i
\(143\) 295.534i 2.06667i
\(144\) 0 0
\(145\) −216.508 −1.49316
\(146\) 51.9974 30.0207i 0.356146 0.205621i
\(147\) 0 0
\(148\) −37.7845 + 65.4447i −0.255301 + 0.442194i
\(149\) −14.0716 8.12426i −0.0944405 0.0545253i 0.452036 0.892000i \(-0.350698\pi\)
−0.546476 + 0.837474i \(0.684031\pi\)
\(150\) 0 0
\(151\) 63.1067 + 109.304i 0.417925 + 0.723868i 0.995731 0.0923066i \(-0.0294240\pi\)
−0.577805 + 0.816175i \(0.696091\pi\)
\(152\) 96.7054i 0.636220i
\(153\) 0 0
\(154\) 63.0168 0.409200
\(155\) −165.703 + 95.6685i −1.06905 + 0.617216i
\(156\) 0 0
\(157\) −13.6184 + 23.5878i −0.0867414 + 0.150241i −0.906132 0.422995i \(-0.860979\pi\)
0.819391 + 0.573236i \(0.194312\pi\)
\(158\) 66.4888 + 38.3874i 0.420815 + 0.242958i
\(159\) 0 0
\(160\) 18.0301 + 31.2290i 0.112688 + 0.195181i
\(161\) 9.41430i 0.0584739i
\(162\) 0 0
\(163\) 178.576 1.09556 0.547778 0.836624i \(-0.315474\pi\)
0.547778 + 0.836624i \(0.315474\pi\)
\(164\) −56.9688 + 32.8910i −0.347371 + 0.200555i
\(165\) 0 0
\(166\) −27.2800 + 47.2503i −0.164337 + 0.284641i
\(167\) −52.9322 30.5604i −0.316959 0.182997i 0.333077 0.942900i \(-0.391913\pi\)
−0.650036 + 0.759903i \(0.725246\pi\)
\(168\) 0 0
\(169\) −69.4572 120.303i −0.410990 0.711855i
\(170\) 121.110i 0.712413i
\(171\) 0 0
\(172\) 139.664 0.811999
\(173\) −52.4568 + 30.2860i −0.303219 + 0.175063i −0.643888 0.765120i \(-0.722680\pi\)
0.340669 + 0.940183i \(0.389346\pi\)
\(174\) 0 0
\(175\) −20.6837 + 35.8251i −0.118192 + 0.204715i
\(176\) 58.3422 + 33.6839i 0.331490 + 0.191386i
\(177\) 0 0
\(178\) −69.6602 120.655i −0.391349 0.677837i
\(179\) 180.309i 1.00731i −0.863904 0.503657i \(-0.831988\pi\)
0.863904 0.503657i \(-0.168012\pi\)
\(180\) 0 0
\(181\) −85.1609 −0.470502 −0.235251 0.971935i \(-0.575591\pi\)
−0.235251 + 0.971935i \(0.575591\pi\)
\(182\) 56.8604 32.8284i 0.312420 0.180376i
\(183\) 0 0
\(184\) −5.03215 + 8.71595i −0.0273487 + 0.0473693i
\(185\) −208.591 120.430i −1.12752 0.650975i
\(186\) 0 0
\(187\) 113.129 + 195.946i 0.604971 + 1.04784i
\(188\) 52.9208i 0.281494i
\(189\) 0 0
\(190\) −308.229 −1.62226
\(191\) 318.289 183.764i 1.66643 0.962117i 0.696898 0.717170i \(-0.254563\pi\)
0.969537 0.244946i \(-0.0787704\pi\)
\(192\) 0 0
\(193\) 134.549 233.045i 0.697144 1.20749i −0.272308 0.962210i \(-0.587787\pi\)
0.969453 0.245279i \(-0.0788796\pi\)
\(194\) −25.9099 14.9591i −0.133556 0.0771086i
\(195\) 0 0
\(196\) 7.00000 + 12.1244i 0.0357143 + 0.0618590i
\(197\) 272.308i 1.38228i −0.722723 0.691138i \(-0.757110\pi\)
0.722723 0.691138i \(-0.242890\pi\)
\(198\) 0 0
\(199\) 111.789 0.561752 0.280876 0.959744i \(-0.409375\pi\)
0.280876 + 0.959744i \(0.409375\pi\)
\(200\) −38.2987 + 22.1118i −0.191493 + 0.110559i
\(201\) 0 0
\(202\) −35.8180 + 62.0386i −0.177317 + 0.307122i
\(203\) −77.8218 44.9304i −0.383359 0.221332i
\(204\) 0 0
\(205\) −104.833 181.576i −0.511381 0.885738i
\(206\) 283.291i 1.37520i
\(207\) 0 0
\(208\) 70.1900 0.337452
\(209\) −498.688 + 287.918i −2.38607 + 1.37760i
\(210\) 0 0
\(211\) −8.51986 + 14.7568i −0.0403785 + 0.0699376i −0.885508 0.464623i \(-0.846190\pi\)
0.845130 + 0.534561i \(0.179523\pi\)
\(212\) 14.1058 + 8.14401i 0.0665370 + 0.0384152i
\(213\) 0 0
\(214\) 35.2713 + 61.0918i 0.164819 + 0.285476i
\(215\) 445.150i 2.07046i
\(216\) 0 0
\(217\) −79.4138 −0.365962
\(218\) −147.669 + 85.2569i −0.677382 + 0.391087i
\(219\) 0 0
\(220\) −107.360 + 185.954i −0.488002 + 0.845245i
\(221\) 204.155 + 117.869i 0.923776 + 0.533343i
\(222\) 0 0
\(223\) −161.354 279.474i −0.723563 1.25325i −0.959563 0.281494i \(-0.909170\pi\)
0.236000 0.971753i \(-0.424163\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) 30.4425 0.134701
\(227\) −137.968 + 79.6559i −0.607789 + 0.350907i −0.772099 0.635502i \(-0.780793\pi\)
0.164311 + 0.986409i \(0.447460\pi\)
\(228\) 0 0
\(229\) 124.634 215.872i 0.544253 0.942674i −0.454400 0.890798i \(-0.650146\pi\)
0.998653 0.0518768i \(-0.0165203\pi\)
\(230\) −27.7803 16.0390i −0.120784 0.0697346i
\(231\) 0 0
\(232\) −48.0327 83.1950i −0.207037 0.358599i
\(233\) 344.778i 1.47973i 0.672753 + 0.739867i \(0.265112\pi\)
−0.672753 + 0.739867i \(0.734888\pi\)
\(234\) 0 0
\(235\) 168.674 0.717763
\(236\) 175.146 101.121i 0.742144 0.428477i
\(237\) 0 0
\(238\) −25.1332 + 43.5319i −0.105602 + 0.182907i
\(239\) −43.0470 24.8532i −0.180113 0.103988i 0.407233 0.913324i \(-0.366494\pi\)
−0.587346 + 0.809336i \(0.699827\pi\)
\(240\) 0 0
\(241\) 83.6027 + 144.804i 0.346899 + 0.600847i 0.985697 0.168528i \(-0.0539012\pi\)
−0.638798 + 0.769375i \(0.720568\pi\)
\(242\) 230.024i 0.950511i
\(243\) 0 0
\(244\) 33.3001 0.136476
\(245\) −38.6439 + 22.3111i −0.157730 + 0.0910655i
\(246\) 0 0
\(247\) −299.979 + 519.579i −1.21449 + 2.10356i
\(248\) −73.5229 42.4484i −0.296463 0.171163i
\(249\) 0 0
\(250\) 42.2112 + 73.1119i 0.168845 + 0.292448i
\(251\) 107.145i 0.426871i 0.976957 + 0.213436i \(0.0684653\pi\)
−0.976957 + 0.213436i \(0.931535\pi\)
\(252\) 0 0
\(253\) −59.9282 −0.236870
\(254\) 88.1528 50.8951i 0.347058 0.200374i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −36.6340 21.1507i −0.142545 0.0822983i 0.427031 0.904237i \(-0.359559\pi\)
−0.569576 + 0.821938i \(0.692893\pi\)
\(258\) 0 0
\(259\) −49.9842 86.5752i −0.192989 0.334267i
\(260\) 223.716i 0.860446i
\(261\) 0 0
\(262\) −132.851 −0.507066
\(263\) −118.330 + 68.3177i −0.449923 + 0.259763i −0.707798 0.706415i \(-0.750311\pi\)
0.257875 + 0.966178i \(0.416978\pi\)
\(264\) 0 0
\(265\) −25.9574 + 44.9595i −0.0979523 + 0.169658i
\(266\) −110.790 63.9646i −0.416504 0.240469i
\(267\) 0 0
\(268\) 42.0118 + 72.7666i 0.156761 + 0.271517i
\(269\) 11.4676i 0.0426306i 0.999773 + 0.0213153i \(0.00678539\pi\)
−0.999773 + 0.0213153i \(0.993215\pi\)
\(270\) 0 0
\(271\) 127.282 0.469677 0.234839 0.972034i \(-0.424544\pi\)
0.234839 + 0.972034i \(0.424544\pi\)
\(272\) −46.5376 + 26.8685i −0.171094 + 0.0987813i
\(273\) 0 0
\(274\) −135.665 + 234.979i −0.495129 + 0.857588i
\(275\) −228.051 131.665i −0.829275 0.478782i
\(276\) 0 0
\(277\) −26.2499 45.4661i −0.0947649 0.164138i 0.814746 0.579819i \(-0.196877\pi\)
−0.909510 + 0.415681i \(0.863543\pi\)
\(278\) 185.016i 0.665525i
\(279\) 0 0
\(280\) −47.7030 −0.170368
\(281\) 434.613 250.924i 1.54667 0.892967i 0.548272 0.836300i \(-0.315286\pi\)
0.998393 0.0566674i \(-0.0180475\pi\)
\(282\) 0 0
\(283\) −168.127 + 291.204i −0.594088 + 1.02899i 0.399587 + 0.916695i \(0.369154\pi\)
−0.993675 + 0.112295i \(0.964180\pi\)
\(284\) 24.9928 + 14.4296i 0.0880030 + 0.0508085i
\(285\) 0 0
\(286\) 208.974 + 361.954i 0.730679 + 1.26557i
\(287\) 87.0213i 0.303210i
\(288\) 0 0
\(289\) 108.521 0.375505
\(290\) 265.167 153.094i 0.914369 0.527911i
\(291\) 0 0
\(292\) −42.4557 + 73.5354i −0.145396 + 0.251833i
\(293\) −263.780 152.293i −0.900272 0.519772i −0.0229833 0.999736i \(-0.507316\pi\)
−0.877288 + 0.479964i \(0.840650\pi\)
\(294\) 0 0
\(295\) 322.301 + 558.242i 1.09255 + 1.89234i
\(296\) 106.871i 0.361050i
\(297\) 0 0
\(298\) 22.9789 0.0771104
\(299\) −54.0735 + 31.2194i −0.180848 + 0.104413i
\(300\) 0 0
\(301\) −92.3790 + 160.005i −0.306907 + 0.531578i
\(302\) −154.579 89.2464i −0.511852 0.295518i
\(303\) 0 0
\(304\) −68.3811 118.439i −0.224938 0.389604i
\(305\) 106.137i 0.347991i
\(306\) 0 0
\(307\) 317.423 1.03395 0.516975 0.856000i \(-0.327058\pi\)
0.516975 + 0.856000i \(0.327058\pi\)
\(308\) −77.1795 + 44.5596i −0.250583 + 0.144674i
\(309\) 0 0
\(310\) 135.296 234.339i 0.436438 0.755932i
\(311\) 37.3570 + 21.5681i 0.120119 + 0.0693507i 0.558856 0.829265i \(-0.311241\pi\)
−0.438737 + 0.898616i \(0.644574\pi\)
\(312\) 0 0
\(313\) −152.356 263.888i −0.486759 0.843091i 0.513125 0.858314i \(-0.328488\pi\)
−0.999884 + 0.0152225i \(0.995154\pi\)
\(314\) 38.5187i 0.122671i
\(315\) 0 0
\(316\) −108.576 −0.343594
\(317\) −104.314 + 60.2259i −0.329067 + 0.189987i −0.655427 0.755259i \(-0.727511\pi\)
0.326360 + 0.945246i \(0.394178\pi\)
\(318\) 0 0
\(319\) 286.012 495.387i 0.896589 1.55294i
\(320\) −44.1644 25.4984i −0.138014 0.0796823i
\(321\) 0 0
\(322\) −6.65692 11.5301i −0.0206737 0.0358078i
\(323\) 459.324i 1.42206i
\(324\) 0 0
\(325\) −274.362 −0.844189
\(326\) −218.709 + 126.272i −0.670888 + 0.387337i
\(327\) 0 0
\(328\) 46.5148 80.5661i 0.141814 0.245628i
\(329\) 60.6284 + 35.0038i 0.184281 + 0.106395i
\(330\) 0 0
\(331\) −72.4842 125.546i −0.218985 0.379294i 0.735513 0.677511i \(-0.236941\pi\)
−0.954498 + 0.298217i \(0.903608\pi\)
\(332\) 77.1595i 0.232408i
\(333\) 0 0
\(334\) 86.4379 0.258796
\(335\) −231.929 + 133.904i −0.692324 + 0.399714i
\(336\) 0 0
\(337\) 45.0515 78.0314i 0.133684 0.231547i −0.791410 0.611286i \(-0.790653\pi\)
0.925094 + 0.379738i \(0.123986\pi\)
\(338\) 170.135 + 98.2274i 0.503357 + 0.290614i
\(339\) 0 0
\(340\) −85.6378 148.329i −0.251876 0.436262i
\(341\) 505.521i 1.48247i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) −171.053 + 98.7573i −0.497246 + 0.287085i
\(345\) 0 0
\(346\) 42.8308 74.1851i 0.123788 0.214408i
\(347\) 474.135 + 273.742i 1.36638 + 0.788882i 0.990464 0.137771i \(-0.0439938\pi\)
0.375919 + 0.926653i \(0.377327\pi\)
\(348\) 0 0
\(349\) 15.0822 + 26.1231i 0.0432154 + 0.0748513i 0.886824 0.462107i \(-0.152906\pi\)
−0.843609 + 0.536959i \(0.819573\pi\)
\(350\) 58.5022i 0.167149i
\(351\) 0 0
\(352\) −95.2725 −0.270660
\(353\) −274.034 + 158.214i −0.776302 + 0.448198i −0.835118 0.550071i \(-0.814601\pi\)
0.0588164 + 0.998269i \(0.481267\pi\)
\(354\) 0 0
\(355\) −45.9915 + 79.6596i −0.129553 + 0.224393i
\(356\) 170.632 + 98.5144i 0.479303 + 0.276726i
\(357\) 0 0
\(358\) 127.498 + 220.833i 0.356139 + 0.616851i
\(359\) 154.111i 0.429278i −0.976693 0.214639i \(-0.931143\pi\)
0.976693 0.214639i \(-0.0688575\pi\)
\(360\) 0 0
\(361\) 807.992 2.23821
\(362\) 104.300 60.2178i 0.288123 0.166348i
\(363\) 0 0
\(364\) −46.4263 + 80.4127i −0.127545 + 0.220914i
\(365\) −234.379 135.319i −0.642134 0.370736i
\(366\) 0 0
\(367\) −306.965 531.680i −0.836418 1.44872i −0.892871 0.450314i \(-0.851312\pi\)
0.0564523 0.998405i \(-0.482021\pi\)
\(368\) 14.2331i 0.0386769i
\(369\) 0 0
\(370\) 340.628 0.920617
\(371\) −18.6603 + 10.7735i −0.0502973 + 0.0290391i
\(372\) 0 0
\(373\) −277.865 + 481.276i −0.744946 + 1.29028i 0.205274 + 0.978705i \(0.434192\pi\)
−0.950220 + 0.311580i \(0.899142\pi\)
\(374\) −277.110 159.989i −0.740935 0.427779i
\(375\) 0 0
\(376\) 37.4207 + 64.8145i 0.0995230 + 0.172379i
\(377\) 595.987i 1.58087i
\(378\) 0 0
\(379\) 404.691 1.06779 0.533893 0.845552i \(-0.320729\pi\)
0.533893 + 0.845552i \(0.320729\pi\)
\(380\) 377.501 217.951i 0.993425 0.573554i
\(381\) 0 0
\(382\) −259.882 + 450.129i −0.680319 + 1.17835i
\(383\) 491.091 + 283.531i 1.28222 + 0.740291i 0.977254 0.212072i \(-0.0680212\pi\)
0.304967 + 0.952363i \(0.401355\pi\)
\(384\) 0 0
\(385\) −142.025 245.994i −0.368895 0.638945i
\(386\) 380.561i 0.985911i
\(387\) 0 0
\(388\) 42.3107 0.109048
\(389\) −144.479 + 83.4149i −0.371411 + 0.214434i −0.674075 0.738663i \(-0.735457\pi\)
0.302664 + 0.953097i \(0.402124\pi\)
\(390\) 0 0
\(391\) 23.9014 41.3984i 0.0611288 0.105878i
\(392\) −17.1464 9.89949i −0.0437409 0.0252538i
\(393\) 0 0
\(394\) 192.551 + 333.508i 0.488708 + 0.846468i
\(395\) 346.063i 0.876109i
\(396\) 0 0
\(397\) −413.385 −1.04127 −0.520636 0.853779i \(-0.674305\pi\)
−0.520636 + 0.853779i \(0.674305\pi\)
\(398\) −136.913 + 79.0466i −0.344002 + 0.198609i
\(399\) 0 0
\(400\) 31.2707 54.1625i 0.0781769 0.135406i
\(401\) 506.285 + 292.303i 1.26255 + 0.728936i 0.973568 0.228397i \(-0.0733483\pi\)
0.288987 + 0.957333i \(0.406682\pi\)
\(402\) 0 0
\(403\) −263.349 456.134i −0.653472 1.13185i
\(404\) 101.309i 0.250764i
\(405\) 0 0
\(406\) 127.082 0.313011
\(407\) 551.108 318.182i 1.35407 0.781775i
\(408\) 0 0
\(409\) −20.5437 + 35.5827i −0.0502290 + 0.0869992i −0.890047 0.455869i \(-0.849328\pi\)
0.839818 + 0.542868i \(0.182662\pi\)
\(410\) 256.788 + 148.256i 0.626311 + 0.361601i
\(411\) 0 0
\(412\) −200.317 346.959i −0.486207 0.842135i
\(413\) 267.540i 0.647796i
\(414\) 0 0
\(415\) 245.930 0.592602
\(416\) −85.9648 + 49.6318i −0.206646 + 0.119307i
\(417\) 0 0
\(418\) 407.177 705.251i 0.974108 1.68720i
\(419\) 604.987 + 349.289i 1.44388 + 0.833626i 0.998106 0.0615188i \(-0.0195944\pi\)
0.445776 + 0.895144i \(0.352928\pi\)
\(420\) 0 0
\(421\) −332.730 576.305i −0.790332 1.36890i −0.925761 0.378109i \(-0.876574\pi\)
0.135429 0.990787i \(-0.456759\pi\)
\(422\) 24.0978i 0.0571038i
\(423\) 0 0
\(424\) −23.0348 −0.0543272
\(425\) 181.908 105.025i 0.428019 0.247117i
\(426\) 0 0
\(427\) −22.0260 + 38.1501i −0.0515830 + 0.0893444i
\(428\) −86.3968 49.8812i −0.201862 0.116545i
\(429\) 0 0
\(430\) −314.768 545.195i −0.732020 1.26790i
\(431\) 542.351i 1.25836i 0.777261 + 0.629178i \(0.216608\pi\)
−0.777261 + 0.629178i \(0.783392\pi\)
\(432\) 0 0
\(433\) −796.313 −1.83906 −0.919530 0.393020i \(-0.871430\pi\)
−0.919530 + 0.393020i \(0.871430\pi\)
\(434\) 97.2616 56.1540i 0.224105 0.129387i
\(435\) 0 0
\(436\) 120.571 208.836i 0.276540 0.478982i
\(437\) 105.360 + 60.8296i 0.241098 + 0.139198i
\(438\) 0 0
\(439\) 352.125 + 609.898i 0.802107 + 1.38929i 0.918227 + 0.396055i \(0.129621\pi\)
−0.116120 + 0.993235i \(0.537046\pi\)
\(440\) 303.661i 0.690139i
\(441\) 0 0
\(442\) −333.383 −0.754260
\(443\) −171.456 + 98.9901i −0.387034 + 0.223454i −0.680874 0.732401i \(-0.738400\pi\)
0.293840 + 0.955854i \(0.405067\pi\)
\(444\) 0 0
\(445\) −313.994 + 543.854i −0.705605 + 1.22214i
\(446\) 395.236 + 228.190i 0.886180 + 0.511636i
\(447\) 0 0
\(448\) −10.5830 18.3303i −0.0236228 0.0409159i
\(449\) 764.577i 1.70284i 0.524482 + 0.851422i \(0.324259\pi\)
−0.524482 + 0.851422i \(0.675741\pi\)
\(450\) 0 0
\(451\) 553.948 1.22827
\(452\) −37.2843 + 21.5261i −0.0824874 + 0.0476241i
\(453\) 0 0
\(454\) 112.650 195.116i 0.248129 0.429771i
\(455\) −256.299 147.974i −0.563294 0.325218i
\(456\) 0 0
\(457\) −74.3456 128.770i −0.162682 0.281773i 0.773148 0.634226i \(-0.218681\pi\)
−0.935830 + 0.352453i \(0.885348\pi\)
\(458\) 352.518i 0.769690i
\(459\) 0 0
\(460\) 45.3650 0.0986196
\(461\) 289.359 167.061i 0.627677 0.362389i −0.152175 0.988354i \(-0.548628\pi\)
0.779852 + 0.625964i \(0.215294\pi\)
\(462\) 0 0
\(463\) 200.250 346.843i 0.432505 0.749121i −0.564583 0.825376i \(-0.690963\pi\)
0.997088 + 0.0762549i \(0.0242963\pi\)
\(464\) 117.656 + 67.9285i 0.253568 + 0.146398i
\(465\) 0 0
\(466\) −243.795 422.265i −0.523165 0.906148i
\(467\) 108.547i 0.232434i −0.993224 0.116217i \(-0.962923\pi\)
0.993224 0.116217i \(-0.0370768\pi\)
\(468\) 0 0
\(469\) −111.153 −0.237000
\(470\) −206.583 + 119.271i −0.439538 + 0.253767i
\(471\) 0 0
\(472\) −143.006 + 247.694i −0.302979 + 0.524775i
\(473\) −1018.54 588.053i −2.15336 1.24324i
\(474\) 0 0
\(475\) 267.291 + 462.961i 0.562717 + 0.974655i
\(476\) 71.0874i 0.149343i
\(477\) 0 0
\(478\) 70.2955 0.147062
\(479\) −564.239 + 325.764i −1.17795 + 0.680091i −0.955540 0.294862i \(-0.904726\pi\)
−0.222412 + 0.974953i \(0.571393\pi\)
\(480\) 0 0
\(481\) 331.512 574.195i 0.689213 1.19375i
\(482\) −204.784 118.232i −0.424863 0.245295i
\(483\) 0 0
\(484\) −162.651 281.720i −0.336056 0.582067i
\(485\) 134.856i 0.278055i
\(486\) 0 0
\(487\) −462.741 −0.950188 −0.475094 0.879935i \(-0.657586\pi\)
−0.475094 + 0.879935i \(0.657586\pi\)
\(488\) −40.7841 + 23.5467i −0.0835741 + 0.0482515i
\(489\) 0 0
\(490\) 31.5526 54.6507i 0.0643931 0.111532i
\(491\) 76.4160 + 44.1188i 0.155633 + 0.0898550i 0.575794 0.817595i \(-0.304693\pi\)
−0.420161 + 0.907450i \(0.638026\pi\)
\(492\) 0 0
\(493\) 228.142 + 395.153i 0.462763 + 0.801528i
\(494\) 848.469i 1.71755i
\(495\) 0 0
\(496\) 120.062 0.242061
\(497\) −33.0624 + 19.0886i −0.0665240 + 0.0384077i
\(498\) 0 0
\(499\) 82.9999 143.760i 0.166332 0.288096i −0.770795 0.637083i \(-0.780141\pi\)
0.937128 + 0.348987i \(0.113474\pi\)
\(500\) −103.396 59.6957i −0.206792 0.119391i
\(501\) 0 0
\(502\) −75.7627 131.225i −0.150922 0.261404i
\(503\) 30.6263i 0.0608872i −0.999536 0.0304436i \(-0.990308\pi\)
0.999536 0.0304436i \(-0.00969200\pi\)
\(504\) 0 0
\(505\) 322.900 0.639407
\(506\) 73.3968 42.3757i 0.145053 0.0837463i
\(507\) 0 0
\(508\) −71.9765 + 124.667i −0.141686 + 0.245407i
\(509\) −717.965 414.518i −1.41054 0.814376i −0.415102 0.909775i \(-0.636254\pi\)
−0.995439 + 0.0953985i \(0.969587\pi\)
\(510\) 0 0
\(511\) −56.1636 97.2781i −0.109909 0.190368i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 59.8231 0.116387
\(515\) 1105.86 638.470i 2.14730 1.23975i
\(516\) 0 0
\(517\) −222.822 + 385.940i −0.430991 + 0.746499i
\(518\) 122.436 + 70.6883i 0.236363 + 0.136464i
\(519\) 0 0
\(520\) −158.191 273.995i −0.304214 0.526914i
\(521\) 40.5567i 0.0778439i −0.999242 0.0389220i \(-0.987608\pi\)
0.999242 0.0389220i \(-0.0123924\pi\)
\(522\) 0 0
\(523\) −658.989 −1.26002 −0.630008 0.776588i \(-0.716949\pi\)
−0.630008 + 0.776588i \(0.716949\pi\)
\(524\) 162.709 93.9401i 0.310513 0.179275i
\(525\) 0 0
\(526\) 96.6158 167.343i 0.183680 0.318143i
\(527\) 349.213 + 201.618i 0.662644 + 0.382578i
\(528\) 0 0
\(529\) −258.169 447.162i −0.488033 0.845298i
\(530\) 73.4185i 0.138526i
\(531\) 0 0
\(532\) 180.919 0.340074
\(533\) 499.830 288.577i 0.937767 0.541420i
\(534\) 0 0
\(535\) 158.986 275.372i 0.297170 0.514714i
\(536\) −102.908 59.4137i −0.191992 0.110846i
\(537\) 0 0
\(538\) −8.10884 14.0449i −0.0150722 0.0261058i
\(539\) 117.894i 0.218727i
\(540\) 0 0
\(541\) 513.937 0.949976 0.474988 0.879992i \(-0.342452\pi\)
0.474988 + 0.879992i \(0.342452\pi\)
\(542\) −155.889 + 90.0023i −0.287617 + 0.166056i
\(543\) 0 0
\(544\) 37.9978 65.8141i 0.0698489 0.120982i
\(545\) 665.622 + 384.297i 1.22132 + 0.705132i
\(546\) 0 0
\(547\) 412.329 + 714.174i 0.753800 + 1.30562i 0.945969 + 0.324258i \(0.105115\pi\)
−0.192169 + 0.981362i \(0.561552\pi\)
\(548\) 383.719i 0.700218i
\(549\) 0 0
\(550\) 372.405 0.677100
\(551\) −1005.68 + 580.627i −1.82518 + 1.05377i
\(552\) 0 0
\(553\) 71.8162 124.389i 0.129866 0.224935i
\(554\) 64.2988 + 37.1229i 0.116063 + 0.0670089i
\(555\) 0 0
\(556\) 130.826 + 226.597i 0.235299 + 0.407549i
\(557\) 301.569i 0.541416i 0.962661 + 0.270708i \(0.0872579\pi\)
−0.962661 + 0.270708i \(0.912742\pi\)
\(558\) 0 0
\(559\) −1225.38 −2.19208
\(560\) 58.4241 33.7311i 0.104329 0.0602342i
\(561\) 0 0
\(562\) −354.860 + 614.635i −0.631423 + 1.09366i
\(563\) 218.538 + 126.173i 0.388166 + 0.224108i 0.681365 0.731944i \(-0.261387\pi\)
−0.293199 + 0.956051i \(0.594720\pi\)
\(564\) 0 0
\(565\) −68.6100 118.836i −0.121434 0.210329i
\(566\) 475.535i 0.840168i
\(567\) 0 0
\(568\) −40.8132 −0.0718541
\(569\) −44.4483 + 25.6622i −0.0781165 + 0.0451006i −0.538549 0.842594i \(-0.681027\pi\)
0.460433 + 0.887694i \(0.347694\pi\)
\(570\) 0 0
\(571\) −327.899 + 567.938i −0.574254 + 0.994637i 0.421868 + 0.906657i \(0.361374\pi\)
−0.996122 + 0.0879797i \(0.971959\pi\)
\(572\) −511.880 295.534i −0.894895 0.516668i
\(573\) 0 0
\(574\) 61.5333 + 106.579i 0.107201 + 0.185677i
\(575\) 55.6349i 0.0967563i
\(576\) 0 0
\(577\) 496.760 0.860936 0.430468 0.902606i \(-0.358348\pi\)
0.430468 + 0.902606i \(0.358348\pi\)
\(578\) −132.910 + 76.7359i −0.229949 + 0.132761i
\(579\) 0 0
\(580\) −216.508 + 375.003i −0.373290 + 0.646556i
\(581\) 88.3973 + 51.0362i 0.152147 + 0.0878420i
\(582\) 0 0
\(583\) −68.5805 118.785i −0.117634 0.203748i
\(584\) 120.083i 0.205621i
\(585\) 0 0
\(586\) 430.750 0.735069
\(587\) 17.2048 9.93319i 0.0293097 0.0169220i −0.485274 0.874362i \(-0.661280\pi\)
0.514583 + 0.857440i \(0.327947\pi\)
\(588\) 0 0
\(589\) −513.124 + 888.757i −0.871179 + 1.50893i
\(590\) −789.473 455.802i −1.33809 0.772546i
\(591\) 0 0
\(592\) 75.5690 + 130.889i 0.127650 + 0.221097i
\(593\) 798.534i 1.34660i 0.739369 + 0.673300i \(0.235124\pi\)
−0.739369 + 0.673300i \(0.764876\pi\)
\(594\) 0 0
\(595\) 226.576 0.380801
\(596\) −28.1433 + 16.2485i −0.0472203 + 0.0272626i
\(597\) 0 0
\(598\) 44.1509 76.4715i 0.0738309 0.127879i
\(599\) −41.6471 24.0450i −0.0695277 0.0401419i 0.464833 0.885398i \(-0.346114\pi\)
−0.534361 + 0.845256i \(0.679448\pi\)
\(600\) 0 0
\(601\) 212.193 + 367.529i 0.353066 + 0.611529i 0.986785 0.162035i \(-0.0518056\pi\)
−0.633719 + 0.773564i \(0.718472\pi\)
\(602\) 261.287i 0.434032i
\(603\) 0 0
\(604\) 252.427 0.417925
\(605\) 897.925 518.417i 1.48417 0.856888i
\(606\) 0 0
\(607\) −414.986 + 718.776i −0.683667 + 1.18415i 0.290187 + 0.956970i \(0.406282\pi\)
−0.973854 + 0.227176i \(0.927051\pi\)
\(608\) 167.499 + 96.7054i 0.275491 + 0.159055i
\(609\) 0 0
\(610\) −75.0504 129.991i −0.123033 0.213100i
\(611\) 464.314i 0.759924i
\(612\) 0 0
\(613\) 866.351 1.41330 0.706648 0.707565i \(-0.250206\pi\)
0.706648 + 0.707565i \(0.250206\pi\)
\(614\) −388.762 + 224.452i −0.633163 + 0.365557i
\(615\) 0 0
\(616\) 63.0168 109.148i 0.102300 0.177189i
\(617\) −577.560 333.455i −0.936078 0.540445i −0.0473494 0.998878i \(-0.515077\pi\)
−0.888729 + 0.458433i \(0.848411\pi\)
\(618\) 0 0
\(619\) 107.809 + 186.731i 0.174167 + 0.301666i 0.939873 0.341525i \(-0.110943\pi\)
−0.765706 + 0.643191i \(0.777610\pi\)
\(620\) 382.674i 0.617216i
\(621\) 0 0
\(622\) −61.0037 −0.0980766
\(623\) −225.725 + 130.322i −0.362319 + 0.209185i
\(624\) 0 0
\(625\) 385.710 668.069i 0.617136 1.06891i
\(626\) 373.193 + 215.463i 0.596156 + 0.344191i
\(627\) 0 0
\(628\) 27.2368 + 47.1755i 0.0433707 + 0.0751203i
\(629\) 507.607i 0.807006i
\(630\) 0 0
\(631\) −10.1283 −0.0160512 −0.00802562 0.999968i \(-0.502555\pi\)
−0.00802562 + 0.999968i \(0.502555\pi\)
\(632\) 132.978 76.7747i 0.210408 0.121479i
\(633\) 0 0
\(634\) 85.1723 147.523i 0.134341 0.232686i
\(635\) −397.350 229.410i −0.625748 0.361276i
\(636\) 0 0
\(637\) −61.4162 106.376i −0.0964148 0.166995i
\(638\) 808.964i 1.26797i
\(639\) 0 0
\(640\) 72.1202 0.112688
\(641\) −225.657 + 130.283i −0.352038 + 0.203249i −0.665583 0.746324i \(-0.731817\pi\)
0.313544 + 0.949574i \(0.398484\pi\)
\(642\) 0 0
\(643\) 300.852 521.092i 0.467889 0.810407i −0.531438 0.847097i \(-0.678348\pi\)
0.999327 + 0.0366903i \(0.0116815\pi\)
\(644\) 16.3060 + 9.41430i 0.0253199 + 0.0146185i
\(645\) 0 0
\(646\) 324.791 + 562.555i 0.502773 + 0.870828i
\(647\) 338.311i 0.522891i −0.965218 0.261446i \(-0.915801\pi\)
0.965218 0.261446i \(-0.0841992\pi\)
\(648\) 0 0
\(649\) −1703.07 −2.62414
\(650\) 336.023 194.003i 0.516958 0.298466i
\(651\) 0 0
\(652\) 178.576 309.302i 0.273889 0.474389i
\(653\) −93.7725 54.1396i −0.143603 0.0829090i 0.426477 0.904498i \(-0.359754\pi\)
−0.570080 + 0.821589i \(0.693088\pi\)
\(654\) 0 0
\(655\) 299.415 + 518.601i 0.457122 + 0.791758i
\(656\) 131.564i 0.200555i
\(657\) 0 0
\(658\) −99.0058 −0.150465
\(659\) 469.638 271.146i 0.712653 0.411450i −0.0993897 0.995049i \(-0.531689\pi\)
0.812043 + 0.583598i \(0.198356\pi\)
\(660\) 0 0
\(661\) 211.097 365.630i 0.319360 0.553147i −0.660995 0.750390i \(-0.729865\pi\)
0.980355 + 0.197243i \(0.0631988\pi\)
\(662\) 177.549 + 102.508i 0.268201 + 0.154846i
\(663\) 0 0
\(664\) 54.5600 + 94.5007i 0.0821687 + 0.142320i
\(665\) 576.643i 0.867132i
\(666\) 0 0
\(667\) −120.854 −0.181190
\(668\) −105.864 + 61.1209i −0.158480 + 0.0914983i
\(669\) 0 0
\(670\) 189.369 327.997i 0.282640 0.489547i
\(671\) −242.850 140.210i −0.361923 0.208956i
\(672\) 0 0
\(673\) 516.283 + 894.228i 0.767137 + 1.32872i 0.939109 + 0.343618i \(0.111653\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(674\) 127.425i 0.189058i
\(675\) 0 0
\(676\) −277.829 −0.410990
\(677\) 253.223 146.198i 0.374037 0.215950i −0.301184 0.953566i \(-0.597382\pi\)
0.675221 + 0.737616i \(0.264048\pi\)
\(678\) 0 0
\(679\) −27.9859 + 48.4729i −0.0412163 + 0.0713887i
\(680\) 209.769 + 121.110i 0.308484 + 0.178103i
\(681\) 0 0
\(682\) 357.457 + 619.134i 0.524131 + 0.907821i
\(683\) 893.737i 1.30855i −0.756258 0.654273i \(-0.772975\pi\)
0.756258 0.654273i \(-0.227025\pi\)
\(684\) 0 0
\(685\) 1223.03 1.78544
\(686\) 22.6826 13.0958i 0.0330650 0.0190901i
\(687\) 0 0
\(688\) 139.664 241.905i 0.203000 0.351606i
\(689\) −123.761 71.4535i −0.179624 0.103706i
\(690\) 0 0
\(691\) 57.0433 + 98.8019i 0.0825518 + 0.142984i 0.904345 0.426801i \(-0.140360\pi\)
−0.821794 + 0.569785i \(0.807026\pi\)
\(692\) 121.144i 0.175063i
\(693\) 0 0
\(694\) −774.259 −1.11565
\(695\) −722.232 + 416.981i −1.03918 + 0.599973i
\(696\) 0 0
\(697\) −220.933 + 382.667i −0.316977 + 0.549020i
\(698\) −36.9436 21.3294i −0.0529279 0.0305579i
\(699\) 0 0
\(700\) 41.3673 + 71.6503i 0.0590961 + 0.102358i
\(701\) 1007.65i 1.43744i 0.695300 + 0.718720i \(0.255272\pi\)
−0.695300 + 0.718720i \(0.744728\pi\)
\(702\) 0 0
\(703\) −1291.87 −1.83766
\(704\) 116.684 67.3678i 0.165745 0.0956929i
\(705\) 0 0
\(706\) 223.748 387.543i 0.316924 0.548928i
\(707\) 116.064 + 67.0094i 0.164164 + 0.0947799i
\(708\) 0 0
\(709\) −152.837 264.722i −0.215567 0.373373i 0.737881 0.674931i \(-0.235827\pi\)
−0.953448 + 0.301558i \(0.902493\pi\)
\(710\) 130.084i 0.183216i
\(711\) 0 0
\(712\) −278.641 −0.391349
\(713\) −92.4946 + 53.4018i −0.129726 + 0.0748973i
\(714\) 0 0
\(715\) 941.954 1631.51i 1.31742 2.28183i
\(716\) −312.305 180.309i −0.436180 0.251829i
\(717\) 0 0
\(718\) 108.973 + 188.746i 0.151773 + 0.262878i
\(719\) 53.5870i 0.0745299i 0.999305 + 0.0372649i \(0.0118645\pi\)
−0.999305 + 0.0372649i \(0.988135\pi\)
\(720\) 0 0
\(721\) 529.989 0.735075
\(722\) −989.584 + 571.337i −1.37062 + 0.791325i
\(723\) 0 0
\(724\) −85.1609 + 147.503i −0.117626 + 0.203733i
\(725\) −459.897 265.522i −0.634341 0.366237i
\(726\) 0 0
\(727\) −445.717 772.004i −0.613090 1.06190i −0.990716 0.135945i \(-0.956593\pi\)
0.377626 0.925958i \(-0.376740\pi\)
\(728\) 131.313i 0.180376i
\(729\) 0 0
\(730\) 382.739 0.524300
\(731\) 812.453 469.070i 1.11143 0.641682i
\(732\) 0 0
\(733\) 227.950 394.821i 0.310982 0.538637i −0.667593 0.744526i \(-0.732675\pi\)
0.978575 + 0.205890i \(0.0660088\pi\)
\(734\) 751.909 + 434.115i 1.02440 + 0.591437i
\(735\) 0 0
\(736\) 10.0643 + 17.4319i 0.0136743 + 0.0236846i
\(737\) 707.561i 0.960056i
\(738\) 0 0
\(739\) −1246.08 −1.68617 −0.843084 0.537781i \(-0.819263\pi\)
−0.843084 + 0.537781i \(0.819263\pi\)
\(740\) −417.183 + 240.861i −0.563761 + 0.325487i
\(741\) 0 0
\(742\) 15.2361 26.3896i 0.0205338 0.0355655i
\(743\) −936.983 540.968i −1.26108 0.728086i −0.287797 0.957691i \(-0.592923\pi\)
−0.973284 + 0.229606i \(0.926256\pi\)
\(744\) 0 0
\(745\) −51.7888 89.7009i −0.0695152 0.120404i
\(746\) 785.921i 1.05351i
\(747\) 0 0
\(748\) 452.518 0.604971
\(749\) 114.292 65.9866i 0.152593 0.0880997i
\(750\) 0 0
\(751\) −611.914 + 1059.87i −0.814799 + 1.41127i 0.0946726 + 0.995508i \(0.469820\pi\)
−0.909472 + 0.415765i \(0.863514\pi\)
\(752\) −91.6615 52.9208i −0.121890 0.0703734i
\(753\) 0 0
\(754\) 421.426 + 729.932i 0.558921 + 0.968080i
\(755\) 804.559i 1.06564i
\(756\) 0 0
\(757\) 334.860 0.442352 0.221176 0.975234i \(-0.429010\pi\)
0.221176 + 0.975234i \(0.429010\pi\)
\(758\) −495.643 + 286.159i −0.653882 + 0.377519i
\(759\) 0 0
\(760\) −308.229 + 533.868i −0.405564 + 0.702457i
\(761\) 853.330 + 492.671i 1.12133 + 0.647399i 0.941740 0.336343i \(-0.109190\pi\)
0.179588 + 0.983742i \(0.442523\pi\)
\(762\) 0 0
\(763\) 159.501 + 276.264i 0.209045 + 0.362076i
\(764\) 735.057i 0.962117i
\(765\) 0 0
\(766\) −801.948 −1.04693
\(767\) −1536.69 + 887.206i −2.00350 + 1.15672i
\(768\) 0 0
\(769\) −184.398 + 319.386i −0.239789 + 0.415327i −0.960654 0.277749i \(-0.910412\pi\)
0.720865 + 0.693076i \(0.243745\pi\)
\(770\) 347.888 + 200.853i 0.451802 + 0.260848i
\(771\) 0 0
\(772\) −269.098 466.091i −0.348572 0.603744i
\(773\) 1132.76i 1.46540i 0.680550 + 0.732701i \(0.261741\pi\)
−0.680550 + 0.732701i \(0.738259\pi\)
\(774\) 0 0
\(775\) −469.305 −0.605554
\(776\) −51.8198 + 29.9181i −0.0667780 + 0.0385543i
\(777\) 0 0
\(778\) 117.967 204.324i 0.151628 0.262627i
\(779\) −973.897 562.280i −1.25019 0.721797i
\(780\) 0 0
\(781\) −121.512 210.464i −0.155585 0.269480i
\(782\) 67.6032i 0.0864491i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) −150.362 + 86.8117i −0.191544 + 0.110588i
\(786\) 0 0
\(787\) 644.116 1115.64i 0.818445 1.41759i −0.0883822 0.996087i \(-0.528170\pi\)
0.906827 0.421502i \(-0.138497\pi\)
\(788\) −471.652 272.308i −0.598543 0.345569i
\(789\) 0 0
\(790\) 244.704 + 423.839i 0.309751 + 0.536505i
\(791\) 56.9527i 0.0720009i
\(792\) 0 0
\(793\) −292.167 −0.368432
\(794\) 506.291 292.307i 0.637646 0.368145i
\(795\) 0 0
\(796\) 111.789 193.624i 0.140438 0.243246i
\(797\) −782.130 451.563i −0.981342 0.566578i −0.0786672 0.996901i \(-0.525066\pi\)
−0.902675 + 0.430323i \(0.858400\pi\)
\(798\) 0 0
\(799\) −177.738 307.851i −0.222450 0.385295i
\(800\) 88.4470i 0.110559i
\(801\) 0 0
\(802\) −826.759 −1.03087
\(803\) 619.239 357.518i 0.771157 0.445228i
\(804\) 0 0
\(805\) −30.0061 + 51.9722i −0.0372747 + 0.0645617i
\(806\) 645.071 + 372.432i 0.800336 + 0.462074i
\(807\) 0 0
\(808\) 71.6360 + 124.077i 0.0886584 + 0.153561i
\(809\) 1114.49i 1.37762i −0.724942 0.688810i \(-0.758133\pi\)
0.724942 0.688810i \(-0.241867\pi\)
\(810\) 0 0
\(811\) 620.916 0.765618 0.382809 0.923828i \(-0.374957\pi\)
0.382809 + 0.923828i \(0.374957\pi\)
\(812\) −155.644 + 89.8609i −0.191679 + 0.110666i
\(813\) 0 0
\(814\) −449.978 + 779.385i −0.552798 + 0.957475i
\(815\) 985.836 + 569.173i 1.20961 + 0.698371i
\(816\) 0 0
\(817\) 1193.80 + 2067.71i 1.46119 + 2.53086i
\(818\) 58.1063i 0.0710345i
\(819\) 0 0
\(820\) −419.333 −0.511381
\(821\) 69.7444 40.2669i 0.0849505 0.0490462i −0.456923 0.889506i \(-0.651049\pi\)
0.541874 + 0.840460i \(0.317715\pi\)
\(822\) 0 0
\(823\) −767.625 + 1329.56i −0.932715 + 1.61551i −0.154057 + 0.988062i \(0.549234\pi\)
−0.778658 + 0.627448i \(0.784099\pi\)
\(824\) 490.675 + 283.291i 0.595479 + 0.343800i
\(825\) 0 0
\(826\) −189.179 327.668i −0.229031 0.396693i
\(827\) 708.693i 0.856944i −0.903555 0.428472i \(-0.859052\pi\)
0.903555 0.428472i \(-0.140948\pi\)
\(828\) 0 0
\(829\) 1376.20 1.66008 0.830038 0.557706i \(-0.188318\pi\)
0.830038 + 0.557706i \(0.188318\pi\)
\(830\) −301.201 + 173.899i −0.362893 + 0.209517i
\(831\) 0 0
\(832\) 70.1900 121.573i 0.0843629 0.146121i
\(833\) 81.4408 + 47.0199i 0.0977681 + 0.0564464i
\(834\) 0 0
\(835\) −194.810 337.421i −0.233306 0.404097i
\(836\) 1151.67i 1.37760i
\(837\) 0 0
\(838\) −987.939 −1.17892
\(839\) −78.2013 + 45.1496i −0.0932078 + 0.0538135i −0.545879 0.837864i \(-0.683804\pi\)
0.452672 + 0.891677i \(0.350471\pi\)
\(840\) 0 0
\(841\) 156.284 270.692i 0.185832 0.321870i
\(842\) 815.019 + 470.551i 0.967956 + 0.558849i
\(843\) 0 0
\(844\) 17.0397 + 29.5137i 0.0201892 + 0.0349688i
\(845\) 885.523i 1.04796i
\(846\) 0 0
\(847\) 430.335 0.508069
\(848\) 28.2117 16.2880i 0.0332685 0.0192076i
\(849\) 0 0
\(850\) −148.527 + 257.257i −0.174738 + 0.302655i
\(851\) −116.435 67.2238i −0.136821 0.0789938i
\(852\) 0 0
\(853\) 560.003 + 969.954i 0.656510 + 1.13711i 0.981513 + 0.191396i \(0.0613014\pi\)
−0.325003 + 0.945713i \(0.605365\pi\)
\(854\) 62.2988i 0.0729494i
\(855\) 0 0
\(856\) 141.085 0.164819
\(857\) −175.676 + 101.427i −0.204990 + 0.118351i −0.598981 0.800763i \(-0.704427\pi\)
0.393991 + 0.919114i \(0.371094\pi\)
\(858\) 0 0
\(859\) 238.933 413.844i 0.278152 0.481774i −0.692773 0.721155i \(-0.743611\pi\)
0.970926 + 0.239382i \(0.0769447\pi\)
\(860\) 771.022 + 445.150i 0.896537 + 0.517616i
\(861\) 0 0
\(862\) −383.500 664.242i −0.444896 0.770583i
\(863\) 100.180i 0.116083i 0.998314 + 0.0580417i \(0.0184856\pi\)
−0.998314 + 0.0580417i \(0.981514\pi\)
\(864\) 0 0
\(865\) −386.121 −0.446383
\(866\) 975.280 563.078i 1.12619 0.650206i
\(867\) 0 0
\(868\) −79.4138 + 137.549i −0.0914905 + 0.158466i
\(869\) 791.819 + 457.157i 0.911185 + 0.526073i
\(870\) 0 0
\(871\) −368.601 638.436i −0.423193 0.732992i
\(872\) 341.028i 0.391087i
\(873\) 0 0
\(874\) −172.052 −0.196856
\(875\) 136.780 78.9699i 0.156320 0.0902513i
\(876\) 0 0
\(877\) 170.603 295.493i 0.194530 0.336936i −0.752216 0.658916i \(-0.771015\pi\)
0.946746 + 0.321980i \(0.104349\pi\)
\(878\) −862.526 497.980i −0.982376 0.567175i
\(879\) 0 0
\(880\) 214.721 + 371.908i 0.244001 + 0.422622i
\(881\) 248.995i 0.282628i 0.989965 + 0.141314i \(0.0451328\pi\)
−0.989965 + 0.141314i \(0.954867\pi\)
\(882\) 0 0
\(883\) −847.157 −0.959408 −0.479704 0.877430i \(-0.659256\pi\)
−0.479704 + 0.877430i \(0.659256\pi\)
\(884\) 408.309 235.737i 0.461888 0.266671i
\(885\) 0 0
\(886\) 139.993 242.475i 0.158006 0.273674i
\(887\) −687.128 396.713i −0.774665 0.447253i 0.0598712 0.998206i \(-0.480931\pi\)
−0.834536 + 0.550953i \(0.814264\pi\)
\(888\) 0 0
\(889\) −95.2160 164.919i −0.107105 0.185511i
\(890\) 888.110i 0.997877i
\(891\) 0 0
\(892\) −645.418 −0.723563
\(893\) 783.489 452.348i 0.877367 0.506548i
\(894\) 0 0
\(895\) 574.698 995.407i 0.642121 1.11219i
\(896\) 25.9230 + 14.9666i 0.0289319 + 0.0167038i
\(897\) 0 0
\(898\) −540.637 936.411i −0.602046 1.04277i
\(899\) 1019.46i 1.13399i
\(900\) 0 0
\(901\) 109.409 0.121430
\(902\) −678.445 + 391.700i −0.752156 + 0.434257i
\(903\) 0 0
\(904\) 30.4425 52.7280i 0.0336753 0.0583274i
\(905\) −470.135 271.433i −0.519487 0.299926i
\(906\) 0 0
\(907\) −256.266 443.865i −0.282542 0.489377i 0.689468 0.724316i \(-0.257844\pi\)
−0.972010 + 0.234939i \(0.924511\pi\)
\(908\) 318.623i 0.350907i
\(909\) 0 0
\(910\) 418.534 0.459928
\(911\) −78.6763 + 45.4238i −0.0863626 + 0.0498615i −0.542559 0.840017i \(-0.682545\pi\)
0.456197 + 0.889879i \(0.349211\pi\)
\(912\) 0 0
\(913\) −324.879 + 562.707i −0.355837 + 0.616327i
\(914\) 182.109 + 105.141i 0.199244 + 0.115033i
\(915\) 0 0
\(916\) −249.268 431.745i −0.272127 0.471337i
\(917\) 248.542i 0.271038i
\(918\) 0 0
\(919\) −480.491 −0.522841 −0.261421 0.965225i \(-0.584191\pi\)
−0.261421 + 0.965225i \(0.584191\pi\)
\(920\) −55.5606 + 32.0779i −0.0603919 + 0.0348673i
\(921\) 0 0
\(922\) −236.261 + 409.215i −0.256248 + 0.443834i
\(923\) −219.281 126.602i −0.237574 0.137163i
\(924\) 0 0
\(925\) −295.387 511.626i −0.319338 0.553109i
\(926\) 566.393i 0.611655i
\(927\) 0 0
\(928\) −192.131 −0.207037
\(929\) 215.475 124.405i 0.231943 0.133912i −0.379525 0.925181i \(-0.623913\pi\)
0.611468 + 0.791269i \(0.290579\pi\)
\(930\) 0 0
\(931\) −119.667 + 207.269i −0.128536 + 0.222631i
\(932\) 597.173 + 344.778i 0.640744 + 0.369934i
\(933\) 0 0
\(934\) 76.7541 + 132.942i 0.0821778 + 0.142336i
\(935\) 1442.31i 1.54258i
\(936\) 0 0
\(937\) −849.151 −0.906245 −0.453122 0.891448i \(-0.649690\pi\)
−0.453122 + 0.891448i \(0.649690\pi\)
\(938\) 136.134 78.5969i 0.145132 0.0837921i
\(939\) 0 0
\(940\) 168.674 292.152i 0.179441 0.310800i
\(941\) 1092.43 + 630.716i 1.16093 + 0.670261i 0.951526 0.307569i \(-0.0995154\pi\)
0.209401 + 0.977830i \(0.432849\pi\)
\(942\) 0 0
\(943\) −58.5175 101.355i −0.0620546 0.107482i
\(944\) 404.482i 0.428477i
\(945\) 0 0
\(946\) 1663.27 1.75821
\(947\) −282.167 + 162.909i −0.297958 + 0.172026i −0.641525 0.767102i \(-0.721698\pi\)
0.343567 + 0.939128i \(0.388365\pi\)
\(948\) 0 0
\(949\) 372.495 645.181i 0.392513 0.679853i
\(950\) −654.726 378.006i −0.689185 0.397901i
\(951\) 0 0
\(952\) 50.2664 + 87.0639i 0.0528008 + 0.0914537i
\(953\) 1730.60i 1.81594i −0.419030 0.907972i \(-0.637630\pi\)
0.419030 0.907972i \(-0.362370\pi\)
\(954\) 0 0
\(955\) 2342.84 2.45324
\(956\) −86.0940 + 49.7064i −0.0900565 + 0.0519941i
\(957\) 0 0
\(958\) 460.699 797.955i 0.480897 0.832938i
\(959\) 439.606 + 253.807i 0.458400 + 0.264657i
\(960\) 0 0
\(961\) 30.0325 + 52.0178i 0.0312513 + 0.0541289i
\(962\) 937.657i 0.974695i
\(963\) 0 0
\(964\) 334.411 0.346899
\(965\) 1485.57 857.693i 1.53945 0.888801i
\(966\) 0 0
\(967\) 433.499 750.843i 0.448293 0.776466i −0.549982 0.835177i \(-0.685365\pi\)
0.998275 + 0.0587101i \(0.0186988\pi\)
\(968\) 398.413 + 230.024i 0.411583 + 0.237628i
\(969\) 0 0
\(970\) −95.3579 165.165i −0.0983072 0.170273i
\(971\) 1235.27i 1.27216i −0.771623 0.636080i \(-0.780555\pi\)
0.771623 0.636080i \(-0.219445\pi\)
\(972\) 0 0
\(973\) −346.133 −0.355738
\(974\) 566.740 327.208i 0.581869 0.335942i
\(975\) 0 0
\(976\) 33.3001 57.6775i 0.0341190 0.0590958i
\(977\) −1405.24 811.318i −1.43833 0.830418i −0.440592 0.897708i \(-0.645231\pi\)
−0.997733 + 0.0672900i \(0.978565\pi\)
\(978\) 0 0
\(979\) −829.587 1436.89i −0.847382 1.46771i
\(980\) 89.2442i 0.0910655i
\(981\) 0 0
\(982\) −124.787 −0.127074
\(983\) 421.673 243.453i 0.428965 0.247663i −0.269941 0.962877i \(-0.587004\pi\)
0.698906 + 0.715214i \(0.253671\pi\)
\(984\) 0 0
\(985\) 867.927 1503.29i 0.881144 1.52619i
\(986\) −558.831 322.641i −0.566766 0.327223i
\(987\) 0 0
\(988\) 599.958 + 1039.16i 0.607245 + 1.05178i
\(989\) 248.481i 0.251245i
\(990\) 0 0
\(991\) 558.514 0.563587 0.281793 0.959475i \(-0.409071\pi\)
0.281793 + 0.959475i \(0.409071\pi\)
\(992\) −147.046 + 84.8969i −0.148232 + 0.0855815i
\(993\) 0 0
\(994\) 26.9954 46.7573i 0.0271583 0.0470396i
\(995\) 617.136 + 356.304i 0.620237 + 0.358094i
\(996\) 0 0
\(997\) −234.505 406.174i −0.235210 0.407396i 0.724124 0.689670i \(-0.242245\pi\)
−0.959334 + 0.282274i \(0.908911\pi\)
\(998\) 234.759i 0.235230i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.q.a.71.6 24
3.2 odd 2 126.3.q.a.113.11 yes 24
9.2 odd 6 inner 378.3.q.a.197.6 24
9.4 even 3 1134.3.b.c.323.2 24
9.5 odd 6 1134.3.b.c.323.23 24
9.7 even 3 126.3.q.a.29.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.11 24 9.7 even 3
126.3.q.a.113.11 yes 24 3.2 odd 2
378.3.q.a.71.6 24 1.1 even 1 trivial
378.3.q.a.197.6 24 9.2 odd 6 inner
1134.3.b.c.323.2 24 9.4 even 3
1134.3.b.c.323.23 24 9.5 odd 6