L(s) = 1 | + (−1.22 + 0.707i)2-s + (0.999 − 1.73i)4-s + (5.52 + 3.18i)5-s + (1.32 + 2.29i)7-s + 2.82i·8-s − 9.01·10-s + (−14.5 + 8.42i)11-s + (−8.77 + 15.1i)13-s + (−3.24 − 1.87i)14-s + (−2.00 − 3.46i)16-s − 13.4i·17-s + 34.1·19-s + (11.0 − 6.37i)20-s + (11.9 − 20.6i)22-s + (3.08 + 1.77i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (1.10 + 0.637i)5-s + (0.188 + 0.327i)7-s + 0.353i·8-s − 0.901·10-s + (−1.32 + 0.765i)11-s + (−0.674 + 1.16i)13-s + (−0.231 − 0.133i)14-s + (−0.125 − 0.216i)16-s − 0.790i·17-s + 1.79·19-s + (0.552 − 0.318i)20-s + (0.541 − 0.937i)22-s + (0.133 + 0.0773i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.524 - 0.851i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.524 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.577622 + 1.03387i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.577622 + 1.03387i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.22 - 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.32 - 2.29i)T \) |
good | 5 | \( 1 + (-5.52 - 3.18i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (14.5 - 8.42i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (8.77 - 15.1i)T + (-84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + 13.4iT - 289T^{2} \) |
| 19 | \( 1 - 34.1T + 361T^{2} \) |
| 23 | \( 1 + (-3.08 - 1.77i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (29.4 - 16.9i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (15.0 - 25.9i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 37.7T + 1.36e3T^{2} \) |
| 41 | \( 1 + (28.4 + 16.4i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-34.9 - 60.4i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-22.9 + 13.2i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 8.14iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-87.5 - 50.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-8.32 - 14.4i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (21.0 - 36.3i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 14.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 42.4T + 5.32e3T^{2} \) |
| 79 | \( 1 + (27.1 + 47.0i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-33.4 + 19.2i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 - 98.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-10.5 - 18.3i)T + (-4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27284198957566784307458385307, −10.22429445544924799747938267247, −9.680112137645946644725217586917, −8.913977512668594957258170548195, −7.38409367080111958117690474828, −7.07754013511362997846862198891, −5.64106711654469900250975191570, −5.00035645100121317975832922342, −2.82030204117613288232213736736, −1.82554878400739858506275272153,
0.62035914302964803583937169357, 2.10793387859030851424252505545, 3.37744409837616765166855896189, 5.24883518772427996041734077420, 5.70697922630538991853021187146, 7.41251824560333209319021580329, 8.090985884676459829805131873505, 9.139251272875893742541558025208, 10.02628720161195204915131611162, 10.53740407723130756459999360699