Properties

Label 378.3.q.a.71.12
Level $378$
Weight $3$
Character 378.71
Analytic conductor $10.300$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(71,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.71"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 71.12
Character \(\chi\) \(=\) 378.71
Dual form 378.3.q.a.197.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} +(4.50944 + 2.60353i) q^{5} +(1.32288 + 2.29129i) q^{7} -2.82843i q^{8} +7.36389 q^{10} +(11.4711 - 6.62282i) q^{11} +(-4.01343 + 6.95146i) q^{13} +(3.24037 + 1.87083i) q^{14} +(-2.00000 - 3.46410i) q^{16} +8.82428i q^{17} -3.48936 q^{19} +(9.01889 - 5.20706i) q^{20} +(9.36608 - 16.2225i) q^{22} +(32.7769 + 18.9238i) q^{23} +(1.05672 + 1.83030i) q^{25} +11.3517i q^{26} +5.29150 q^{28} +(13.4482 - 7.76433i) q^{29} +(11.9168 - 20.6405i) q^{31} +(-4.89898 - 2.82843i) q^{32} +(6.23971 + 10.8075i) q^{34} +13.7766i q^{35} +19.2212 q^{37} +(-4.27358 + 2.46735i) q^{38} +(7.36389 - 12.7546i) q^{40} +(-29.2689 - 16.8984i) q^{41} +(-22.7888 - 39.4714i) q^{43} -26.4913i q^{44} +53.5245 q^{46} +(-52.1392 + 30.1026i) q^{47} +(-3.50000 + 6.06218i) q^{49} +(2.58843 + 1.49443i) q^{50} +(8.02685 + 13.9029i) q^{52} -63.7924i q^{53} +68.9708 q^{55} +(6.48074 - 3.74166i) q^{56} +(10.9804 - 19.0187i) q^{58} +(94.5815 + 54.6066i) q^{59} +(-39.6043 - 68.5967i) q^{61} -33.7057i q^{62} -8.00000 q^{64} +(-36.1966 + 20.8981i) q^{65} +(-53.3828 + 92.4617i) q^{67} +(15.2841 + 8.82428i) q^{68} +(9.74151 + 16.8728i) q^{70} +94.1409i q^{71} -3.40818 q^{73} +(23.5411 - 13.5915i) q^{74} +(-3.48936 + 6.04375i) q^{76} +(30.3496 + 17.5223i) q^{77} +(-78.0889 - 135.254i) q^{79} -20.8282i q^{80} -47.7959 q^{82} +(-130.062 + 75.0915i) q^{83} +(-22.9743 + 39.7926i) q^{85} +(-55.8210 - 32.2283i) q^{86} +(-18.7322 - 32.4450i) q^{88} -29.5689i q^{89} -21.2371 q^{91} +(65.5539 - 37.8476i) q^{92} +(-42.5715 + 73.7360i) q^{94} +(-15.7351 - 9.08466i) q^{95} +(40.7964 + 70.6614i) q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 36 q^{5} - 48 q^{16} + 24 q^{19} - 72 q^{20} + 24 q^{22} + 72 q^{23} + 72 q^{25} + 108 q^{29} - 60 q^{31} - 48 q^{34} - 168 q^{37} - 144 q^{38} - 108 q^{41} + 60 q^{43} + 324 q^{47} - 84 q^{49}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 0.707107i 0.612372 0.353553i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 4.50944 + 2.60353i 0.901889 + 0.520706i 0.877812 0.479004i \(-0.159002\pi\)
0.0240762 + 0.999710i \(0.492336\pi\)
\(6\) 0 0
\(7\) 1.32288 + 2.29129i 0.188982 + 0.327327i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 7.36389 0.736389
\(11\) 11.4711 6.62282i 1.04282 0.602074i 0.122191 0.992507i \(-0.461008\pi\)
0.920632 + 0.390432i \(0.127674\pi\)
\(12\) 0 0
\(13\) −4.01343 + 6.95146i −0.308725 + 0.534728i −0.978084 0.208212i \(-0.933236\pi\)
0.669359 + 0.742939i \(0.266569\pi\)
\(14\) 3.24037 + 1.87083i 0.231455 + 0.133631i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 8.82428i 0.519075i 0.965733 + 0.259538i \(0.0835702\pi\)
−0.965733 + 0.259538i \(0.916430\pi\)
\(18\) 0 0
\(19\) −3.48936 −0.183651 −0.0918253 0.995775i \(-0.529270\pi\)
−0.0918253 + 0.995775i \(0.529270\pi\)
\(20\) 9.01889 5.20706i 0.450944 0.260353i
\(21\) 0 0
\(22\) 9.36608 16.2225i 0.425731 0.737387i
\(23\) 32.7769 + 18.9238i 1.42508 + 0.822773i 0.996727 0.0808365i \(-0.0257592\pi\)
0.428357 + 0.903609i \(0.359093\pi\)
\(24\) 0 0
\(25\) 1.05672 + 1.83030i 0.0422689 + 0.0732118i
\(26\) 11.3517i 0.436603i
\(27\) 0 0
\(28\) 5.29150 0.188982
\(29\) 13.4482 7.76433i 0.463732 0.267736i −0.249880 0.968277i \(-0.580391\pi\)
0.713612 + 0.700541i \(0.247058\pi\)
\(30\) 0 0
\(31\) 11.9168 20.6405i 0.384412 0.665821i −0.607275 0.794491i \(-0.707738\pi\)
0.991687 + 0.128670i \(0.0410708\pi\)
\(32\) −4.89898 2.82843i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 6.23971 + 10.8075i 0.183521 + 0.317867i
\(35\) 13.7766i 0.393617i
\(36\) 0 0
\(37\) 19.2212 0.519492 0.259746 0.965677i \(-0.416361\pi\)
0.259746 + 0.965677i \(0.416361\pi\)
\(38\) −4.27358 + 2.46735i −0.112463 + 0.0649303i
\(39\) 0 0
\(40\) 7.36389 12.7546i 0.184097 0.318866i
\(41\) −29.2689 16.8984i −0.713875 0.412156i 0.0986192 0.995125i \(-0.468557\pi\)
−0.812494 + 0.582969i \(0.801891\pi\)
\(42\) 0 0
\(43\) −22.7888 39.4714i −0.529973 0.917940i −0.999389 0.0349628i \(-0.988869\pi\)
0.469416 0.882977i \(-0.344465\pi\)
\(44\) 26.4913i 0.602074i
\(45\) 0 0
\(46\) 53.5245 1.16358
\(47\) −52.1392 + 30.1026i −1.10935 + 0.640481i −0.938660 0.344845i \(-0.887932\pi\)
−0.170685 + 0.985326i \(0.554598\pi\)
\(48\) 0 0
\(49\) −3.50000 + 6.06218i −0.0714286 + 0.123718i
\(50\) 2.58843 + 1.49443i 0.0517686 + 0.0298886i
\(51\) 0 0
\(52\) 8.02685 + 13.9029i 0.154363 + 0.267364i
\(53\) 63.7924i 1.20363i −0.798636 0.601815i \(-0.794445\pi\)
0.798636 0.601815i \(-0.205555\pi\)
\(54\) 0 0
\(55\) 68.9708 1.25401
\(56\) 6.48074 3.74166i 0.115728 0.0668153i
\(57\) 0 0
\(58\) 10.9804 19.0187i 0.189318 0.327908i
\(59\) 94.5815 + 54.6066i 1.60308 + 0.925536i 0.990867 + 0.134840i \(0.0430519\pi\)
0.612208 + 0.790697i \(0.290281\pi\)
\(60\) 0 0
\(61\) −39.6043 68.5967i −0.649251 1.12454i −0.983302 0.181981i \(-0.941749\pi\)
0.334051 0.942555i \(-0.391584\pi\)
\(62\) 33.7057i 0.543641i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) −36.1966 + 20.8981i −0.556872 + 0.321510i
\(66\) 0 0
\(67\) −53.3828 + 92.4617i −0.796758 + 1.38003i 0.124958 + 0.992162i \(0.460120\pi\)
−0.921717 + 0.387864i \(0.873213\pi\)
\(68\) 15.2841 + 8.82428i 0.224766 + 0.129769i
\(69\) 0 0
\(70\) 9.74151 + 16.8728i 0.139164 + 0.241040i
\(71\) 94.1409i 1.32593i 0.748651 + 0.662964i \(0.230702\pi\)
−0.748651 + 0.662964i \(0.769298\pi\)
\(72\) 0 0
\(73\) −3.40818 −0.0466874 −0.0233437 0.999727i \(-0.507431\pi\)
−0.0233437 + 0.999727i \(0.507431\pi\)
\(74\) 23.5411 13.5915i 0.318123 0.183668i
\(75\) 0 0
\(76\) −3.48936 + 6.04375i −0.0459127 + 0.0795231i
\(77\) 30.3496 + 17.5223i 0.394150 + 0.227563i
\(78\) 0 0
\(79\) −78.0889 135.254i −0.988467 1.71208i −0.625381 0.780320i \(-0.715056\pi\)
−0.363087 0.931755i \(-0.618277\pi\)
\(80\) 20.8282i 0.260353i
\(81\) 0 0
\(82\) −47.7959 −0.582876
\(83\) −130.062 + 75.0915i −1.56702 + 0.904717i −0.570502 + 0.821296i \(0.693251\pi\)
−0.996514 + 0.0834211i \(0.973415\pi\)
\(84\) 0 0
\(85\) −22.9743 + 39.7926i −0.270286 + 0.468148i
\(86\) −55.8210 32.2283i −0.649082 0.374747i
\(87\) 0 0
\(88\) −18.7322 32.4450i −0.212865 0.368694i
\(89\) 29.5689i 0.332235i −0.986106 0.166117i \(-0.946877\pi\)
0.986106 0.166117i \(-0.0531230\pi\)
\(90\) 0 0
\(91\) −21.2371 −0.233374
\(92\) 65.5539 37.8476i 0.712542 0.411386i
\(93\) 0 0
\(94\) −42.5715 + 73.7360i −0.452888 + 0.784425i
\(95\) −15.7351 9.08466i −0.165632 0.0956280i
\(96\) 0 0
\(97\) 40.7964 + 70.6614i 0.420581 + 0.728468i 0.995996 0.0893933i \(-0.0284928\pi\)
−0.575415 + 0.817862i \(0.695159\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) 4.22689 0.0422689
\(101\) 0.619620 0.357738i 0.00613485 0.00354196i −0.496929 0.867791i \(-0.665539\pi\)
0.503064 + 0.864249i \(0.332206\pi\)
\(102\) 0 0
\(103\) −89.9236 + 155.752i −0.873044 + 1.51216i −0.0142130 + 0.999899i \(0.504524\pi\)
−0.858831 + 0.512258i \(0.828809\pi\)
\(104\) 19.6617 + 11.3517i 0.189055 + 0.109151i
\(105\) 0 0
\(106\) −45.1080 78.1294i −0.425547 0.737070i
\(107\) 63.7076i 0.595398i −0.954660 0.297699i \(-0.903781\pi\)
0.954660 0.297699i \(-0.0962191\pi\)
\(108\) 0 0
\(109\) −184.582 −1.69341 −0.846705 0.532063i \(-0.821417\pi\)
−0.846705 + 0.532063i \(0.821417\pi\)
\(110\) 84.4716 48.7697i 0.767923 0.443361i
\(111\) 0 0
\(112\) 5.29150 9.16515i 0.0472456 0.0818317i
\(113\) −108.448 62.6124i −0.959715 0.554092i −0.0636298 0.997974i \(-0.520268\pi\)
−0.896085 + 0.443882i \(0.853601\pi\)
\(114\) 0 0
\(115\) 98.5372 + 170.671i 0.856845 + 1.48410i
\(116\) 31.0573i 0.267736i
\(117\) 0 0
\(118\) 154.451 1.30891
\(119\) −20.2190 + 11.6734i −0.169907 + 0.0980960i
\(120\) 0 0
\(121\) 27.2234 47.1523i 0.224987 0.389688i
\(122\) −97.0103 56.0090i −0.795167 0.459090i
\(123\) 0 0
\(124\) −23.8336 41.2809i −0.192206 0.332911i
\(125\) 119.172i 0.953373i
\(126\) 0 0
\(127\) 186.865 1.47138 0.735688 0.677320i \(-0.236859\pi\)
0.735688 + 0.677320i \(0.236859\pi\)
\(128\) −9.79796 + 5.65685i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −29.5544 + 51.1898i −0.227342 + 0.393768i
\(131\) −12.5131 7.22447i −0.0955202 0.0551486i 0.451479 0.892282i \(-0.350897\pi\)
−0.546999 + 0.837133i \(0.684230\pi\)
\(132\) 0 0
\(133\) −4.61599 7.99514i −0.0347067 0.0601138i
\(134\) 150.989i 1.12679i
\(135\) 0 0
\(136\) 24.9588 0.183521
\(137\) −31.0324 + 17.9166i −0.226514 + 0.130778i −0.608963 0.793199i \(-0.708414\pi\)
0.382449 + 0.923977i \(0.375081\pi\)
\(138\) 0 0
\(139\) −17.5299 + 30.3627i −0.126115 + 0.218437i −0.922168 0.386789i \(-0.873584\pi\)
0.796053 + 0.605226i \(0.206917\pi\)
\(140\) 23.8617 + 13.7766i 0.170441 + 0.0984041i
\(141\) 0 0
\(142\) 66.5677 + 115.299i 0.468786 + 0.811962i
\(143\) 106.321i 0.743502i
\(144\) 0 0
\(145\) 80.8586 0.557646
\(146\) −4.17415 + 2.40995i −0.0285901 + 0.0165065i
\(147\) 0 0
\(148\) 19.2212 33.2921i 0.129873 0.224947i
\(149\) −145.432 83.9654i −0.976056 0.563526i −0.0749788 0.997185i \(-0.523889\pi\)
−0.901077 + 0.433659i \(0.857222\pi\)
\(150\) 0 0
\(151\) −97.0005 168.010i −0.642387 1.11265i −0.984898 0.173133i \(-0.944611\pi\)
0.342511 0.939514i \(-0.388723\pi\)
\(152\) 9.86941i 0.0649303i
\(153\) 0 0
\(154\) 49.5606 0.321822
\(155\) 107.476 62.0513i 0.693394 0.400331i
\(156\) 0 0
\(157\) −8.25239 + 14.2936i −0.0525630 + 0.0910417i −0.891110 0.453788i \(-0.850072\pi\)
0.838547 + 0.544830i \(0.183406\pi\)
\(158\) −191.278 110.434i −1.21062 0.698952i
\(159\) 0 0
\(160\) −14.7278 25.5093i −0.0920486 0.159433i
\(161\) 100.135i 0.621958i
\(162\) 0 0
\(163\) −174.369 −1.06975 −0.534873 0.844933i \(-0.679641\pi\)
−0.534873 + 0.844933i \(0.679641\pi\)
\(164\) −58.5377 + 33.7968i −0.356937 + 0.206078i
\(165\) 0 0
\(166\) −106.195 + 183.936i −0.639732 + 1.10805i
\(167\) 126.279 + 72.9072i 0.756162 + 0.436570i 0.827916 0.560852i \(-0.189526\pi\)
−0.0717543 + 0.997422i \(0.522860\pi\)
\(168\) 0 0
\(169\) 52.2848 + 90.5599i 0.309378 + 0.535858i
\(170\) 64.9810i 0.382241i
\(171\) 0 0
\(172\) −91.1553 −0.529973
\(173\) 50.3479 29.0684i 0.291028 0.168025i −0.347377 0.937725i \(-0.612928\pi\)
0.638406 + 0.769700i \(0.279594\pi\)
\(174\) 0 0
\(175\) −2.79582 + 4.84251i −0.0159761 + 0.0276715i
\(176\) −45.8842 26.4913i −0.260706 0.150519i
\(177\) 0 0
\(178\) −20.9084 36.2143i −0.117463 0.203451i
\(179\) 177.566i 0.991989i −0.868326 0.495995i \(-0.834804\pi\)
0.868326 0.495995i \(-0.165196\pi\)
\(180\) 0 0
\(181\) 42.0375 0.232251 0.116126 0.993235i \(-0.462952\pi\)
0.116126 + 0.993235i \(0.462952\pi\)
\(182\) −26.0100 + 15.0169i −0.142912 + 0.0825103i
\(183\) 0 0
\(184\) 53.5245 92.7072i 0.290894 0.503843i
\(185\) 86.6770 + 50.0430i 0.468524 + 0.270503i
\(186\) 0 0
\(187\) 58.4416 + 101.224i 0.312522 + 0.541304i
\(188\) 120.410i 0.640481i
\(189\) 0 0
\(190\) −25.6953 −0.135238
\(191\) 74.7660 43.1662i 0.391445 0.226001i −0.291341 0.956619i \(-0.594101\pi\)
0.682786 + 0.730618i \(0.260768\pi\)
\(192\) 0 0
\(193\) 69.3030 120.036i 0.359083 0.621950i −0.628725 0.777628i \(-0.716423\pi\)
0.987808 + 0.155678i \(0.0497562\pi\)
\(194\) 99.9303 + 57.6948i 0.515105 + 0.297396i
\(195\) 0 0
\(196\) 7.00000 + 12.1244i 0.0357143 + 0.0618590i
\(197\) 39.4308i 0.200156i 0.994980 + 0.100078i \(0.0319093\pi\)
−0.994980 + 0.100078i \(0.968091\pi\)
\(198\) 0 0
\(199\) 88.0429 0.442427 0.221213 0.975225i \(-0.428998\pi\)
0.221213 + 0.975225i \(0.428998\pi\)
\(200\) 5.17686 2.98886i 0.0258843 0.0149443i
\(201\) 0 0
\(202\) 0.505918 0.876275i 0.00250454 0.00433800i
\(203\) 35.5806 + 20.5425i 0.175274 + 0.101195i
\(204\) 0 0
\(205\) −87.9909 152.405i −0.429224 0.743437i
\(206\) 254.342i 1.23467i
\(207\) 0 0
\(208\) 32.1074 0.154363
\(209\) −40.0267 + 23.1094i −0.191515 + 0.110571i
\(210\) 0 0
\(211\) −96.3691 + 166.916i −0.456726 + 0.791072i −0.998786 0.0492677i \(-0.984311\pi\)
0.542060 + 0.840340i \(0.317645\pi\)
\(212\) −110.492 63.7924i −0.521187 0.300907i
\(213\) 0 0
\(214\) −45.0480 78.0255i −0.210505 0.364605i
\(215\) 237.326i 1.10384i
\(216\) 0 0
\(217\) 63.0577 0.290588
\(218\) −226.065 + 130.519i −1.03700 + 0.598711i
\(219\) 0 0
\(220\) 68.9708 119.461i 0.313503 0.543004i
\(221\) −61.3416 35.4156i −0.277564 0.160252i
\(222\) 0 0
\(223\) −89.9715 155.835i −0.403459 0.698812i 0.590681 0.806905i \(-0.298859\pi\)
−0.994141 + 0.108093i \(0.965526\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) −177.095 −0.783604
\(227\) 82.1961 47.4559i 0.362097 0.209057i −0.307903 0.951418i \(-0.599627\pi\)
0.670000 + 0.742361i \(0.266294\pi\)
\(228\) 0 0
\(229\) 177.233 306.977i 0.773945 1.34051i −0.161441 0.986882i \(-0.551614\pi\)
0.935386 0.353629i \(-0.115052\pi\)
\(230\) 241.366 + 139.353i 1.04942 + 0.605881i
\(231\) 0 0
\(232\) −21.9608 38.0373i −0.0946588 0.163954i
\(233\) 192.278i 0.825226i −0.910907 0.412613i \(-0.864616\pi\)
0.910907 0.412613i \(-0.135384\pi\)
\(234\) 0 0
\(235\) −313.492 −1.33401
\(236\) 189.163 109.213i 0.801538 0.462768i
\(237\) 0 0
\(238\) −16.5087 + 28.5939i −0.0693644 + 0.120143i
\(239\) 251.206 + 145.034i 1.05107 + 0.606836i 0.922949 0.384922i \(-0.125772\pi\)
0.128122 + 0.991758i \(0.459105\pi\)
\(240\) 0 0
\(241\) 55.9605 + 96.9265i 0.232201 + 0.402184i 0.958456 0.285242i \(-0.0920739\pi\)
−0.726254 + 0.687426i \(0.758741\pi\)
\(242\) 76.9993i 0.318179i
\(243\) 0 0
\(244\) −158.417 −0.649251
\(245\) −31.5661 + 18.2247i −0.128841 + 0.0743865i
\(246\) 0 0
\(247\) 14.0043 24.2562i 0.0566976 0.0982031i
\(248\) −58.3800 33.7057i −0.235403 0.135910i
\(249\) 0 0
\(250\) −84.2671 145.955i −0.337068 0.583819i
\(251\) 203.517i 0.810826i 0.914134 + 0.405413i \(0.132872\pi\)
−0.914134 + 0.405413i \(0.867128\pi\)
\(252\) 0 0
\(253\) 501.315 1.98148
\(254\) 228.862 132.133i 0.901030 0.520210i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −259.814 150.004i −1.01095 0.583673i −0.0994809 0.995039i \(-0.531718\pi\)
−0.911470 + 0.411367i \(0.865052\pi\)
\(258\) 0 0
\(259\) 25.4273 + 44.0413i 0.0981748 + 0.170044i
\(260\) 83.5926i 0.321510i
\(261\) 0 0
\(262\) −20.4339 −0.0779919
\(263\) 163.477 94.3833i 0.621584 0.358872i −0.155901 0.987773i \(-0.549828\pi\)
0.777486 + 0.628901i \(0.216495\pi\)
\(264\) 0 0
\(265\) 166.085 287.668i 0.626737 1.08554i
\(266\) −11.3068 6.52800i −0.0425069 0.0245414i
\(267\) 0 0
\(268\) 106.766 + 184.923i 0.398379 + 0.690013i
\(269\) 260.462i 0.968261i 0.874996 + 0.484131i \(0.160864\pi\)
−0.874996 + 0.484131i \(0.839136\pi\)
\(270\) 0 0
\(271\) −142.144 −0.524518 −0.262259 0.964998i \(-0.584467\pi\)
−0.262259 + 0.964998i \(0.584467\pi\)
\(272\) 30.5682 17.6486i 0.112383 0.0648844i
\(273\) 0 0
\(274\) −25.3378 + 43.8864i −0.0924739 + 0.160169i
\(275\) 24.2434 + 13.9969i 0.0881579 + 0.0508980i
\(276\) 0 0
\(277\) 5.33049 + 9.23268i 0.0192436 + 0.0333310i 0.875487 0.483242i \(-0.160541\pi\)
−0.856243 + 0.516573i \(0.827208\pi\)
\(278\) 49.5822i 0.178353i
\(279\) 0 0
\(280\) 38.9660 0.139164
\(281\) 153.223 88.4636i 0.545279 0.314817i −0.201937 0.979399i \(-0.564724\pi\)
0.747216 + 0.664582i \(0.231390\pi\)
\(282\) 0 0
\(283\) 151.466 262.347i 0.535216 0.927022i −0.463936 0.885869i \(-0.653563\pi\)
0.999153 0.0411536i \(-0.0131033\pi\)
\(284\) 163.057 + 94.1409i 0.574144 + 0.331482i
\(285\) 0 0
\(286\) 75.1801 + 130.216i 0.262868 + 0.455300i
\(287\) 89.4179i 0.311561i
\(288\) 0 0
\(289\) 211.132 0.730561
\(290\) 99.0312 57.1757i 0.341487 0.197158i
\(291\) 0 0
\(292\) −3.40818 + 5.90314i −0.0116719 + 0.0202162i
\(293\) 465.106 + 268.529i 1.58739 + 0.916481i 0.993735 + 0.111763i \(0.0356499\pi\)
0.593657 + 0.804718i \(0.297683\pi\)
\(294\) 0 0
\(295\) 284.340 + 492.491i 0.963864 + 1.66946i
\(296\) 54.3658i 0.183668i
\(297\) 0 0
\(298\) −237.490 −0.796946
\(299\) −263.096 + 151.898i −0.879919 + 0.508021i
\(300\) 0 0
\(301\) 60.2936 104.432i 0.200311 0.346949i
\(302\) −237.602 137.179i −0.786760 0.454236i
\(303\) 0 0
\(304\) 6.97873 + 12.0875i 0.0229563 + 0.0397615i
\(305\) 412.444i 1.35227i
\(306\) 0 0
\(307\) 509.581 1.65987 0.829937 0.557858i \(-0.188376\pi\)
0.829937 + 0.557858i \(0.188376\pi\)
\(308\) 60.6991 35.0446i 0.197075 0.113781i
\(309\) 0 0
\(310\) 87.7538 151.994i 0.283077 0.490304i
\(311\) 270.660 + 156.265i 0.870289 + 0.502461i 0.867444 0.497535i \(-0.165761\pi\)
0.00284453 + 0.999996i \(0.499095\pi\)
\(312\) 0 0
\(313\) −282.583 489.447i −0.902820 1.56373i −0.823817 0.566855i \(-0.808160\pi\)
−0.0790023 0.996874i \(-0.525173\pi\)
\(314\) 23.3413i 0.0743353i
\(315\) 0 0
\(316\) −312.356 −0.988467
\(317\) −118.015 + 68.1358i −0.372286 + 0.214939i −0.674457 0.738314i \(-0.735622\pi\)
0.302171 + 0.953254i \(0.402289\pi\)
\(318\) 0 0
\(319\) 102.843 178.130i 0.322393 0.558402i
\(320\) −36.0755 20.8282i −0.112736 0.0650882i
\(321\) 0 0
\(322\) 70.8063 + 122.640i 0.219895 + 0.380870i
\(323\) 30.7911i 0.0953286i
\(324\) 0 0
\(325\) −16.9643 −0.0521978
\(326\) −213.557 + 123.297i −0.655083 + 0.378212i
\(327\) 0 0
\(328\) −47.7959 + 82.7849i −0.145719 + 0.252393i
\(329\) −137.947 79.6440i −0.419293 0.242079i
\(330\) 0 0
\(331\) 243.423 + 421.621i 0.735416 + 1.27378i 0.954540 + 0.298081i \(0.0963467\pi\)
−0.219124 + 0.975697i \(0.570320\pi\)
\(332\) 300.366i 0.904717i
\(333\) 0 0
\(334\) 206.213 0.617403
\(335\) −481.454 + 277.967i −1.43717 + 0.829753i
\(336\) 0 0
\(337\) 29.0085 50.2442i 0.0860786 0.149093i −0.819772 0.572690i \(-0.805900\pi\)
0.905850 + 0.423598i \(0.139233\pi\)
\(338\) 128.071 + 73.9419i 0.378909 + 0.218763i
\(339\) 0 0
\(340\) 45.9485 + 79.5852i 0.135143 + 0.234074i
\(341\) 315.690i 0.925778i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) −111.642 + 64.4566i −0.324541 + 0.187374i
\(345\) 0 0
\(346\) 41.1089 71.2027i 0.118812 0.205788i
\(347\) 216.133 + 124.784i 0.622861 + 0.359609i 0.777982 0.628287i \(-0.216243\pi\)
−0.155121 + 0.987895i \(0.549577\pi\)
\(348\) 0 0
\(349\) −112.209 194.351i −0.321515 0.556880i 0.659286 0.751892i \(-0.270859\pi\)
−0.980801 + 0.195012i \(0.937525\pi\)
\(350\) 7.90778i 0.0225937i
\(351\) 0 0
\(352\) −74.9286 −0.212865
\(353\) −192.298 + 111.023i −0.544753 + 0.314513i −0.747003 0.664821i \(-0.768508\pi\)
0.202250 + 0.979334i \(0.435175\pi\)
\(354\) 0 0
\(355\) −245.099 + 424.523i −0.690418 + 1.19584i
\(356\) −51.2148 29.5689i −0.143862 0.0830586i
\(357\) 0 0
\(358\) −125.558 217.473i −0.350721 0.607467i
\(359\) 316.242i 0.880898i 0.897778 + 0.440449i \(0.145181\pi\)
−0.897778 + 0.440449i \(0.854819\pi\)
\(360\) 0 0
\(361\) −348.824 −0.966272
\(362\) 51.4852 29.7250i 0.142224 0.0821133i
\(363\) 0 0
\(364\) −21.2371 + 36.7837i −0.0583436 + 0.101054i
\(365\) −15.3690 8.87330i −0.0421069 0.0243104i
\(366\) 0 0
\(367\) 232.627 + 402.922i 0.633862 + 1.09788i 0.986755 + 0.162217i \(0.0518646\pi\)
−0.352893 + 0.935664i \(0.614802\pi\)
\(368\) 151.390i 0.411386i
\(369\) 0 0
\(370\) 141.543 0.382549
\(371\) 146.167 84.3894i 0.393980 0.227465i
\(372\) 0 0
\(373\) −39.8509 + 69.0237i −0.106839 + 0.185050i −0.914488 0.404613i \(-0.867406\pi\)
0.807649 + 0.589663i \(0.200740\pi\)
\(374\) 143.152 + 82.6489i 0.382760 + 0.220986i
\(375\) 0 0
\(376\) 85.1430 + 147.472i 0.226444 + 0.392213i
\(377\) 124.646i 0.330627i
\(378\) 0 0
\(379\) 135.902 0.358579 0.179290 0.983796i \(-0.442620\pi\)
0.179290 + 0.983796i \(0.442620\pi\)
\(380\) −31.4702 + 18.1693i −0.0828162 + 0.0478140i
\(381\) 0 0
\(382\) 61.0462 105.735i 0.159807 0.276794i
\(383\) −345.859 199.682i −0.903027 0.521363i −0.0248460 0.999691i \(-0.507910\pi\)
−0.878181 + 0.478328i \(0.841243\pi\)
\(384\) 0 0
\(385\) 91.2397 + 158.032i 0.236986 + 0.410472i
\(386\) 196.018i 0.507820i
\(387\) 0 0
\(388\) 163.186 0.420581
\(389\) 382.780 220.998i 0.984011 0.568119i 0.0805324 0.996752i \(-0.474338\pi\)
0.903479 + 0.428633i \(0.141005\pi\)
\(390\) 0 0
\(391\) −166.989 + 289.233i −0.427081 + 0.739726i
\(392\) 17.1464 + 9.89949i 0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) 27.8818 + 48.2926i 0.0707659 + 0.122570i
\(395\) 813.227i 2.05880i
\(396\) 0 0
\(397\) −384.151 −0.967635 −0.483817 0.875169i \(-0.660750\pi\)
−0.483817 + 0.875169i \(0.660750\pi\)
\(398\) 107.830 62.2557i 0.270930 0.156421i
\(399\) 0 0
\(400\) 4.22689 7.32118i 0.0105672 0.0183030i
\(401\) −224.637 129.694i −0.560193 0.323427i 0.193030 0.981193i \(-0.438168\pi\)
−0.753223 + 0.657765i \(0.771502\pi\)
\(402\) 0 0
\(403\) 95.6542 + 165.678i 0.237355 + 0.411112i
\(404\) 1.43095i 0.00354196i
\(405\) 0 0
\(406\) 58.1029 0.143111
\(407\) 220.488 127.299i 0.541739 0.312773i
\(408\) 0 0
\(409\) 47.4549 82.1943i 0.116027 0.200964i −0.802163 0.597105i \(-0.796318\pi\)
0.918190 + 0.396141i \(0.129651\pi\)
\(410\) −215.533 124.438i −0.525690 0.303507i
\(411\) 0 0
\(412\) 179.847 + 311.504i 0.436522 + 0.756079i
\(413\) 288.951i 0.699640i
\(414\) 0 0
\(415\) −782.012 −1.88437
\(416\) 39.3234 22.7034i 0.0945274 0.0545754i
\(417\) 0 0
\(418\) −32.6816 + 56.6063i −0.0781857 + 0.135422i
\(419\) 139.448 + 80.5105i 0.332812 + 0.192149i 0.657089 0.753813i \(-0.271788\pi\)
−0.324277 + 0.945962i \(0.605121\pi\)
\(420\) 0 0
\(421\) −266.914 462.308i −0.634000 1.09812i −0.986726 0.162393i \(-0.948079\pi\)
0.352727 0.935726i \(-0.385255\pi\)
\(422\) 272.573i 0.645908i
\(423\) 0 0
\(424\) −180.432 −0.425547
\(425\) −16.1510 + 9.32481i −0.0380025 + 0.0219407i
\(426\) 0 0
\(427\) 104.783 181.490i 0.245394 0.425035i
\(428\) −110.345 63.7076i −0.257815 0.148849i
\(429\) 0 0
\(430\) −167.815 290.663i −0.390266 0.675961i
\(431\) 224.292i 0.520399i −0.965555 0.260200i \(-0.916212\pi\)
0.965555 0.260200i \(-0.0837884\pi\)
\(432\) 0 0
\(433\) −754.086 −1.74154 −0.870770 0.491691i \(-0.836379\pi\)
−0.870770 + 0.491691i \(0.836379\pi\)
\(434\) 77.2295 44.5885i 0.177948 0.102738i
\(435\) 0 0
\(436\) −184.582 + 319.705i −0.423353 + 0.733268i
\(437\) −114.371 66.0319i −0.261718 0.151103i
\(438\) 0 0
\(439\) −250.978 434.707i −0.571705 0.990222i −0.996391 0.0848812i \(-0.972949\pi\)
0.424686 0.905341i \(-0.360384\pi\)
\(440\) 195.079i 0.443361i
\(441\) 0 0
\(442\) −100.170 −0.226630
\(443\) 213.379 123.194i 0.481668 0.278091i −0.239443 0.970910i \(-0.576965\pi\)
0.721111 + 0.692819i \(0.243632\pi\)
\(444\) 0 0
\(445\) 76.9834 133.339i 0.172996 0.299639i
\(446\) −220.384 127.239i −0.494135 0.285289i
\(447\) 0 0
\(448\) −10.5830 18.3303i −0.0236228 0.0409159i
\(449\) 187.215i 0.416959i 0.978027 + 0.208480i \(0.0668515\pi\)
−0.978027 + 0.208480i \(0.933149\pi\)
\(450\) 0 0
\(451\) −447.660 −0.992594
\(452\) −216.896 + 125.225i −0.479858 + 0.277046i
\(453\) 0 0
\(454\) 67.1128 116.243i 0.147826 0.256041i
\(455\) −95.7673 55.2913i −0.210478 0.121519i
\(456\) 0 0
\(457\) 273.781 + 474.203i 0.599084 + 1.03764i 0.992957 + 0.118479i \(0.0378019\pi\)
−0.393872 + 0.919165i \(0.628865\pi\)
\(458\) 501.291i 1.09452i
\(459\) 0 0
\(460\) 394.149 0.856845
\(461\) −126.424 + 72.9908i −0.274238 + 0.158332i −0.630812 0.775936i \(-0.717278\pi\)
0.356574 + 0.934267i \(0.383945\pi\)
\(462\) 0 0
\(463\) −95.3446 + 165.142i −0.205928 + 0.356677i −0.950428 0.310945i \(-0.899355\pi\)
0.744500 + 0.667622i \(0.232688\pi\)
\(464\) −53.7929 31.0573i −0.115933 0.0669339i
\(465\) 0 0
\(466\) −135.961 235.491i −0.291761 0.505345i
\(467\) 728.372i 1.55968i 0.625977 + 0.779841i \(0.284700\pi\)
−0.625977 + 0.779841i \(0.715300\pi\)
\(468\) 0 0
\(469\) −282.475 −0.602293
\(470\) −383.948 + 221.672i −0.816910 + 0.471643i
\(471\) 0 0
\(472\) 154.451 267.517i 0.327226 0.566773i
\(473\) −522.824 301.853i −1.10534 0.638166i
\(474\) 0 0
\(475\) −3.68729 6.38657i −0.00776271 0.0134454i
\(476\) 46.6937i 0.0980960i
\(477\) 0 0
\(478\) 410.218 0.858196
\(479\) −636.669 + 367.581i −1.32916 + 0.767392i −0.985170 0.171580i \(-0.945113\pi\)
−0.343992 + 0.938972i \(0.611779\pi\)
\(480\) 0 0
\(481\) −77.1430 + 133.616i −0.160380 + 0.277787i
\(482\) 137.075 + 79.1401i 0.284387 + 0.164191i
\(483\) 0 0
\(484\) −54.4468 94.3045i −0.112493 0.194844i
\(485\) 424.858i 0.875996i
\(486\) 0 0
\(487\) −189.093 −0.388281 −0.194140 0.980974i \(-0.562192\pi\)
−0.194140 + 0.980974i \(0.562192\pi\)
\(488\) −194.021 + 112.018i −0.397583 + 0.229545i
\(489\) 0 0
\(490\) −25.7736 + 44.6412i −0.0525992 + 0.0911045i
\(491\) 285.887 + 165.057i 0.582254 + 0.336164i 0.762029 0.647543i \(-0.224204\pi\)
−0.179775 + 0.983708i \(0.557537\pi\)
\(492\) 0 0
\(493\) 68.5147 + 118.671i 0.138975 + 0.240712i
\(494\) 39.6102i 0.0801825i
\(495\) 0 0
\(496\) −95.3342 −0.192206
\(497\) −215.704 + 124.537i −0.434012 + 0.250577i
\(498\) 0 0
\(499\) −153.572 + 265.994i −0.307759 + 0.533054i −0.977872 0.209205i \(-0.932912\pi\)
0.670113 + 0.742259i \(0.266246\pi\)
\(500\) −206.411 119.172i −0.412823 0.238343i
\(501\) 0 0
\(502\) 143.909 + 249.257i 0.286670 + 0.496528i
\(503\) 38.9199i 0.0773755i 0.999251 + 0.0386878i \(0.0123178\pi\)
−0.999251 + 0.0386878i \(0.987682\pi\)
\(504\) 0 0
\(505\) 3.72552 0.00737727
\(506\) 613.983 354.483i 1.21340 0.700559i
\(507\) 0 0
\(508\) 186.865 323.659i 0.367844 0.637125i
\(509\) −130.399 75.2856i −0.256186 0.147909i 0.366408 0.930454i \(-0.380588\pi\)
−0.622593 + 0.782546i \(0.713921\pi\)
\(510\) 0 0
\(511\) −4.50860 7.80912i −0.00882309 0.0152820i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −424.275 −0.825438
\(515\) −811.011 + 468.237i −1.57478 + 0.909198i
\(516\) 0 0
\(517\) −398.728 + 690.617i −0.771234 + 1.33582i
\(518\) 62.2839 + 35.9596i 0.120239 + 0.0694201i
\(519\) 0 0
\(520\) 59.1089 + 102.380i 0.113671 + 0.196884i
\(521\) 440.225i 0.844961i −0.906372 0.422480i \(-0.861160\pi\)
0.906372 0.422480i \(-0.138840\pi\)
\(522\) 0 0
\(523\) 324.153 0.619795 0.309898 0.950770i \(-0.399705\pi\)
0.309898 + 0.950770i \(0.399705\pi\)
\(524\) −25.0263 + 14.4489i −0.0477601 + 0.0275743i
\(525\) 0 0
\(526\) 133.478 231.191i 0.253761 0.439526i
\(527\) 182.137 + 105.157i 0.345611 + 0.199539i
\(528\) 0 0
\(529\) 451.719 + 782.400i 0.853911 + 1.47902i
\(530\) 469.760i 0.886340i
\(531\) 0 0
\(532\) −18.4640 −0.0347067
\(533\) 234.937 135.641i 0.440782 0.254486i
\(534\) 0 0
\(535\) 165.864 287.286i 0.310027 0.536982i
\(536\) 261.521 + 150.989i 0.487913 + 0.281697i
\(537\) 0 0
\(538\) 184.175 + 319.000i 0.342332 + 0.592937i
\(539\) 92.7194i 0.172021i
\(540\) 0 0
\(541\) −476.266 −0.880344 −0.440172 0.897914i \(-0.645083\pi\)
−0.440172 + 0.897914i \(0.645083\pi\)
\(542\) −174.091 + 100.511i −0.321200 + 0.185445i
\(543\) 0 0
\(544\) 24.9588 43.2300i 0.0458802 0.0794669i
\(545\) −832.361 480.564i −1.52727 0.881768i
\(546\) 0 0
\(547\) 169.902 + 294.279i 0.310607 + 0.537988i 0.978494 0.206275i \(-0.0661343\pi\)
−0.667887 + 0.744263i \(0.732801\pi\)
\(548\) 71.6663i 0.130778i
\(549\) 0 0
\(550\) 39.5893 0.0719806
\(551\) −46.9257 + 27.0926i −0.0851646 + 0.0491698i
\(552\) 0 0
\(553\) 206.604 357.848i 0.373605 0.647104i
\(554\) 13.0570 + 7.53845i 0.0235686 + 0.0136073i
\(555\) 0 0
\(556\) 35.0599 + 60.7255i 0.0630573 + 0.109219i
\(557\) 507.929i 0.911902i 0.890005 + 0.455951i \(0.150701\pi\)
−0.890005 + 0.455951i \(0.849299\pi\)
\(558\) 0 0
\(559\) 365.845 0.654464
\(560\) 47.7235 27.5532i 0.0852205 0.0492021i
\(561\) 0 0
\(562\) 125.106 216.691i 0.222609 0.385570i
\(563\) 393.970 + 227.459i 0.699769 + 0.404012i 0.807261 0.590194i \(-0.200949\pi\)
−0.107492 + 0.994206i \(0.534282\pi\)
\(564\) 0 0
\(565\) −326.026 564.694i −0.577038 0.999458i
\(566\) 428.411i 0.756910i
\(567\) 0 0
\(568\) 266.271 0.468786
\(569\) −382.086 + 220.597i −0.671504 + 0.387693i −0.796646 0.604446i \(-0.793395\pi\)
0.125142 + 0.992139i \(0.460061\pi\)
\(570\) 0 0
\(571\) 133.930 231.973i 0.234553 0.406258i −0.724590 0.689181i \(-0.757971\pi\)
0.959143 + 0.282923i \(0.0913039\pi\)
\(572\) 184.153 + 106.321i 0.321946 + 0.185875i
\(573\) 0 0
\(574\) −63.2280 109.514i −0.110153 0.190791i
\(575\) 79.9887i 0.139111i
\(576\) 0 0
\(577\) 608.884 1.05526 0.527629 0.849475i \(-0.323081\pi\)
0.527629 + 0.849475i \(0.323081\pi\)
\(578\) 258.583 149.293i 0.447375 0.258292i
\(579\) 0 0
\(580\) 80.8586 140.051i 0.139411 0.241468i
\(581\) −344.113 198.674i −0.592277 0.341951i
\(582\) 0 0
\(583\) −422.485 731.766i −0.724674 1.25517i
\(584\) 9.63979i 0.0165065i
\(585\) 0 0
\(586\) 759.515 1.29610
\(587\) 407.910 235.507i 0.694907 0.401205i −0.110541 0.993872i \(-0.535258\pi\)
0.805448 + 0.592667i \(0.201925\pi\)
\(588\) 0 0
\(589\) −41.5820 + 72.0221i −0.0705976 + 0.122279i
\(590\) 696.488 + 402.117i 1.18049 + 0.681555i
\(591\) 0 0
\(592\) −38.4424 66.5843i −0.0649366 0.112473i
\(593\) 354.707i 0.598157i 0.954229 + 0.299078i \(0.0966792\pi\)
−0.954229 + 0.299078i \(0.903321\pi\)
\(594\) 0 0
\(595\) −121.568 −0.204317
\(596\) −290.865 + 167.931i −0.488028 + 0.281763i
\(597\) 0 0
\(598\) −214.817 + 372.074i −0.359225 + 0.622197i
\(599\) 5.34958 + 3.08858i 0.00893085 + 0.00515623i 0.504459 0.863436i \(-0.331692\pi\)
−0.495528 + 0.868592i \(0.665025\pi\)
\(600\) 0 0
\(601\) 13.6355 + 23.6173i 0.0226880 + 0.0392967i 0.877146 0.480223i \(-0.159444\pi\)
−0.854459 + 0.519520i \(0.826111\pi\)
\(602\) 170.536i 0.283282i
\(603\) 0 0
\(604\) −388.002 −0.642387
\(605\) 245.525 141.754i 0.405826 0.234304i
\(606\) 0 0
\(607\) −109.142 + 189.040i −0.179806 + 0.311433i −0.941814 0.336135i \(-0.890880\pi\)
0.762008 + 0.647567i \(0.224214\pi\)
\(608\) 17.0943 + 9.86941i 0.0281157 + 0.0162326i
\(609\) 0 0
\(610\) −291.642 505.138i −0.478101 0.828096i
\(611\) 483.258i 0.790930i
\(612\) 0 0
\(613\) 691.709 1.12840 0.564200 0.825638i \(-0.309185\pi\)
0.564200 + 0.825638i \(0.309185\pi\)
\(614\) 624.107 360.328i 1.01646 0.586854i
\(615\) 0 0
\(616\) 49.5606 85.8415i 0.0804555 0.139353i
\(617\) 1066.69 + 615.852i 1.72883 + 0.998139i 0.894901 + 0.446264i \(0.147246\pi\)
0.833927 + 0.551875i \(0.186088\pi\)
\(618\) 0 0
\(619\) 135.951 + 235.475i 0.219631 + 0.380411i 0.954695 0.297586i \(-0.0961815\pi\)
−0.735064 + 0.677997i \(0.762848\pi\)
\(620\) 248.205i 0.400331i
\(621\) 0 0
\(622\) 441.986 0.710588
\(623\) 67.7508 39.1159i 0.108749 0.0627864i
\(624\) 0 0
\(625\) 336.685 583.155i 0.538696 0.933048i
\(626\) −692.183 399.632i −1.10572 0.638390i
\(627\) 0 0
\(628\) 16.5048 + 28.5871i 0.0262815 + 0.0455209i
\(629\) 169.613i 0.269656i
\(630\) 0 0
\(631\) −793.352 −1.25729 −0.628647 0.777691i \(-0.716391\pi\)
−0.628647 + 0.777691i \(0.716391\pi\)
\(632\) −382.556 + 220.869i −0.605310 + 0.349476i
\(633\) 0 0
\(634\) −96.3586 + 166.898i −0.151985 + 0.263246i
\(635\) 842.656 + 486.508i 1.32702 + 0.766154i
\(636\) 0 0
\(637\) −28.0940 48.6602i −0.0441036 0.0763897i
\(638\) 290.885i 0.455933i
\(639\) 0 0
\(640\) −58.9111 −0.0920486
\(641\) 714.591 412.569i 1.11481 0.643634i 0.174736 0.984615i \(-0.444093\pi\)
0.940070 + 0.340982i \(0.110759\pi\)
\(642\) 0 0
\(643\) 485.838 841.496i 0.755580 1.30870i −0.189506 0.981880i \(-0.560689\pi\)
0.945086 0.326823i \(-0.105978\pi\)
\(644\) 173.439 + 100.135i 0.269316 + 0.155489i
\(645\) 0 0
\(646\) −21.7726 37.7113i −0.0337037 0.0583766i
\(647\) 234.968i 0.363166i −0.983376 0.181583i \(-0.941878\pi\)
0.983376 0.181583i \(-0.0581221\pi\)
\(648\) 0 0
\(649\) 1446.60 2.22897
\(650\) −20.7769 + 11.9956i −0.0319645 + 0.0184547i
\(651\) 0 0
\(652\) −174.369 + 302.015i −0.267436 + 0.463214i
\(653\) −177.198 102.305i −0.271360 0.156670i 0.358145 0.933666i \(-0.383409\pi\)
−0.629506 + 0.776996i \(0.716743\pi\)
\(654\) 0 0
\(655\) −37.6182 65.1567i −0.0574324 0.0994758i
\(656\) 135.187i 0.206078i
\(657\) 0 0
\(658\) −225.267 −0.342351
\(659\) 888.097 512.743i 1.34764 0.778062i 0.359728 0.933057i \(-0.382870\pi\)
0.987915 + 0.154995i \(0.0495363\pi\)
\(660\) 0 0
\(661\) −416.193 + 720.867i −0.629641 + 1.09057i 0.357983 + 0.933728i \(0.383465\pi\)
−0.987624 + 0.156842i \(0.949869\pi\)
\(662\) 596.262 + 344.252i 0.900697 + 0.520018i
\(663\) 0 0
\(664\) 212.391 + 367.872i 0.319866 + 0.554024i
\(665\) 48.0715i 0.0722879i
\(666\) 0 0
\(667\) 587.722 0.881143
\(668\) 252.558 145.814i 0.378081 0.218285i
\(669\) 0 0
\(670\) −393.105 + 680.878i −0.586724 + 1.01624i
\(671\) −908.606 524.584i −1.35411 0.781794i
\(672\) 0 0
\(673\) 11.9190 + 20.6443i 0.0177102 + 0.0306750i 0.874745 0.484584i \(-0.161029\pi\)
−0.857034 + 0.515259i \(0.827696\pi\)
\(674\) 82.0484i 0.121734i
\(675\) 0 0
\(676\) 209.139 0.309378
\(677\) 878.026 506.929i 1.29694 0.748787i 0.317063 0.948405i \(-0.397303\pi\)
0.979874 + 0.199618i \(0.0639700\pi\)
\(678\) 0 0
\(679\) −107.937 + 186.953i −0.158965 + 0.275335i
\(680\) 112.550 + 64.9810i 0.165515 + 0.0955604i
\(681\) 0 0
\(682\) −223.227 386.640i −0.327312 0.566921i
\(683\) 1203.04i 1.76141i 0.473666 + 0.880704i \(0.342930\pi\)
−0.473666 + 0.880704i \(0.657070\pi\)
\(684\) 0 0
\(685\) −186.585 −0.272387
\(686\) −22.6826 + 13.0958i −0.0330650 + 0.0190901i
\(687\) 0 0
\(688\) −91.1553 + 157.886i −0.132493 + 0.229485i
\(689\) 443.450 + 256.026i 0.643614 + 0.371591i
\(690\) 0 0
\(691\) −460.688 797.935i −0.666698 1.15475i −0.978822 0.204713i \(-0.934374\pi\)
0.312124 0.950041i \(-0.398960\pi\)
\(692\) 116.273i 0.168025i
\(693\) 0 0
\(694\) 352.943 0.508564
\(695\) −158.101 + 91.2794i −0.227483 + 0.131337i
\(696\) 0 0
\(697\) 149.116 258.277i 0.213940 0.370555i
\(698\) −274.854 158.687i −0.393774 0.227345i
\(699\) 0 0
\(700\) 5.59164 + 9.68501i 0.00798806 + 0.0138357i
\(701\) 258.234i 0.368379i 0.982891 + 0.184189i \(0.0589660\pi\)
−0.982891 + 0.184189i \(0.941034\pi\)
\(702\) 0 0
\(703\) −67.0698 −0.0954051
\(704\) −91.7684 + 52.9825i −0.130353 + 0.0752593i
\(705\) 0 0
\(706\) −157.010 + 271.950i −0.222394 + 0.385198i
\(707\) 1.63936 + 0.946486i 0.00231876 + 0.00133873i
\(708\) 0 0
\(709\) −54.5101 94.4143i −0.0768831 0.133165i 0.825021 0.565103i \(-0.191164\pi\)
−0.901904 + 0.431937i \(0.857830\pi\)
\(710\) 693.243i 0.976399i
\(711\) 0 0
\(712\) −83.6334 −0.117463
\(713\) 781.191 451.021i 1.09564 0.632568i
\(714\) 0 0
\(715\) −276.809 + 479.447i −0.387146 + 0.670556i
\(716\) −307.553 177.566i −0.429544 0.247997i
\(717\) 0 0
\(718\) 223.617 + 387.316i 0.311444 + 0.539437i
\(719\) 736.032i 1.02369i 0.859078 + 0.511844i \(0.171038\pi\)
−0.859078 + 0.511844i \(0.828962\pi\)
\(720\) 0 0
\(721\) −475.831 −0.659960
\(722\) −427.221 + 246.656i −0.591719 + 0.341629i
\(723\) 0 0
\(724\) 42.0375 72.8111i 0.0580629 0.100568i
\(725\) 28.4220 + 16.4095i 0.0392028 + 0.0226338i
\(726\) 0 0
\(727\) −216.054 374.217i −0.297186 0.514741i 0.678305 0.734780i \(-0.262715\pi\)
−0.975491 + 0.220039i \(0.929381\pi\)
\(728\) 60.0675i 0.0825103i
\(729\) 0 0
\(730\) −25.0975 −0.0343801
\(731\) 348.307 201.095i 0.476480 0.275096i
\(732\) 0 0
\(733\) −267.895 + 464.008i −0.365478 + 0.633026i −0.988853 0.148897i \(-0.952428\pi\)
0.623375 + 0.781923i \(0.285761\pi\)
\(734\) 569.818 + 328.985i 0.776319 + 0.448208i
\(735\) 0 0
\(736\) −107.049 185.414i −0.145447 0.251922i
\(737\) 1414.18i 1.91883i
\(738\) 0 0
\(739\) 895.470 1.21173 0.605866 0.795567i \(-0.292827\pi\)
0.605866 + 0.795567i \(0.292827\pi\)
\(740\) 173.354 100.086i 0.234262 0.135251i
\(741\) 0 0
\(742\) 119.345 206.711i 0.160842 0.278586i
\(743\) −1157.51 668.291i −1.55789 0.899450i −0.997458 0.0712503i \(-0.977301\pi\)
−0.560434 0.828199i \(-0.689366\pi\)
\(744\) 0 0
\(745\) −437.213 757.274i −0.586863 1.01648i
\(746\) 112.715i 0.151093i
\(747\) 0 0
\(748\) 233.766 0.312522
\(749\) 145.972 84.2772i 0.194890 0.112520i
\(750\) 0 0
\(751\) 570.632 988.364i 0.759830 1.31606i −0.183107 0.983093i \(-0.558615\pi\)
0.942937 0.332971i \(-0.108051\pi\)
\(752\) 208.557 + 120.410i 0.277336 + 0.160120i
\(753\) 0 0
\(754\) 88.1383 + 152.660i 0.116894 + 0.202467i
\(755\) 1010.17i 1.33798i
\(756\) 0 0
\(757\) 775.634 1.02462 0.512308 0.858802i \(-0.328791\pi\)
0.512308 + 0.858802i \(0.328791\pi\)
\(758\) 166.445 96.0969i 0.219584 0.126777i
\(759\) 0 0
\(760\) −25.6953 + 44.5055i −0.0338096 + 0.0585599i
\(761\) −105.553 60.9413i −0.138703 0.0800805i 0.429042 0.903284i \(-0.358851\pi\)
−0.567746 + 0.823204i \(0.692184\pi\)
\(762\) 0 0
\(763\) −244.179 422.930i −0.320024 0.554299i
\(764\) 172.665i 0.226001i
\(765\) 0 0
\(766\) −564.786 −0.737319
\(767\) −759.192 + 438.320i −0.989820 + 0.571473i
\(768\) 0 0
\(769\) −682.681 + 1182.44i −0.887752 + 1.53763i −0.0452251 + 0.998977i \(0.514401\pi\)
−0.842527 + 0.538655i \(0.818933\pi\)
\(770\) 223.491 + 129.032i 0.290248 + 0.167575i
\(771\) 0 0
\(772\) −138.606 240.073i −0.179541 0.310975i
\(773\) 231.520i 0.299508i 0.988723 + 0.149754i \(0.0478482\pi\)
−0.988723 + 0.149754i \(0.952152\pi\)
\(774\) 0 0
\(775\) 50.3709 0.0649947
\(776\) 199.861 115.390i 0.257552 0.148698i
\(777\) 0 0
\(778\) 312.539 541.333i 0.401721 0.695801i
\(779\) 102.130 + 58.9646i 0.131104 + 0.0756927i
\(780\) 0 0
\(781\) 623.478 + 1079.90i 0.798307 + 1.38271i
\(782\) 472.316i 0.603984i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) −74.4273 + 42.9706i −0.0948119 + 0.0547397i
\(786\) 0 0
\(787\) 395.226 684.552i 0.502193 0.869824i −0.497804 0.867290i \(-0.665860\pi\)
0.999997 0.00253434i \(-0.000806706\pi\)
\(788\) 68.2961 + 39.4308i 0.0866702 + 0.0500390i
\(789\) 0 0
\(790\) −575.038 995.995i −0.727896 1.26075i
\(791\) 331.314i 0.418854i
\(792\) 0 0
\(793\) 635.796 0.801760
\(794\) −470.487 + 271.636i −0.592553 + 0.342110i
\(795\) 0 0
\(796\) 88.0429 152.495i 0.110607 0.191576i
\(797\) 66.4876 + 38.3866i 0.0834223 + 0.0481639i 0.541131 0.840938i \(-0.317996\pi\)
−0.457709 + 0.889102i \(0.651330\pi\)
\(798\) 0 0
\(799\) −265.634 460.091i −0.332458 0.575834i
\(800\) 11.9554i 0.0149443i
\(801\) 0 0
\(802\) −366.831 −0.457395
\(803\) −39.0954 + 22.5718i −0.0486867 + 0.0281093i
\(804\) 0 0
\(805\) −260.705 + 451.554i −0.323857 + 0.560937i
\(806\) 234.304 + 135.276i 0.290700 + 0.167836i
\(807\) 0 0
\(808\) −1.01184 1.75255i −0.00125227 0.00216900i
\(809\) 163.583i 0.202204i −0.994876 0.101102i \(-0.967763\pi\)
0.994876 0.101102i \(-0.0322368\pi\)
\(810\) 0 0
\(811\) 24.8546 0.0306469 0.0153235 0.999883i \(-0.495122\pi\)
0.0153235 + 0.999883i \(0.495122\pi\)
\(812\) 71.1613 41.0850i 0.0876371 0.0505973i
\(813\) 0 0
\(814\) 180.027 311.817i 0.221164 0.383067i
\(815\) −786.305 453.974i −0.964792 0.557023i
\(816\) 0 0
\(817\) 79.5185 + 137.730i 0.0973299 + 0.168580i
\(818\) 134.223i 0.164087i
\(819\) 0 0
\(820\) −351.964 −0.429224
\(821\) 251.574 145.246i 0.306424 0.176914i −0.338901 0.940822i \(-0.610055\pi\)
0.645325 + 0.763908i \(0.276722\pi\)
\(822\) 0 0
\(823\) −41.1232 + 71.2275i −0.0499675 + 0.0865462i −0.889927 0.456102i \(-0.849245\pi\)
0.839960 + 0.542649i \(0.182578\pi\)
\(824\) 440.534 + 254.342i 0.534628 + 0.308668i
\(825\) 0 0
\(826\) 204.319 + 353.891i 0.247360 + 0.428440i
\(827\) 1043.82i 1.26218i −0.775709 0.631090i \(-0.782608\pi\)
0.775709 0.631090i \(-0.217392\pi\)
\(828\) 0 0
\(829\) −121.734 −0.146844 −0.0734222 0.997301i \(-0.523392\pi\)
−0.0734222 + 0.997301i \(0.523392\pi\)
\(830\) −957.765 + 552.966i −1.15393 + 0.666224i
\(831\) 0 0
\(832\) 32.1074 55.6117i 0.0385906 0.0668410i
\(833\) −53.4944 30.8850i −0.0642189 0.0370768i
\(834\) 0 0
\(835\) 379.632 + 657.542i 0.454649 + 0.787475i
\(836\) 92.4376i 0.110571i
\(837\) 0 0
\(838\) 227.718 0.271740
\(839\) −873.889 + 504.540i −1.04158 + 0.601359i −0.920282 0.391257i \(-0.872040\pi\)
−0.121303 + 0.992616i \(0.538707\pi\)
\(840\) 0 0
\(841\) −299.930 + 519.494i −0.356635 + 0.617710i
\(842\) −653.803 377.473i −0.776488 0.448305i
\(843\) 0 0
\(844\) 192.738 + 333.832i 0.228363 + 0.395536i
\(845\) 544.500i 0.644379i
\(846\) 0 0
\(847\) 144.053 0.170074
\(848\) −220.983 + 127.585i −0.260593 + 0.150454i
\(849\) 0 0
\(850\) −13.1873 + 22.8410i −0.0155144 + 0.0268718i
\(851\) 630.013 + 363.738i 0.740321 + 0.427424i
\(852\) 0 0
\(853\) −572.363 991.362i −0.671000 1.16221i −0.977621 0.210375i \(-0.932532\pi\)
0.306620 0.951832i \(-0.400802\pi\)
\(854\) 296.372i 0.347039i
\(855\) 0 0
\(856\) −180.192 −0.210505
\(857\) 874.127 504.678i 1.01999 0.588889i 0.105886 0.994378i \(-0.466232\pi\)
0.914100 + 0.405490i \(0.132899\pi\)
\(858\) 0 0
\(859\) −544.449 + 943.013i −0.633817 + 1.09780i 0.352947 + 0.935643i \(0.385180\pi\)
−0.986764 + 0.162160i \(0.948154\pi\)
\(860\) −411.060 237.326i −0.477977 0.275960i
\(861\) 0 0
\(862\) −158.598 274.701i −0.183989 0.318678i
\(863\) 989.092i 1.14611i −0.819517 0.573055i \(-0.805758\pi\)
0.819517 0.573055i \(-0.194242\pi\)
\(864\) 0 0
\(865\) 302.721 0.349967
\(866\) −923.564 + 533.220i −1.06647 + 0.615727i
\(867\) 0 0
\(868\) 63.0577 109.219i 0.0726471 0.125828i
\(869\) −1791.52 1034.34i −2.06159 1.19026i
\(870\) 0 0
\(871\) −428.496 742.177i −0.491959 0.852098i
\(872\) 522.076i 0.598711i
\(873\) 0 0
\(874\) −186.767 −0.213692
\(875\) 273.056 157.649i 0.312065 0.180171i
\(876\) 0 0
\(877\) 310.022 536.973i 0.353502 0.612284i −0.633358 0.773859i \(-0.718324\pi\)
0.986860 + 0.161575i \(0.0516573\pi\)
\(878\) −614.769 354.937i −0.700193 0.404256i
\(879\) 0 0
\(880\) −137.942 238.922i −0.156752 0.271502i
\(881\) 636.200i 0.722134i −0.932540 0.361067i \(-0.882413\pi\)
0.932540 0.361067i \(-0.117587\pi\)
\(882\) 0 0
\(883\) 964.280 1.09205 0.546025 0.837769i \(-0.316140\pi\)
0.546025 + 0.837769i \(0.316140\pi\)
\(884\) −122.683 + 70.8312i −0.138782 + 0.0801258i
\(885\) 0 0
\(886\) 174.223 301.763i 0.196640 0.340591i
\(887\) 443.953 + 256.316i 0.500510 + 0.288970i 0.728924 0.684594i \(-0.240021\pi\)
−0.228414 + 0.973564i \(0.573354\pi\)
\(888\) 0 0
\(889\) 247.199 + 428.161i 0.278064 + 0.481621i
\(890\) 217.742i 0.244654i
\(891\) 0 0
\(892\) −359.886 −0.403459
\(893\) 181.933 105.039i 0.203732 0.117625i
\(894\) 0 0
\(895\) 462.298 800.724i 0.516534 0.894664i
\(896\) −25.9230 14.9666i −0.0289319 0.0167038i
\(897\) 0 0
\(898\) 132.381 + 229.290i 0.147417 + 0.255334i
\(899\) 370.103i 0.411683i
\(900\) 0 0
\(901\) 562.922 0.624775
\(902\) −548.269 + 316.543i −0.607837 + 0.350935i
\(903\) 0 0
\(904\) −177.095 + 306.737i −0.195901 + 0.339311i
\(905\) 189.566 + 109.446i 0.209465 + 0.120935i
\(906\) 0 0
\(907\) 607.985 + 1053.06i 0.670325 + 1.16104i 0.977812 + 0.209485i \(0.0671788\pi\)
−0.307486 + 0.951552i \(0.599488\pi\)
\(908\) 189.824i 0.209057i
\(909\) 0 0
\(910\) −156.387 −0.171854
\(911\) −346.092 + 199.817i −0.379904 + 0.219338i −0.677776 0.735268i \(-0.737056\pi\)
0.297873 + 0.954606i \(0.403723\pi\)
\(912\) 0 0
\(913\) −994.635 + 1722.76i −1.08941 + 1.88692i
\(914\) 670.625 + 387.185i 0.733725 + 0.423616i
\(915\) 0 0
\(916\) −354.467 613.954i −0.386972 0.670256i
\(917\) 38.2283i 0.0416884i
\(918\) 0 0
\(919\) −398.263 −0.433366 −0.216683 0.976242i \(-0.569524\pi\)
−0.216683 + 0.976242i \(0.569524\pi\)
\(920\) 482.732 278.705i 0.524708 0.302941i
\(921\) 0 0
\(922\) −103.225 + 178.790i −0.111957 + 0.193916i
\(923\) −654.417 377.828i −0.709011 0.409347i
\(924\) 0 0
\(925\) 20.3115 + 35.1805i 0.0219584 + 0.0380330i
\(926\) 269.675i 0.291226i
\(927\) 0 0
\(928\) −87.8434 −0.0946588
\(929\) −1491.17 + 860.930i −1.60514 + 0.926727i −0.614702 + 0.788760i \(0.710724\pi\)
−0.990437 + 0.137968i \(0.955943\pi\)
\(930\) 0 0
\(931\) 12.2128 21.1531i 0.0131179 0.0227209i
\(932\) −333.035 192.278i −0.357333 0.206306i
\(933\) 0 0
\(934\) 515.037 + 892.070i 0.551431 + 0.955107i
\(935\) 608.617i 0.650928i
\(936\) 0 0
\(937\) −1714.27 −1.82953 −0.914765 0.403987i \(-0.867624\pi\)
−0.914765 + 0.403987i \(0.867624\pi\)
\(938\) −345.960 + 199.740i −0.368827 + 0.212943i
\(939\) 0 0
\(940\) −313.492 + 542.984i −0.333502 + 0.577642i
\(941\) −76.8229 44.3537i −0.0816396 0.0471347i 0.458624 0.888630i \(-0.348342\pi\)
−0.540264 + 0.841496i \(0.681676\pi\)
\(942\) 0 0
\(943\) −639.563 1107.76i −0.678221 1.17471i
\(944\) 436.853i 0.462768i
\(945\) 0 0
\(946\) −853.768 −0.902503
\(947\) −403.626 + 233.034i −0.426215 + 0.246076i −0.697733 0.716358i \(-0.745808\pi\)
0.271518 + 0.962433i \(0.412474\pi\)
\(948\) 0 0
\(949\) 13.6785 23.6918i 0.0144136 0.0249651i
\(950\) −9.03197 5.21461i −0.00950733 0.00548906i
\(951\) 0 0
\(952\) 33.0174 + 57.1879i 0.0346822 + 0.0600713i
\(953\) 1024.37i 1.07489i 0.843299 + 0.537445i \(0.180611\pi\)
−0.843299 + 0.537445i \(0.819389\pi\)
\(954\) 0 0
\(955\) 449.538 0.470720
\(956\) 502.412 290.068i 0.525536 0.303418i
\(957\) 0 0
\(958\) −519.838 + 900.386i −0.542628 + 0.939860i
\(959\) −82.1040 47.4028i −0.0856142 0.0494294i
\(960\) 0 0
\(961\) 196.481 + 340.315i 0.204455 + 0.354126i
\(962\) 218.193i 0.226812i
\(963\) 0 0
\(964\) 223.842 0.232201
\(965\) 625.036 360.865i 0.647706 0.373953i
\(966\) 0 0
\(967\) −37.7510 + 65.3866i −0.0390393 + 0.0676180i −0.884885 0.465810i \(-0.845763\pi\)
0.845846 + 0.533428i \(0.179096\pi\)
\(968\) −133.367 76.9993i −0.137776 0.0795448i
\(969\) 0 0
\(970\) 300.420 + 520.343i 0.309712 + 0.536436i
\(971\) 1674.28i 1.72429i −0.506664 0.862144i \(-0.669122\pi\)
0.506664 0.862144i \(-0.330878\pi\)
\(972\) 0 0
\(973\) −92.7597 −0.0953337
\(974\) −231.590 + 133.709i −0.237772 + 0.137278i
\(975\) 0 0
\(976\) −158.417 + 274.387i −0.162313 + 0.281134i
\(977\) 933.331 + 538.859i 0.955303 + 0.551544i 0.894724 0.446619i \(-0.147372\pi\)
0.0605785 + 0.998163i \(0.480705\pi\)
\(978\) 0 0
\(979\) −195.829 339.186i −0.200030 0.346462i
\(980\) 72.8988i 0.0743865i
\(981\) 0 0
\(982\) 466.851 0.475408
\(983\) −163.825 + 94.5846i −0.166659 + 0.0962204i −0.581009 0.813897i \(-0.697342\pi\)
0.414351 + 0.910117i \(0.364009\pi\)
\(984\) 0 0
\(985\) −102.659 + 177.811i −0.104222 + 0.180519i
\(986\) 167.826 + 96.8944i 0.170209 + 0.0982701i
\(987\) 0 0
\(988\) −28.0086 48.5123i −0.0283488 0.0491016i
\(989\) 1725.00i 1.74419i
\(990\) 0 0
\(991\) −1637.86 −1.65273 −0.826367 0.563132i \(-0.809596\pi\)
−0.826367 + 0.563132i \(0.809596\pi\)
\(992\) −116.760 + 67.4115i −0.117702 + 0.0679551i
\(993\) 0 0
\(994\) −176.122 + 305.051i −0.177185 + 0.306893i
\(995\) 397.025 + 229.222i 0.399020 + 0.230374i
\(996\) 0 0
\(997\) 298.689 + 517.345i 0.299588 + 0.518902i 0.976042 0.217584i \(-0.0698174\pi\)
−0.676454 + 0.736485i \(0.736484\pi\)
\(998\) 434.366i 0.435237i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.q.a.71.12 24
3.2 odd 2 126.3.q.a.113.4 yes 24
9.2 odd 6 inner 378.3.q.a.197.12 24
9.4 even 3 1134.3.b.c.323.15 24
9.5 odd 6 1134.3.b.c.323.10 24
9.7 even 3 126.3.q.a.29.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.4 24 9.7 even 3
126.3.q.a.113.4 yes 24 3.2 odd 2
378.3.q.a.71.12 24 1.1 even 1 trivial
378.3.q.a.197.12 24 9.2 odd 6 inner
1134.3.b.c.323.10 24 9.5 odd 6
1134.3.b.c.323.15 24 9.4 even 3