Properties

Label 126.3.q.a.113.4
Level $126$
Weight $3$
Character 126.113
Analytic conductor $3.433$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(29,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.29"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 113.4
Character \(\chi\) \(=\) 126.113
Dual form 126.3.q.a.29.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(-0.392589 - 2.97420i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-4.50944 - 2.60353i) q^{5} +(2.58390 + 3.36504i) q^{6} +(1.32288 + 2.29129i) q^{7} +2.82843i q^{8} +(-8.69175 + 2.33528i) q^{9} +7.36389 q^{10} +(-11.4711 + 6.62282i) q^{11} +(-5.54406 - 2.29422i) q^{12} +(-4.01343 + 6.95146i) q^{13} +(-3.24037 - 1.87083i) q^{14} +(-5.97306 + 14.4341i) q^{15} +(-2.00000 - 3.46410i) q^{16} -8.82428i q^{17} +(8.99388 - 9.00611i) q^{18} -3.48936 q^{19} +(-9.01889 + 5.20706i) q^{20} +(6.29540 - 4.83403i) q^{21} +(9.36608 - 16.2225i) q^{22} +(-32.7769 - 18.9238i) q^{23} +(8.41231 - 1.11041i) q^{24} +(1.05672 + 1.83030i) q^{25} -11.3517i q^{26} +(10.3579 + 24.9342i) q^{27} +5.29150 q^{28} +(-13.4482 + 7.76433i) q^{29} +(-2.89098 - 21.9017i) q^{30} +(11.9168 - 20.6405i) q^{31} +(4.89898 + 2.82843i) q^{32} +(24.2010 + 31.5172i) q^{33} +(6.23971 + 10.8075i) q^{34} -13.7766i q^{35} +(-4.64693 + 17.3898i) q^{36} +19.2212 q^{37} +(4.27358 - 2.46735i) q^{38} +(22.2507 + 9.20767i) q^{39} +(7.36389 - 12.7546i) q^{40} +(29.2689 + 16.8984i) q^{41} +(-4.29209 + 10.3720i) q^{42} +(-22.7888 - 39.4714i) q^{43} +26.4913i q^{44} +(45.2749 + 12.0984i) q^{45} +53.5245 q^{46} +(52.1392 - 30.1026i) q^{47} +(-9.51776 + 7.30837i) q^{48} +(-3.50000 + 6.06218i) q^{49} +(-2.58843 - 1.49443i) q^{50} +(-26.2452 + 3.46432i) q^{51} +(8.02685 + 13.9029i) q^{52} +63.7924i q^{53} +(-30.3169 - 23.2139i) q^{54} +68.9708 q^{55} +(-6.48074 + 3.74166i) q^{56} +(1.36989 + 10.3781i) q^{57} +(10.9804 - 19.0187i) q^{58} +(-94.5815 - 54.6066i) q^{59} +(19.0276 + 24.7798i) q^{60} +(-39.6043 - 68.5967i) q^{61} +33.7057i q^{62} +(-16.8489 - 16.8260i) q^{63} -8.00000 q^{64} +(36.1966 - 20.8981i) q^{65} +(-51.9261 - 21.4878i) q^{66} +(-53.3828 + 92.4617i) q^{67} +(-15.2841 - 8.82428i) q^{68} +(-43.4153 + 104.915i) q^{69} +(9.74151 + 16.8728i) q^{70} -94.1409i q^{71} +(-6.60516 - 24.5840i) q^{72} -3.40818 q^{73} +(-23.5411 + 13.5915i) q^{74} +(5.02881 - 3.86146i) q^{75} +(-3.48936 + 6.04375i) q^{76} +(-30.3496 - 17.5223i) q^{77} +(-33.7622 + 4.45655i) q^{78} +(-78.0889 - 135.254i) q^{79} +20.8282i q^{80} +(70.0930 - 40.5953i) q^{81} -47.7959 q^{82} +(130.062 - 75.0915i) q^{83} +(-2.07739 - 15.7380i) q^{84} +(-22.9743 + 39.7926i) q^{85} +(55.8210 + 32.2283i) q^{86} +(28.3723 + 36.9495i) q^{87} +(-18.7322 - 32.4450i) q^{88} +29.5689i q^{89} +(-64.0051 + 17.1967i) q^{90} -21.2371 q^{91} +(-65.5539 + 37.8476i) q^{92} +(-66.0673 - 27.3397i) q^{93} +(-42.5715 + 73.7360i) q^{94} +(15.7351 + 9.08466i) q^{95} +(6.48903 - 15.6810i) q^{96} +(40.7964 + 70.6614i) q^{97} -9.89949i q^{98} +(84.2374 - 84.3519i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 36 q^{5} + 8 q^{6} - 32 q^{9} - 24 q^{12} - 44 q^{15} - 48 q^{16} + 48 q^{18} + 24 q^{19} + 72 q^{20} + 28 q^{21} + 24 q^{22} - 72 q^{23} - 16 q^{24} + 72 q^{25} - 108 q^{29} - 56 q^{30}+ \cdots - 440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.612372 + 0.353553i
\(3\) −0.392589 2.97420i −0.130863 0.991400i
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) −4.50944 2.60353i −0.901889 0.520706i −0.0240762 0.999710i \(-0.507664\pi\)
−0.877812 + 0.479004i \(0.840998\pi\)
\(6\) 2.58390 + 3.36504i 0.430650 + 0.560839i
\(7\) 1.32288 + 2.29129i 0.188982 + 0.327327i
\(8\) 2.82843i 0.353553i
\(9\) −8.69175 + 2.33528i −0.965750 + 0.259475i
\(10\) 7.36389 0.736389
\(11\) −11.4711 + 6.62282i −1.04282 + 0.602074i −0.920632 0.390432i \(-0.872326\pi\)
−0.122191 + 0.992507i \(0.538992\pi\)
\(12\) −5.54406 2.29422i −0.462005 0.191185i
\(13\) −4.01343 + 6.95146i −0.308725 + 0.534728i −0.978084 0.208212i \(-0.933236\pi\)
0.669359 + 0.742939i \(0.266569\pi\)
\(14\) −3.24037 1.87083i −0.231455 0.133631i
\(15\) −5.97306 + 14.4341i −0.398204 + 0.962274i
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 8.82428i 0.519075i −0.965733 0.259538i \(-0.916430\pi\)
0.965733 0.259538i \(-0.0835702\pi\)
\(18\) 8.99388 9.00611i 0.499660 0.500340i
\(19\) −3.48936 −0.183651 −0.0918253 0.995775i \(-0.529270\pi\)
−0.0918253 + 0.995775i \(0.529270\pi\)
\(20\) −9.01889 + 5.20706i −0.450944 + 0.260353i
\(21\) 6.29540 4.83403i 0.299781 0.230192i
\(22\) 9.36608 16.2225i 0.425731 0.737387i
\(23\) −32.7769 18.9238i −1.42508 0.822773i −0.428357 0.903609i \(-0.640907\pi\)
−0.996727 + 0.0808365i \(0.974241\pi\)
\(24\) 8.41231 1.11041i 0.350513 0.0462671i
\(25\) 1.05672 + 1.83030i 0.0422689 + 0.0732118i
\(26\) 11.3517i 0.436603i
\(27\) 10.3579 + 24.9342i 0.383625 + 0.923489i
\(28\) 5.29150 0.188982
\(29\) −13.4482 + 7.76433i −0.463732 + 0.267736i −0.713612 0.700541i \(-0.752942\pi\)
0.249880 + 0.968277i \(0.419609\pi\)
\(30\) −2.89098 21.9017i −0.0963661 0.730056i
\(31\) 11.9168 20.6405i 0.384412 0.665821i −0.607275 0.794491i \(-0.707738\pi\)
0.991687 + 0.128670i \(0.0410708\pi\)
\(32\) 4.89898 + 2.82843i 0.153093 + 0.0883883i
\(33\) 24.2010 + 31.5172i 0.733364 + 0.955066i
\(34\) 6.23971 + 10.8075i 0.183521 + 0.317867i
\(35\) 13.7766i 0.393617i
\(36\) −4.64693 + 17.3898i −0.129081 + 0.483051i
\(37\) 19.2212 0.519492 0.259746 0.965677i \(-0.416361\pi\)
0.259746 + 0.965677i \(0.416361\pi\)
\(38\) 4.27358 2.46735i 0.112463 0.0649303i
\(39\) 22.2507 + 9.20767i 0.570530 + 0.236094i
\(40\) 7.36389 12.7546i 0.184097 0.318866i
\(41\) 29.2689 + 16.8984i 0.713875 + 0.412156i 0.812494 0.582969i \(-0.198109\pi\)
−0.0986192 + 0.995125i \(0.531443\pi\)
\(42\) −4.29209 + 10.3720i −0.102193 + 0.246952i
\(43\) −22.7888 39.4714i −0.529973 0.917940i −0.999389 0.0349628i \(-0.988869\pi\)
0.469416 0.882977i \(-0.344465\pi\)
\(44\) 26.4913i 0.602074i
\(45\) 45.2749 + 12.0984i 1.00611 + 0.268854i
\(46\) 53.5245 1.16358
\(47\) 52.1392 30.1026i 1.10935 0.640481i 0.170685 0.985326i \(-0.445402\pi\)
0.938660 + 0.344845i \(0.112068\pi\)
\(48\) −9.51776 + 7.30837i −0.198287 + 0.152258i
\(49\) −3.50000 + 6.06218i −0.0714286 + 0.123718i
\(50\) −2.58843 1.49443i −0.0517686 0.0298886i
\(51\) −26.2452 + 3.46432i −0.514612 + 0.0679278i
\(52\) 8.02685 + 13.9029i 0.154363 + 0.267364i
\(53\) 63.7924i 1.20363i 0.798636 + 0.601815i \(0.205555\pi\)
−0.798636 + 0.601815i \(0.794445\pi\)
\(54\) −30.3169 23.2139i −0.561424 0.429887i
\(55\) 68.9708 1.25401
\(56\) −6.48074 + 3.74166i −0.115728 + 0.0668153i
\(57\) 1.36989 + 10.3781i 0.0240331 + 0.182071i
\(58\) 10.9804 19.0187i 0.189318 0.327908i
\(59\) −94.5815 54.6066i −1.60308 0.925536i −0.990867 0.134840i \(-0.956948\pi\)
−0.612208 0.790697i \(-0.709719\pi\)
\(60\) 19.0276 + 24.7798i 0.317126 + 0.412996i
\(61\) −39.6043 68.5967i −0.649251 1.12454i −0.983302 0.181981i \(-0.941749\pi\)
0.334051 0.942555i \(-0.391584\pi\)
\(62\) 33.7057i 0.543641i
\(63\) −16.8489 16.8260i −0.267443 0.267080i
\(64\) −8.00000 −0.125000
\(65\) 36.1966 20.8981i 0.556872 0.321510i
\(66\) −51.9261 21.4878i −0.786758 0.325573i
\(67\) −53.3828 + 92.4617i −0.796758 + 1.38003i 0.124958 + 0.992162i \(0.460120\pi\)
−0.921717 + 0.387864i \(0.873213\pi\)
\(68\) −15.2841 8.82428i −0.224766 0.129769i
\(69\) −43.4153 + 104.915i −0.629207 + 1.52050i
\(70\) 9.74151 + 16.8728i 0.139164 + 0.241040i
\(71\) 94.1409i 1.32593i −0.748651 0.662964i \(-0.769298\pi\)
0.748651 0.662964i \(-0.230702\pi\)
\(72\) −6.60516 24.5840i −0.0917384 0.341444i
\(73\) −3.40818 −0.0466874 −0.0233437 0.999727i \(-0.507431\pi\)
−0.0233437 + 0.999727i \(0.507431\pi\)
\(74\) −23.5411 + 13.5915i −0.318123 + 0.183668i
\(75\) 5.02881 3.86146i 0.0670508 0.0514861i
\(76\) −3.48936 + 6.04375i −0.0459127 + 0.0795231i
\(77\) −30.3496 17.5223i −0.394150 0.227563i
\(78\) −33.7622 + 4.45655i −0.432849 + 0.0571352i
\(79\) −78.0889 135.254i −0.988467 1.71208i −0.625381 0.780320i \(-0.715056\pi\)
−0.363087 0.931755i \(-0.618277\pi\)
\(80\) 20.8282i 0.260353i
\(81\) 70.0930 40.5953i 0.865345 0.501176i
\(82\) −47.7959 −0.582876
\(83\) 130.062 75.0915i 1.56702 0.904717i 0.570502 0.821296i \(-0.306749\pi\)
0.996514 0.0834211i \(-0.0265847\pi\)
\(84\) −2.07739 15.7380i −0.0247308 0.187357i
\(85\) −22.9743 + 39.7926i −0.270286 + 0.468148i
\(86\) 55.8210 + 32.2283i 0.649082 + 0.374747i
\(87\) 28.3723 + 36.9495i 0.326119 + 0.424707i
\(88\) −18.7322 32.4450i −0.212865 0.368694i
\(89\) 29.5689i 0.332235i 0.986106 + 0.166117i \(0.0531230\pi\)
−0.986106 + 0.166117i \(0.946877\pi\)
\(90\) −64.0051 + 17.1967i −0.711168 + 0.191075i
\(91\) −21.2371 −0.233374
\(92\) −65.5539 + 37.8476i −0.712542 + 0.411386i
\(93\) −66.0673 27.3397i −0.710401 0.293975i
\(94\) −42.5715 + 73.7360i −0.452888 + 0.784425i
\(95\) 15.7351 + 9.08466i 0.165632 + 0.0956280i
\(96\) 6.48903 15.6810i 0.0675940 0.163343i
\(97\) 40.7964 + 70.6614i 0.420581 + 0.728468i 0.995996 0.0893933i \(-0.0284928\pi\)
−0.575415 + 0.817862i \(0.695159\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 84.2374 84.3519i 0.850883 0.852040i
\(100\) 4.22689 0.0422689
\(101\) −0.619620 + 0.357738i −0.00613485 + 0.00354196i −0.503064 0.864249i \(-0.667794\pi\)
0.496929 + 0.867791i \(0.334461\pi\)
\(102\) 29.6940 22.8011i 0.291118 0.223540i
\(103\) −89.9236 + 155.752i −0.873044 + 1.51216i −0.0142130 + 0.999899i \(0.504524\pi\)
−0.858831 + 0.512258i \(0.828809\pi\)
\(104\) −19.6617 11.3517i −0.189055 0.109151i
\(105\) −40.9743 + 5.40853i −0.390232 + 0.0515099i
\(106\) −45.1080 78.1294i −0.425547 0.737070i
\(107\) 63.7076i 0.595398i 0.954660 + 0.297699i \(0.0962191\pi\)
−0.954660 + 0.297699i \(0.903781\pi\)
\(108\) 53.5452 + 6.99384i 0.495789 + 0.0647578i
\(109\) −184.582 −1.69341 −0.846705 0.532063i \(-0.821417\pi\)
−0.846705 + 0.532063i \(0.821417\pi\)
\(110\) −84.4716 + 48.7697i −0.767923 + 0.443361i
\(111\) −7.54604 57.1678i −0.0679824 0.515025i
\(112\) 5.29150 9.16515i 0.0472456 0.0818317i
\(113\) 108.448 + 62.6124i 0.959715 + 0.554092i 0.896085 0.443882i \(-0.146399\pi\)
0.0636298 + 0.997974i \(0.479732\pi\)
\(114\) −9.01616 11.7418i −0.0790892 0.102999i
\(115\) 98.5372 + 170.671i 0.856845 + 1.48410i
\(116\) 31.0573i 0.267736i
\(117\) 18.6501 69.7928i 0.159403 0.596520i
\(118\) 154.451 1.30891
\(119\) 20.2190 11.6734i 0.169907 0.0980960i
\(120\) −40.8258 16.8944i −0.340215 0.140786i
\(121\) 27.2234 47.1523i 0.224987 0.389688i
\(122\) 97.0103 + 56.0090i 0.795167 + 0.459090i
\(123\) 38.7686 93.6856i 0.315192 0.761672i
\(124\) −23.8336 41.2809i −0.192206 0.332911i
\(125\) 119.172i 0.953373i
\(126\) 32.5334 + 8.69361i 0.258201 + 0.0689969i
\(127\) 186.865 1.47138 0.735688 0.677320i \(-0.236859\pi\)
0.735688 + 0.677320i \(0.236859\pi\)
\(128\) 9.79796 5.65685i 0.0765466 0.0441942i
\(129\) −108.449 + 83.2746i −0.840692 + 0.645540i
\(130\) −29.5544 + 51.1898i −0.227342 + 0.393768i
\(131\) 12.5131 + 7.22447i 0.0955202 + 0.0551486i 0.546999 0.837133i \(-0.315770\pi\)
−0.451479 + 0.892282i \(0.649103\pi\)
\(132\) 78.7904 10.4002i 0.596897 0.0787892i
\(133\) −4.61599 7.99514i −0.0347067 0.0601138i
\(134\) 150.989i 1.12679i
\(135\) 18.2087 139.406i 0.134879 1.03264i
\(136\) 24.9588 0.183521
\(137\) 31.0324 17.9166i 0.226514 0.130778i −0.382449 0.923977i \(-0.624919\pi\)
0.608963 + 0.793199i \(0.291586\pi\)
\(138\) −21.0131 159.193i −0.152269 1.15357i
\(139\) −17.5299 + 30.3627i −0.126115 + 0.218437i −0.922168 0.386789i \(-0.873584\pi\)
0.796053 + 0.605226i \(0.206917\pi\)
\(140\) −23.8617 13.7766i −0.170441 0.0984041i
\(141\) −110.000 143.255i −0.780145 1.01599i
\(142\) 66.5677 + 115.299i 0.468786 + 0.811962i
\(143\) 106.321i 0.743502i
\(144\) 25.4731 + 25.4385i 0.176897 + 0.176657i
\(145\) 80.8586 0.557646
\(146\) 4.17415 2.40995i 0.0285901 0.0165065i
\(147\) 19.4042 + 8.02976i 0.132001 + 0.0546242i
\(148\) 19.2212 33.2921i 0.129873 0.224947i
\(149\) 145.432 + 83.9654i 0.976056 + 0.563526i 0.901077 0.433659i \(-0.142778\pi\)
0.0749788 + 0.997185i \(0.476111\pi\)
\(150\) −3.42855 + 8.28520i −0.0228570 + 0.0552347i
\(151\) −97.0005 168.010i −0.642387 1.11265i −0.984898 0.173133i \(-0.944611\pi\)
0.342511 0.939514i \(-0.388723\pi\)
\(152\) 9.86941i 0.0649303i
\(153\) 20.6072 + 76.6984i 0.134687 + 0.501297i
\(154\) 49.5606 0.321822
\(155\) −107.476 + 62.0513i −0.693394 + 0.400331i
\(156\) 38.1988 29.3316i 0.244864 0.188023i
\(157\) −8.25239 + 14.2936i −0.0525630 + 0.0910417i −0.891110 0.453788i \(-0.850072\pi\)
0.838547 + 0.544830i \(0.183406\pi\)
\(158\) 191.278 + 110.434i 1.21062 + 0.698952i
\(159\) 189.731 25.0442i 1.19328 0.157511i
\(160\) −14.7278 25.5093i −0.0920486 0.159433i
\(161\) 100.135i 0.621958i
\(162\) −57.1408 + 99.2821i −0.352721 + 0.612852i
\(163\) −174.369 −1.06975 −0.534873 0.844933i \(-0.679641\pi\)
−0.534873 + 0.844933i \(0.679641\pi\)
\(164\) 58.5377 33.7968i 0.356937 0.206078i
\(165\) −27.0772 205.133i −0.164104 1.24323i
\(166\) −106.195 + 183.936i −0.639732 + 1.10805i
\(167\) −126.279 72.9072i −0.756162 0.436570i 0.0717543 0.997422i \(-0.477140\pi\)
−0.827916 + 0.560852i \(0.810474\pi\)
\(168\) 13.6727 + 17.8061i 0.0813852 + 0.105989i
\(169\) 52.2848 + 90.5599i 0.309378 + 0.535858i
\(170\) 64.9810i 0.382241i
\(171\) 30.3287 8.14863i 0.177361 0.0476528i
\(172\) −91.1553 −0.529973
\(173\) −50.3479 + 29.0684i −0.291028 + 0.168025i −0.638406 0.769700i \(-0.720406\pi\)
0.347377 + 0.937725i \(0.387072\pi\)
\(174\) −60.8761 25.1915i −0.349863 0.144779i
\(175\) −2.79582 + 4.84251i −0.0159761 + 0.0276715i
\(176\) 45.8842 + 26.4913i 0.260706 + 0.150519i
\(177\) −125.279 + 302.742i −0.707794 + 1.71041i
\(178\) −20.9084 36.2143i −0.117463 0.203451i
\(179\) 177.566i 0.991989i 0.868326 + 0.495995i \(0.165196\pi\)
−0.868326 + 0.495995i \(0.834804\pi\)
\(180\) 66.2300 66.3200i 0.367944 0.368445i
\(181\) 42.0375 0.232251 0.116126 0.993235i \(-0.462952\pi\)
0.116126 + 0.993235i \(0.462952\pi\)
\(182\) 26.0100 15.0169i 0.142912 0.0825103i
\(183\) −188.472 + 144.721i −1.02990 + 0.790828i
\(184\) 53.5245 92.7072i 0.290894 0.503843i
\(185\) −86.6770 50.0430i −0.468524 0.270503i
\(186\) 100.248 13.2325i 0.538966 0.0711425i
\(187\) 58.4416 + 101.224i 0.312522 + 0.541304i
\(188\) 120.410i 0.640481i
\(189\) −43.4293 + 56.7177i −0.229784 + 0.300094i
\(190\) −25.6953 −0.135238
\(191\) −74.7660 + 43.1662i −0.391445 + 0.226001i −0.682786 0.730618i \(-0.739232\pi\)
0.291341 + 0.956619i \(0.405899\pi\)
\(192\) 3.14071 + 23.7936i 0.0163579 + 0.123925i
\(193\) 69.3030 120.036i 0.359083 0.621950i −0.628725 0.777628i \(-0.716423\pi\)
0.987808 + 0.155678i \(0.0497562\pi\)
\(194\) −99.9303 57.6948i −0.515105 0.297396i
\(195\) −76.3657 99.4517i −0.391619 0.510009i
\(196\) 7.00000 + 12.1244i 0.0357143 + 0.0618590i
\(197\) 39.4308i 0.200156i −0.994980 0.100078i \(-0.968091\pi\)
0.994980 0.100078i \(-0.0319093\pi\)
\(198\) −43.5235 + 162.874i −0.219816 + 0.822598i
\(199\) 88.0429 0.442427 0.221213 0.975225i \(-0.428998\pi\)
0.221213 + 0.975225i \(0.428998\pi\)
\(200\) −5.17686 + 2.98886i −0.0258843 + 0.0149443i
\(201\) 295.957 + 122.472i 1.47242 + 0.609312i
\(202\) 0.505918 0.876275i 0.00250454 0.00433800i
\(203\) −35.5806 20.5425i −0.175274 0.101195i
\(204\) −20.2448 + 48.9223i −0.0992393 + 0.239815i
\(205\) −87.9909 152.405i −0.429224 0.743437i
\(206\) 254.342i 1.23467i
\(207\) 329.081 + 87.9374i 1.58976 + 0.424818i
\(208\) 32.1074 0.154363
\(209\) 40.0267 23.1094i 0.191515 0.110571i
\(210\) 46.3587 35.5973i 0.220756 0.169511i
\(211\) −96.3691 + 166.916i −0.456726 + 0.791072i −0.998786 0.0492677i \(-0.984311\pi\)
0.542060 + 0.840340i \(0.317645\pi\)
\(212\) 110.492 + 63.7924i 0.521187 + 0.300907i
\(213\) −279.994 + 36.9587i −1.31453 + 0.173515i
\(214\) −45.0480 78.0255i −0.210505 0.364605i
\(215\) 237.326i 1.10384i
\(216\) −70.5246 + 29.2965i −0.326503 + 0.135632i
\(217\) 63.0577 0.290588
\(218\) 226.065 130.519i 1.03700 0.598711i
\(219\) 1.33801 + 10.1366i 0.00610966 + 0.0462859i
\(220\) 68.9708 119.461i 0.313503 0.543004i
\(221\) 61.3416 + 35.4156i 0.277564 + 0.160252i
\(222\) 49.6657 + 64.6801i 0.223719 + 0.291352i
\(223\) −89.9715 155.835i −0.403459 0.698812i 0.590681 0.806905i \(-0.298859\pi\)
−0.994141 + 0.108093i \(0.965526\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) −13.4590 13.4407i −0.0598178 0.0597366i
\(226\) −177.095 −0.783604
\(227\) −82.1961 + 47.4559i −0.362097 + 0.209057i −0.670000 0.742361i \(-0.733706\pi\)
0.307903 + 0.951418i \(0.400373\pi\)
\(228\) 19.3452 + 8.00536i 0.0848475 + 0.0351112i
\(229\) 177.233 306.977i 0.773945 1.34051i −0.161441 0.986882i \(-0.551614\pi\)
0.935386 0.353629i \(-0.115052\pi\)
\(230\) −241.366 139.353i −1.04942 0.605881i
\(231\) −40.2000 + 97.1448i −0.174026 + 0.420540i
\(232\) −21.9608 38.0373i −0.0946588 0.163954i
\(233\) 192.278i 0.825226i 0.910907 + 0.412613i \(0.135384\pi\)
−0.910907 + 0.412613i \(0.864616\pi\)
\(234\) 26.5093 + 98.6660i 0.113288 + 0.421650i
\(235\) −313.492 −1.33401
\(236\) −189.163 + 109.213i −0.801538 + 0.462768i
\(237\) −371.616 + 285.351i −1.56800 + 1.20401i
\(238\) −16.5087 + 28.5939i −0.0693644 + 0.120143i
\(239\) −251.206 145.034i −1.05107 0.606836i −0.128122 0.991758i \(-0.540895\pi\)
−0.922949 + 0.384922i \(0.874228\pi\)
\(240\) 61.9473 8.17694i 0.258114 0.0340706i
\(241\) 55.9605 + 96.9265i 0.232201 + 0.402184i 0.958456 0.285242i \(-0.0920739\pi\)
−0.726254 + 0.687426i \(0.758741\pi\)
\(242\) 76.9993i 0.318179i
\(243\) −148.256 192.533i −0.610108 0.792318i
\(244\) −158.417 −0.649251
\(245\) 31.5661 18.2247i 0.128841 0.0743865i
\(246\) 18.7641 + 142.155i 0.0762770 + 0.577864i
\(247\) 14.0043 24.2562i 0.0566976 0.0982031i
\(248\) 58.3800 + 33.7057i 0.235403 + 0.135910i
\(249\) −274.398 357.352i −1.10200 1.43515i
\(250\) −84.2671 145.955i −0.337068 0.583819i
\(251\) 203.517i 0.810826i −0.914134 0.405413i \(-0.867128\pi\)
0.914134 0.405413i \(-0.132872\pi\)
\(252\) −45.9924 + 12.3571i −0.182510 + 0.0490362i
\(253\) 501.315 1.98148
\(254\) −228.862 + 132.133i −0.901030 + 0.520210i
\(255\) 127.371 + 52.7080i 0.499493 + 0.206698i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 259.814 + 150.004i 1.01095 + 0.583673i 0.911470 0.411367i \(-0.134948\pi\)
0.0994809 + 0.995039i \(0.468282\pi\)
\(258\) 73.9387 178.675i 0.286584 0.692540i
\(259\) 25.4273 + 44.0413i 0.0981748 + 0.170044i
\(260\) 83.5926i 0.321510i
\(261\) 98.7566 98.8910i 0.378378 0.378893i
\(262\) −20.4339 −0.0779919
\(263\) −163.477 + 94.3833i −0.621584 + 0.358872i −0.777486 0.628901i \(-0.783505\pi\)
0.155901 + 0.987773i \(0.450172\pi\)
\(264\) −89.1440 + 68.4508i −0.337667 + 0.259283i
\(265\) 166.085 287.668i 0.626737 1.08554i
\(266\) 11.3068 + 6.52800i 0.0425069 + 0.0245414i
\(267\) 87.9438 11.6084i 0.329377 0.0434772i
\(268\) 106.766 + 184.923i 0.398379 + 0.690013i
\(269\) 260.462i 0.968261i −0.874996 0.484131i \(-0.839136\pi\)
0.874996 0.484131i \(-0.160864\pi\)
\(270\) 76.2742 + 183.613i 0.282497 + 0.680047i
\(271\) −142.144 −0.524518 −0.262259 0.964998i \(-0.584467\pi\)
−0.262259 + 0.964998i \(0.584467\pi\)
\(272\) −30.5682 + 17.6486i −0.112383 + 0.0648844i
\(273\) 8.33744 + 63.1633i 0.0305401 + 0.231367i
\(274\) −25.3378 + 43.8864i −0.0924739 + 0.160169i
\(275\) −24.2434 13.9969i −0.0881579 0.0508980i
\(276\) 138.302 + 180.112i 0.501094 + 0.652579i
\(277\) 5.33049 + 9.23268i 0.0192436 + 0.0333310i 0.875487 0.483242i \(-0.160541\pi\)
−0.856243 + 0.516573i \(0.827208\pi\)
\(278\) 49.5822i 0.178353i
\(279\) −55.3764 + 207.231i −0.198482 + 0.742762i
\(280\) 38.9660 0.139164
\(281\) −153.223 + 88.4636i −0.545279 + 0.314817i −0.747216 0.664582i \(-0.768610\pi\)
0.201937 + 0.979399i \(0.435276\pi\)
\(282\) 236.019 + 97.6682i 0.836946 + 0.346341i
\(283\) 151.466 262.347i 0.535216 0.927022i −0.463936 0.885869i \(-0.653563\pi\)
0.999153 0.0411536i \(-0.0131033\pi\)
\(284\) −163.057 94.1409i −0.574144 0.331482i
\(285\) 20.8422 50.3659i 0.0731304 0.176722i
\(286\) 75.1801 + 130.216i 0.262868 + 0.455300i
\(287\) 89.4179i 0.311561i
\(288\) −49.1859 13.1435i −0.170784 0.0456371i
\(289\) 211.132 0.730561
\(290\) −99.0312 + 57.1757i −0.341487 + 0.197158i
\(291\) 194.145 149.078i 0.667165 0.512294i
\(292\) −3.40818 + 5.90314i −0.0116719 + 0.0202162i
\(293\) −465.106 268.529i −1.58739 0.916481i −0.993735 0.111763i \(-0.964350\pi\)
−0.593657 0.804718i \(-0.702317\pi\)
\(294\) −29.4431 + 3.88643i −0.100147 + 0.0132192i
\(295\) 284.340 + 492.491i 0.963864 + 1.66946i
\(296\) 54.3658i 0.183668i
\(297\) −283.950 217.423i −0.956062 0.732065i
\(298\) −237.490 −0.796946
\(299\) 263.096 151.898i 0.879919 0.508021i
\(300\) −1.65943 12.5716i −0.00553143 0.0419054i
\(301\) 60.2936 104.432i 0.200311 0.346949i
\(302\) 237.602 + 137.179i 0.786760 + 0.454236i
\(303\) 1.30724 + 1.70243i 0.00431433 + 0.00561859i
\(304\) 6.97873 + 12.0875i 0.0229563 + 0.0397615i
\(305\) 412.444i 1.35227i
\(306\) −79.4725 79.3646i −0.259714 0.259361i
\(307\) 509.581 1.65987 0.829937 0.557858i \(-0.188376\pi\)
0.829937 + 0.557858i \(0.188376\pi\)
\(308\) −60.6991 + 35.0446i −0.197075 + 0.113781i
\(309\) 498.541 + 206.304i 1.61340 + 0.667651i
\(310\) 87.7538 151.994i 0.283077 0.490304i
\(311\) −270.660 156.265i −0.870289 0.502461i −0.00284453 0.999996i \(-0.500905\pi\)
−0.867444 + 0.497535i \(0.834239\pi\)
\(312\) −26.0432 + 62.9344i −0.0834719 + 0.201713i
\(313\) −282.583 489.447i −0.902820 1.56373i −0.823817 0.566855i \(-0.808160\pi\)
−0.0790023 0.996874i \(-0.525173\pi\)
\(314\) 23.3413i 0.0743353i
\(315\) 32.1721 + 119.743i 0.102134 + 0.380135i
\(316\) −312.356 −0.988467
\(317\) 118.015 68.1358i 0.372286 0.214939i −0.302171 0.953254i \(-0.597711\pi\)
0.674457 + 0.738314i \(0.264378\pi\)
\(318\) −214.664 + 164.833i −0.675043 + 0.518343i
\(319\) 102.843 178.130i 0.322393 0.558402i
\(320\) 36.0755 + 20.8282i 0.112736 + 0.0650882i
\(321\) 189.479 25.0109i 0.590278 0.0779155i
\(322\) 70.8063 + 122.640i 0.219895 + 0.380870i
\(323\) 30.7911i 0.0953286i
\(324\) −0.220160 162.000i −0.000679506 0.500000i
\(325\) −16.9643 −0.0521978
\(326\) 213.557 123.297i 0.655083 0.378212i
\(327\) 72.4648 + 548.983i 0.221605 + 1.67885i
\(328\) −47.7959 + 82.7849i −0.145719 + 0.252393i
\(329\) 137.947 + 79.6440i 0.419293 + 0.242079i
\(330\) 178.214 + 232.089i 0.540041 + 0.703300i
\(331\) 243.423 + 421.621i 0.735416 + 1.27378i 0.954540 + 0.298081i \(0.0963467\pi\)
−0.219124 + 0.975697i \(0.570320\pi\)
\(332\) 300.366i 0.904717i
\(333\) −167.066 + 44.8869i −0.501700 + 0.134795i
\(334\) 206.213 0.617403
\(335\) 481.454 277.967i 1.43717 0.829753i
\(336\) −29.3364 12.1399i −0.0873107 0.0361305i
\(337\) 29.0085 50.2442i 0.0860786 0.149093i −0.819772 0.572690i \(-0.805900\pi\)
0.905850 + 0.423598i \(0.139233\pi\)
\(338\) −128.071 73.9419i −0.378909 0.218763i
\(339\) 143.646 347.127i 0.423736 1.02397i
\(340\) 45.9485 + 79.5852i 0.135143 + 0.234074i
\(341\) 315.690i 0.925778i
\(342\) −31.3829 + 31.4256i −0.0917629 + 0.0918877i
\(343\) −18.5203 −0.0539949
\(344\) 111.642 64.4566i 0.324541 0.187374i
\(345\) 468.927 360.073i 1.35921 1.04369i
\(346\) 41.1089 71.2027i 0.118812 0.205788i
\(347\) −216.133 124.784i −0.622861 0.359609i 0.155121 0.987895i \(-0.450423\pi\)
−0.777982 + 0.628287i \(0.783757\pi\)
\(348\) 92.3708 12.1928i 0.265433 0.0350367i
\(349\) −112.209 194.351i −0.321515 0.556880i 0.659286 0.751892i \(-0.270859\pi\)
−0.980801 + 0.195012i \(0.937525\pi\)
\(350\) 7.90778i 0.0225937i
\(351\) −214.900 28.0693i −0.612250 0.0799694i
\(352\) −74.9286 −0.212865
\(353\) 192.298 111.023i 0.544753 0.314513i −0.202250 0.979334i \(-0.564825\pi\)
0.747003 + 0.664821i \(0.231492\pi\)
\(354\) −60.6357 459.368i −0.171287 1.29765i
\(355\) −245.099 + 424.523i −0.690418 + 1.19584i
\(356\) 51.2148 + 29.5689i 0.143862 + 0.0830586i
\(357\) −42.6569 55.5524i −0.119487 0.155609i
\(358\) −125.558 217.473i −0.350721 0.607467i
\(359\) 316.242i 0.880898i −0.897778 0.440449i \(-0.854819\pi\)
0.897778 0.440449i \(-0.145181\pi\)
\(360\) −34.2195 + 128.057i −0.0950541 + 0.355713i
\(361\) −348.824 −0.966272
\(362\) −51.4852 + 29.7250i −0.142224 + 0.0821133i
\(363\) −150.928 62.4563i −0.415779 0.172056i
\(364\) −21.2371 + 36.7837i −0.0583436 + 0.101054i
\(365\) 15.3690 + 8.87330i 0.0421069 + 0.0243104i
\(366\) 128.497 310.517i 0.351084 0.848407i
\(367\) 232.627 + 402.922i 0.633862 + 1.09788i 0.986755 + 0.162217i \(0.0518646\pi\)
−0.352893 + 0.935664i \(0.614802\pi\)
\(368\) 151.390i 0.411386i
\(369\) −293.860 78.5256i −0.796369 0.212806i
\(370\) 141.543 0.382549
\(371\) −146.167 + 84.3894i −0.393980 + 0.227465i
\(372\) −113.421 + 87.0922i −0.304895 + 0.234119i
\(373\) −39.8509 + 69.0237i −0.106839 + 0.185050i −0.914488 0.404613i \(-0.867406\pi\)
0.807649 + 0.589663i \(0.200740\pi\)
\(374\) −143.152 82.6489i −0.382760 0.220986i
\(375\) 354.440 46.7855i 0.945174 0.124761i
\(376\) 85.1430 + 147.472i 0.226444 + 0.392213i
\(377\) 124.646i 0.330627i
\(378\) 13.0843 100.174i 0.0346145 0.265010i
\(379\) 135.902 0.358579 0.179290 0.983796i \(-0.442620\pi\)
0.179290 + 0.983796i \(0.442620\pi\)
\(380\) 31.4702 18.1693i 0.0828162 0.0478140i
\(381\) −73.3611 555.773i −0.192549 1.45872i
\(382\) 61.0462 105.735i 0.159807 0.276794i
\(383\) 345.859 + 199.682i 0.903027 + 0.521363i 0.878181 0.478328i \(-0.158757\pi\)
0.0248460 + 0.999691i \(0.492090\pi\)
\(384\) −20.6712 26.9203i −0.0538312 0.0701049i
\(385\) 91.2397 + 158.032i 0.236986 + 0.410472i
\(386\) 196.018i 0.507820i
\(387\) 290.252 + 289.857i 0.750004 + 0.748985i
\(388\) 163.186 0.420581
\(389\) −382.780 + 220.998i −0.984011 + 0.568119i −0.903479 0.428633i \(-0.858995\pi\)
−0.0805324 + 0.996752i \(0.525662\pi\)
\(390\) 163.851 + 67.8043i 0.420132 + 0.173857i
\(391\) −166.989 + 289.233i −0.427081 + 0.739726i
\(392\) −17.1464 9.89949i −0.0437409 0.0252538i
\(393\) 16.5745 40.0529i 0.0421743 0.101916i
\(394\) 27.8818 + 48.2926i 0.0707659 + 0.122570i
\(395\) 813.227i 2.05880i
\(396\) −61.8645 230.255i −0.156223 0.581453i
\(397\) −384.151 −0.967635 −0.483817 0.875169i \(-0.660750\pi\)
−0.483817 + 0.875169i \(0.660750\pi\)
\(398\) −107.830 + 62.2557i −0.270930 + 0.156421i
\(399\) −21.9670 + 16.8677i −0.0550550 + 0.0422749i
\(400\) 4.22689 7.32118i 0.0105672 0.0183030i
\(401\) 224.637 + 129.694i 0.560193 + 0.323427i 0.753223 0.657765i \(-0.228498\pi\)
−0.193030 + 0.981193i \(0.561832\pi\)
\(402\) −449.073 + 59.2768i −1.11710 + 0.147455i
\(403\) 95.6542 + 165.678i 0.237355 + 0.411112i
\(404\) 1.43095i 0.00354196i
\(405\) −421.771 + 0.573193i −1.04141 + 0.00141529i
\(406\) 58.1029 0.143111
\(407\) −220.488 + 127.299i −0.541739 + 0.312773i
\(408\) −9.79857 74.2326i −0.0240161 0.181943i
\(409\) 47.4549 82.1943i 0.116027 0.200964i −0.802163 0.597105i \(-0.796318\pi\)
0.918190 + 0.396141i \(0.129651\pi\)
\(410\) 215.533 + 124.438i 0.525690 + 0.303507i
\(411\) −65.4704 85.2628i −0.159295 0.207452i
\(412\) 179.847 + 311.504i 0.436522 + 0.756079i
\(413\) 288.951i 0.699640i
\(414\) −465.222 + 124.995i −1.12372 + 0.301919i
\(415\) −782.012 −1.88437
\(416\) −39.3234 + 22.7034i −0.0945274 + 0.0545754i
\(417\) 97.1870 + 40.2175i 0.233062 + 0.0964448i
\(418\) −32.6816 + 56.6063i −0.0781857 + 0.135422i
\(419\) −139.448 80.5105i −0.332812 0.192149i 0.324277 0.945962i \(-0.394879\pi\)
−0.657089 + 0.753813i \(0.728212\pi\)
\(420\) −31.6065 + 76.3781i −0.0752535 + 0.181853i
\(421\) −266.914 462.308i −0.634000 1.09812i −0.986726 0.162393i \(-0.948079\pi\)
0.352727 0.935726i \(-0.385255\pi\)
\(422\) 272.573i 0.645908i
\(423\) −382.883 + 383.404i −0.905161 + 0.906392i
\(424\) −180.432 −0.425547
\(425\) 16.1510 9.32481i 0.0380025 0.0219407i
\(426\) 316.788 243.251i 0.743633 0.571011i
\(427\) 104.783 181.490i 0.245394 0.425035i
\(428\) 110.345 + 63.7076i 0.257815 + 0.148849i
\(429\) −316.219 + 41.7404i −0.737108 + 0.0972969i
\(430\) −167.815 290.663i −0.390266 0.675961i
\(431\) 224.292i 0.520399i 0.965555 + 0.260200i \(0.0837884\pi\)
−0.965555 + 0.260200i \(0.916212\pi\)
\(432\) 65.6589 85.7491i 0.151988 0.198493i
\(433\) −754.086 −1.74154 −0.870770 0.491691i \(-0.836379\pi\)
−0.870770 + 0.491691i \(0.836379\pi\)
\(434\) −77.2295 + 44.5885i −0.177948 + 0.102738i
\(435\) −31.7442 240.490i −0.0729752 0.552850i
\(436\) −184.582 + 319.705i −0.423353 + 0.733268i
\(437\) 114.371 + 66.0319i 0.261718 + 0.151103i
\(438\) −8.80640 11.4686i −0.0201059 0.0261841i
\(439\) −250.978 434.707i −0.571705 0.990222i −0.996391 0.0848812i \(-0.972949\pi\)
0.424686 0.905341i \(-0.360384\pi\)
\(440\) 195.079i 0.443361i
\(441\) 16.2642 60.8644i 0.0368804 0.138014i
\(442\) −100.170 −0.226630
\(443\) −213.379 + 123.194i −0.481668 + 0.278091i −0.721111 0.692819i \(-0.756368\pi\)
0.239443 + 0.970910i \(0.423035\pi\)
\(444\) −106.564 44.0977i −0.240008 0.0993190i
\(445\) 76.9834 133.339i 0.172996 0.299639i
\(446\) 220.384 + 127.239i 0.494135 + 0.285289i
\(447\) 192.635 465.509i 0.430950 1.04141i
\(448\) −10.5830 18.3303i −0.0236228 0.0409159i
\(449\) 187.215i 0.416959i −0.978027 0.208480i \(-0.933149\pi\)
0.978027 0.208480i \(-0.0668515\pi\)
\(450\) 25.9879 + 6.94451i 0.0577508 + 0.0154322i
\(451\) −447.660 −0.992594
\(452\) 216.896 125.225i 0.479858 0.277046i
\(453\) −461.613 + 354.458i −1.01901 + 0.782467i
\(454\) 67.1128 116.243i 0.147826 0.256041i
\(455\) 95.7673 + 55.2913i 0.210478 + 0.121519i
\(456\) −29.3536 + 3.87462i −0.0643720 + 0.00849698i
\(457\) 273.781 + 474.203i 0.599084 + 1.03764i 0.992957 + 0.118479i \(0.0378019\pi\)
−0.393872 + 0.919165i \(0.628865\pi\)
\(458\) 501.291i 1.09452i
\(459\) 220.026 91.4008i 0.479360 0.199130i
\(460\) 394.149 0.856845
\(461\) 126.424 72.9908i 0.274238 0.158332i −0.356574 0.934267i \(-0.616055\pi\)
0.630812 + 0.775936i \(0.282722\pi\)
\(462\) −19.4570 147.403i −0.0421146 0.319055i
\(463\) −95.3446 + 165.142i −0.205928 + 0.356677i −0.950428 0.310945i \(-0.899355\pi\)
0.744500 + 0.667622i \(0.232688\pi\)
\(464\) 53.7929 + 31.0573i 0.115933 + 0.0669339i
\(465\) 226.747 + 295.295i 0.487628 + 0.635043i
\(466\) −135.961 235.491i −0.291761 0.505345i
\(467\) 728.372i 1.55968i −0.625977 0.779841i \(-0.715300\pi\)
0.625977 0.779841i \(-0.284700\pi\)
\(468\) −102.235 102.096i −0.218450 0.218153i
\(469\) −282.475 −0.602293
\(470\) 383.948 221.672i 0.816910 0.471643i
\(471\) 45.7517 + 18.9328i 0.0971374 + 0.0401970i
\(472\) 154.451 267.517i 0.327226 0.566773i
\(473\) 522.824 + 301.853i 1.10534 + 0.638166i
\(474\) 253.360 612.255i 0.534516 1.29168i
\(475\) −3.68729 6.38657i −0.00776271 0.0134454i
\(476\) 46.6937i 0.0980960i
\(477\) −148.973 554.467i −0.312312 1.16241i
\(478\) 410.218 0.858196
\(479\) 636.669 367.581i 1.32916 0.767392i 0.343992 0.938972i \(-0.388221\pi\)
0.985170 + 0.171580i \(0.0548872\pi\)
\(480\) −70.0877 + 53.8180i −0.146016 + 0.112121i
\(481\) −77.1430 + 133.616i −0.160380 + 0.277787i
\(482\) −137.075 79.1401i −0.284387 0.164191i
\(483\) −297.822 + 39.3120i −0.616609 + 0.0813913i
\(484\) −54.4468 94.3045i −0.112493 0.194844i
\(485\) 424.858i 0.875996i
\(486\) 317.718 + 130.971i 0.653740 + 0.269488i
\(487\) −189.093 −0.388281 −0.194140 0.980974i \(-0.562192\pi\)
−0.194140 + 0.980974i \(0.562192\pi\)
\(488\) 194.021 112.018i 0.397583 0.229545i
\(489\) 68.4552 + 518.607i 0.139990 + 1.06055i
\(490\) −25.7736 + 44.6412i −0.0525992 + 0.0911045i
\(491\) −285.887 165.057i −0.582254 0.336164i 0.179775 0.983708i \(-0.442463\pi\)
−0.762029 + 0.647543i \(0.775796\pi\)
\(492\) −123.500 160.835i −0.251016 0.326900i
\(493\) 68.5147 + 118.671i 0.138975 + 0.240712i
\(494\) 39.6102i 0.0801825i
\(495\) −599.476 + 161.066i −1.21106 + 0.325386i
\(496\) −95.3342 −0.192206
\(497\) 215.704 124.537i 0.434012 0.250577i
\(498\) 588.754 + 243.635i 1.18224 + 0.489228i
\(499\) −153.572 + 265.994i −0.307759 + 0.533054i −0.977872 0.209205i \(-0.932912\pi\)
0.670113 + 0.742259i \(0.266246\pi\)
\(500\) 206.411 + 119.172i 0.412823 + 0.238343i
\(501\) −167.265 + 404.202i −0.333862 + 0.806790i
\(502\) 143.909 + 249.257i 0.286670 + 0.496528i
\(503\) 38.9199i 0.0773755i −0.999251 0.0386878i \(-0.987682\pi\)
0.999251 0.0386878i \(-0.0123178\pi\)
\(504\) 47.5912 47.6559i 0.0944269 0.0945553i
\(505\) 3.72552 0.00737727
\(506\) −613.983 + 354.483i −1.21340 + 0.700559i
\(507\) 248.817 191.058i 0.490763 0.376841i
\(508\) 186.865 323.659i 0.367844 0.637125i
\(509\) 130.399 + 75.2856i 0.256186 + 0.147909i 0.622593 0.782546i \(-0.286079\pi\)
−0.366408 + 0.930454i \(0.619412\pi\)
\(510\) −193.267 + 25.5109i −0.378954 + 0.0500213i
\(511\) −4.50860 7.80912i −0.00882309 0.0152820i
\(512\) 22.6274i 0.0441942i
\(513\) −36.1424 87.0045i −0.0704530 0.169599i
\(514\) −424.275 −0.825438
\(515\) 811.011 468.237i 1.57478 0.909198i
\(516\) 35.7866 + 271.114i 0.0693539 + 0.525415i
\(517\) −398.728 + 690.617i −0.771234 + 1.33582i
\(518\) −62.2839 35.9596i −0.120239 0.0694201i
\(519\) 106.221 + 138.333i 0.204665 + 0.266537i
\(520\) 59.1089 + 102.380i 0.113671 + 0.196884i
\(521\) 440.225i 0.844961i 0.906372 + 0.422480i \(0.138840\pi\)
−0.906372 + 0.422480i \(0.861160\pi\)
\(522\) −51.0252 + 190.948i −0.0977495 + 0.365800i
\(523\) 324.153 0.619795 0.309898 0.950770i \(-0.399705\pi\)
0.309898 + 0.950770i \(0.399705\pi\)
\(524\) 25.0263 14.4489i 0.0477601 0.0275743i
\(525\) 15.5002 + 6.41422i 0.0295242 + 0.0122176i
\(526\) 133.478 231.191i 0.253761 0.439526i
\(527\) −182.137 105.157i −0.345611 0.199539i
\(528\) 60.7767 146.869i 0.115107 0.278161i
\(529\) 451.719 + 782.400i 0.853911 + 1.47902i
\(530\) 469.760i 0.886340i
\(531\) 949.600 + 253.753i 1.78832 + 0.477878i
\(532\) −18.4640 −0.0347067
\(533\) −234.937 + 135.641i −0.440782 + 0.254486i
\(534\) −99.5003 + 76.4030i −0.186330 + 0.143077i
\(535\) 165.864 287.286i 0.310027 0.536982i
\(536\) −261.521 150.989i −0.487913 0.281697i
\(537\) 528.117 69.7105i 0.983459 0.129815i
\(538\) 184.175 + 319.000i 0.342332 + 0.592937i
\(539\) 92.7194i 0.172021i
\(540\) −223.250 170.945i −0.413426 0.316564i
\(541\) −476.266 −0.880344 −0.440172 0.897914i \(-0.645083\pi\)
−0.440172 + 0.897914i \(0.645083\pi\)
\(542\) 174.091 100.511i 0.321200 0.185445i
\(543\) −16.5035 125.028i −0.0303931 0.230254i
\(544\) 24.9588 43.2300i 0.0458802 0.0794669i
\(545\) 832.361 + 480.564i 1.52727 + 0.881768i
\(546\) −54.8744 71.4635i −0.100503 0.130885i
\(547\) 169.902 + 294.279i 0.310607 + 0.537988i 0.978494 0.206275i \(-0.0661343\pi\)
−0.667887 + 0.744263i \(0.732801\pi\)
\(548\) 71.6663i 0.130778i
\(549\) 504.423 + 503.738i 0.918803 + 0.917555i
\(550\) 39.5893 0.0719806
\(551\) 46.9257 27.0926i 0.0851646 0.0491698i
\(552\) −296.743 122.797i −0.537578 0.222458i
\(553\) 206.604 357.848i 0.373605 0.647104i
\(554\) −13.0570 7.53845i −0.0235686 0.0136073i
\(555\) −114.809 + 277.441i −0.206864 + 0.499894i
\(556\) 35.0599 + 60.7255i 0.0630573 + 0.109219i
\(557\) 507.929i 0.911902i −0.890005 0.455951i \(-0.849299\pi\)
0.890005 0.455951i \(-0.150701\pi\)
\(558\) −78.7123 292.962i −0.141061 0.525021i
\(559\) 365.845 0.654464
\(560\) −47.7235 + 27.5532i −0.0852205 + 0.0492021i
\(561\) 278.116 213.556i 0.495751 0.380671i
\(562\) 125.106 216.691i 0.222609 0.385570i
\(563\) −393.970 227.459i −0.699769 0.404012i 0.107492 0.994206i \(-0.465718\pi\)
−0.807261 + 0.590194i \(0.799051\pi\)
\(564\) −358.125 + 47.2718i −0.634973 + 0.0838152i
\(565\) −326.026 564.694i −0.577038 0.999458i
\(566\) 428.411i 0.756910i
\(567\) 185.740 + 106.901i 0.327583 + 0.188537i
\(568\) 266.271 0.468786
\(569\) 382.086 220.597i 0.671504 0.387693i −0.125142 0.992139i \(-0.539939\pi\)
0.796646 + 0.604446i \(0.206605\pi\)
\(570\) 10.0877 + 76.4230i 0.0176977 + 0.134075i
\(571\) 133.930 231.973i 0.234553 0.406258i −0.724590 0.689181i \(-0.757971\pi\)
0.959143 + 0.282923i \(0.0913039\pi\)
\(572\) −184.153 106.321i −0.321946 0.185875i
\(573\) 157.737 + 205.423i 0.275283 + 0.358504i
\(574\) −63.2280 109.514i −0.110153 0.190791i
\(575\) 79.9887i 0.139111i
\(576\) 69.5340 18.6822i 0.120719 0.0324344i
\(577\) 608.884 1.05526 0.527629 0.849475i \(-0.323081\pi\)
0.527629 + 0.849475i \(0.323081\pi\)
\(578\) −258.583 + 149.293i −0.447375 + 0.258292i
\(579\) −384.220 158.996i −0.663592 0.274605i
\(580\) 80.8586 140.051i 0.139411 0.241468i
\(581\) 344.113 + 198.674i 0.592277 + 0.341951i
\(582\) −132.364 + 319.863i −0.227430 + 0.549593i
\(583\) −422.485 731.766i −0.724674 1.25517i
\(584\) 9.63979i 0.0165065i
\(585\) −265.809 + 266.171i −0.454375 + 0.454993i
\(586\) 759.515 1.29610
\(587\) −407.910 + 235.507i −0.694907 + 0.401205i −0.805448 0.592667i \(-0.798075\pi\)
0.110541 + 0.993872i \(0.464742\pi\)
\(588\) 33.3122 25.5793i 0.0566533 0.0435022i
\(589\) −41.5820 + 72.0221i −0.0705976 + 0.122279i
\(590\) −696.488 402.117i −1.18049 0.681555i
\(591\) −117.275 + 15.4801i −0.198435 + 0.0261930i
\(592\) −38.4424 66.5843i −0.0649366 0.112473i
\(593\) 354.707i 0.598157i −0.954229 0.299078i \(-0.903321\pi\)
0.954229 0.299078i \(-0.0966792\pi\)
\(594\) 501.508 + 65.5049i 0.844290 + 0.110278i
\(595\) −121.568 −0.204317
\(596\) 290.865 167.931i 0.488028 0.281763i
\(597\) −34.5647 261.857i −0.0578973 0.438622i
\(598\) −214.817 + 372.074i −0.359225 + 0.622197i
\(599\) −5.34958 3.08858i −0.00893085 0.00515623i 0.495528 0.868592i \(-0.334975\pi\)
−0.504459 + 0.863436i \(0.668308\pi\)
\(600\) 10.9218 + 14.2236i 0.0182031 + 0.0237060i
\(601\) 13.6355 + 23.6173i 0.0226880 + 0.0392967i 0.877146 0.480223i \(-0.159444\pi\)
−0.854459 + 0.519520i \(0.826111\pi\)
\(602\) 170.536i 0.283282i
\(603\) 248.066 928.318i 0.411386 1.53950i
\(604\) −388.002 −0.642387
\(605\) −245.525 + 141.754i −0.405826 + 0.234304i
\(606\) −2.80484 1.16069i −0.00462844 0.00191532i
\(607\) −109.142 + 189.040i −0.179806 + 0.311433i −0.941814 0.336135i \(-0.890880\pi\)
0.762008 + 0.647567i \(0.224214\pi\)
\(608\) −17.0943 9.86941i −0.0281157 0.0162326i
\(609\) −47.1289 + 113.889i −0.0773874 + 0.187009i
\(610\) −291.642 505.138i −0.478101 0.828096i
\(611\) 483.258i 0.790930i
\(612\) 153.453 + 41.0058i 0.250740 + 0.0670029i
\(613\) 691.709 1.12840 0.564200 0.825638i \(-0.309185\pi\)
0.564200 + 0.825638i \(0.309185\pi\)
\(614\) −624.107 + 360.328i −1.01646 + 0.586854i
\(615\) −418.738 + 321.535i −0.680875 + 0.522821i
\(616\) 49.5606 85.8415i 0.0804555 0.139353i
\(617\) −1066.69 615.852i −1.72883 0.998139i −0.894901 0.446264i \(-0.852754\pi\)
−0.833927 0.551875i \(-0.813912\pi\)
\(618\) −756.465 + 99.8520i −1.22405 + 0.161573i
\(619\) 135.951 + 235.475i 0.219631 + 0.380411i 0.954695 0.297586i \(-0.0961815\pi\)
−0.735064 + 0.677997i \(0.762848\pi\)
\(620\) 248.205i 0.400331i
\(621\) 132.350 1013.28i 0.213124 1.63169i
\(622\) 441.986 0.710588
\(623\) −67.7508 + 39.1159i −0.108749 + 0.0627864i
\(624\) −12.6050 95.4939i −0.0202004 0.153035i
\(625\) 336.685 583.155i 0.538696 0.933048i
\(626\) 692.183 + 399.632i 1.10572 + 0.638390i
\(627\) −84.4461 109.975i −0.134683 0.175399i
\(628\) 16.5048 + 28.5871i 0.0262815 + 0.0455209i
\(629\) 169.613i 0.269656i
\(630\) −124.073 123.905i −0.196942 0.196674i
\(631\) −793.352 −1.25729 −0.628647 0.777691i \(-0.716391\pi\)
−0.628647 + 0.777691i \(0.716391\pi\)
\(632\) 382.556 220.869i 0.605310 0.349476i
\(633\) 534.276 + 221.092i 0.844038 + 0.349276i
\(634\) −96.3586 + 166.898i −0.151985 + 0.263246i
\(635\) −842.656 486.508i −1.32702 0.766154i
\(636\) 146.354 353.669i 0.230116 0.556083i
\(637\) −28.0940 48.6602i −0.0441036 0.0763897i
\(638\) 290.885i 0.455933i
\(639\) 219.845 + 818.249i 0.344046 + 1.28051i
\(640\) −58.9111 −0.0920486
\(641\) −714.591 + 412.569i −1.11481 + 0.643634i −0.940070 0.340982i \(-0.889241\pi\)
−0.174736 + 0.984615i \(0.555907\pi\)
\(642\) −214.378 + 164.614i −0.333922 + 0.256408i
\(643\) 485.838 841.496i 0.755580 1.30870i −0.189506 0.981880i \(-0.560689\pi\)
0.945086 0.326823i \(-0.105978\pi\)
\(644\) −173.439 100.135i −0.269316 0.155489i
\(645\) 705.854 93.1714i 1.09435 0.144452i
\(646\) −21.7726 37.7113i −0.0337037 0.0583766i
\(647\) 234.968i 0.363166i 0.983376 + 0.181583i \(0.0581221\pi\)
−0.983376 + 0.181583i \(0.941878\pi\)
\(648\) 114.821 + 198.253i 0.177193 + 0.305946i
\(649\) 1446.60 2.22897
\(650\) 20.7769 11.9956i 0.0319645 0.0184547i
\(651\) −24.7557 187.546i −0.0380273 0.288089i
\(652\) −174.369 + 302.015i −0.267436 + 0.463214i
\(653\) 177.198 + 102.305i 0.271360 + 0.156670i 0.629506 0.776996i \(-0.283257\pi\)
−0.358145 + 0.933666i \(0.616591\pi\)
\(654\) −476.941 621.124i −0.729267 0.949731i
\(655\) −37.6182 65.1567i −0.0574324 0.0994758i
\(656\) 135.187i 0.206078i
\(657\) 29.6230 7.95905i 0.0450884 0.0121142i
\(658\) −225.267 −0.342351
\(659\) −888.097 + 512.743i −1.34764 + 0.778062i −0.987915 0.154995i \(-0.950464\pi\)
−0.359728 + 0.933057i \(0.617130\pi\)
\(660\) −382.378 158.234i −0.579360 0.239748i
\(661\) −416.193 + 720.867i −0.629641 + 1.09057i 0.357983 + 0.933728i \(0.383465\pi\)
−0.987624 + 0.156842i \(0.949869\pi\)
\(662\) −596.262 344.252i −0.900697 0.520018i
\(663\) 81.2511 196.346i 0.122551 0.296148i
\(664\) 212.391 + 367.872i 0.319866 + 0.554024i
\(665\) 48.0715i 0.0722879i
\(666\) 172.873 173.108i 0.259570 0.259923i
\(667\) 587.722 0.881143
\(668\) −252.558 + 145.814i −0.378081 + 0.218285i
\(669\) −428.163 + 328.772i −0.640005 + 0.491439i
\(670\) −393.105 + 680.878i −0.586724 + 1.01624i
\(671\) 908.606 + 524.584i 1.35411 + 0.781794i
\(672\) 44.5138 5.87574i 0.0662407 0.00874365i
\(673\) 11.9190 + 20.6443i 0.0177102 + 0.0306750i 0.874745 0.484584i \(-0.161029\pi\)
−0.857034 + 0.515259i \(0.827696\pi\)
\(674\) 82.0484i 0.121734i
\(675\) −34.6916 + 45.3065i −0.0513949 + 0.0671207i
\(676\) 209.139 0.309378
\(677\) −878.026 + 506.929i −1.29694 + 0.748787i −0.979874 0.199618i \(-0.936030\pi\)
−0.317063 + 0.948405i \(0.602697\pi\)
\(678\) 69.5254 + 526.715i 0.102545 + 0.776866i
\(679\) −107.937 + 186.953i −0.158965 + 0.275335i
\(680\) −112.550 64.9810i −0.165515 0.0955604i
\(681\) 173.413 + 225.837i 0.254644 + 0.331626i
\(682\) −223.227 386.640i −0.327312 0.566921i
\(683\) 1203.04i 1.76141i −0.473666 0.880704i \(-0.657070\pi\)
0.473666 0.880704i \(-0.342930\pi\)
\(684\) 16.2148 60.6794i 0.0237059 0.0887126i
\(685\) −186.585 −0.272387
\(686\) 22.6826 13.0958i 0.0330650 0.0190901i
\(687\) −982.591 406.612i −1.43026 0.591866i
\(688\) −91.1553 + 157.886i −0.132493 + 0.229485i
\(689\) −443.450 256.026i −0.643614 0.371591i
\(690\) −319.705 + 772.579i −0.463341 + 1.11968i
\(691\) −460.688 797.935i −0.666698 1.15475i −0.978822 0.204713i \(-0.934374\pi\)
0.312124 0.950041i \(-0.398960\pi\)
\(692\) 116.273i 0.168025i
\(693\) 304.710 + 81.4250i 0.439697 + 0.117496i
\(694\) 352.943 0.508564
\(695\) 158.101 91.2794i 0.227483 0.131337i
\(696\) −104.509 + 80.2490i −0.150157 + 0.115300i
\(697\) 149.116 258.277i 0.213940 0.370555i
\(698\) 274.854 + 158.687i 0.393774 + 0.227345i
\(699\) 571.872 75.4861i 0.818129 0.107992i
\(700\) 5.59164 + 9.68501i 0.00798806 + 0.0138357i
\(701\) 258.234i 0.368379i −0.982891 0.184189i \(-0.941034\pi\)
0.982891 0.184189i \(-0.0589660\pi\)
\(702\) 283.045 117.579i 0.403198 0.167492i
\(703\) −67.0698 −0.0954051
\(704\) 91.7684 52.9825i 0.130353 0.0752593i
\(705\) 123.073 + 932.388i 0.174572 + 1.32254i
\(706\) −157.010 + 271.950i −0.222394 + 0.385198i
\(707\) −1.63936 0.946486i −0.00231876 0.00133873i
\(708\) 399.086 + 519.733i 0.563680 + 0.734086i
\(709\) −54.5101 94.4143i −0.0768831 0.133165i 0.825021 0.565103i \(-0.191164\pi\)
−0.901904 + 0.431937i \(0.857830\pi\)
\(710\) 693.243i 0.976399i
\(711\) 994.585 + 993.234i 1.39885 + 1.39695i
\(712\) −83.6334 −0.117463
\(713\) −781.191 + 451.021i −1.09564 + 0.632568i
\(714\) 91.5253 + 37.8746i 0.128187 + 0.0530456i
\(715\) −276.809 + 479.447i −0.387146 + 0.670556i
\(716\) 307.553 + 177.566i 0.429544 + 0.247997i
\(717\) −332.739 + 804.076i −0.464071 + 1.12145i
\(718\) 223.617 + 387.316i 0.311444 + 0.539437i
\(719\) 736.032i 1.02369i −0.859078 0.511844i \(-0.828962\pi\)
0.859078 0.511844i \(-0.171038\pi\)
\(720\) −48.6397 181.034i −0.0675551 0.251436i
\(721\) −475.831 −0.659960
\(722\) 427.221 246.656i 0.591719 0.341629i
\(723\) 266.309 204.490i 0.368339 0.282836i
\(724\) 42.0375 72.8111i 0.0580629 0.100568i
\(725\) −28.4220 16.4095i −0.0392028 0.0226338i
\(726\) 229.012 30.2291i 0.315443 0.0416379i
\(727\) −216.054 374.217i −0.297186 0.514741i 0.678305 0.734780i \(-0.262715\pi\)
−0.975491 + 0.220039i \(0.929381\pi\)
\(728\) 60.0675i 0.0825103i
\(729\) −514.429 + 516.531i −0.705664 + 0.708547i
\(730\) −25.0975 −0.0343801
\(731\) −348.307 + 201.095i −0.476480 + 0.275096i
\(732\) 62.1929 + 471.165i 0.0849630 + 0.643668i
\(733\) −267.895 + 464.008i −0.365478 + 0.633026i −0.988853 0.148897i \(-0.952428\pi\)
0.623375 + 0.781923i \(0.285761\pi\)
\(734\) −569.818 328.985i −0.776319 0.448208i
\(735\) −66.5964 86.7291i −0.0906074 0.117999i
\(736\) −107.049 185.414i −0.145447 0.251922i
\(737\) 1414.18i 1.91883i
\(738\) 415.430 111.617i 0.562913 0.151242i
\(739\) 895.470 1.21173 0.605866 0.795567i \(-0.292827\pi\)
0.605866 + 0.795567i \(0.292827\pi\)
\(740\) −173.354 + 100.086i −0.234262 + 0.135251i
\(741\) −77.6407 32.1289i −0.104778 0.0433589i
\(742\) 119.345 206.711i 0.160842 0.278586i
\(743\) 1157.51 + 668.291i 1.55789 + 0.899450i 0.997458 + 0.0712503i \(0.0226989\pi\)
0.560434 + 0.828199i \(0.310634\pi\)
\(744\) 77.3283 186.867i 0.103936 0.251165i
\(745\) −437.213 757.274i −0.586863 1.01648i
\(746\) 112.715i 0.151093i
\(747\) −955.110 + 956.408i −1.27859 + 1.28033i
\(748\) 233.766 0.312522
\(749\) −145.972 + 84.2772i −0.194890 + 0.112520i
\(750\) −401.017 + 307.927i −0.534689 + 0.410570i
\(751\) 570.632 988.364i 0.759830 1.31606i −0.183107 0.983093i \(-0.558615\pi\)
0.942937 0.332971i \(-0.108051\pi\)
\(752\) −208.557 120.410i −0.277336 0.160120i
\(753\) −605.302 + 79.8987i −0.803854 + 0.106107i
\(754\) 88.1383 + 152.660i 0.116894 + 0.202467i
\(755\) 1010.17i 1.33798i
\(756\) 54.8087 + 131.939i 0.0724983 + 0.174523i
\(757\) 775.634 1.02462 0.512308 0.858802i \(-0.328791\pi\)
0.512308 + 0.858802i \(0.328791\pi\)
\(758\) −166.445 + 96.0969i −0.219584 + 0.126777i
\(759\) −196.811 1491.01i −0.259303 1.96444i
\(760\) −25.6953 + 44.5055i −0.0338096 + 0.0585599i
\(761\) 105.553 + 60.9413i 0.138703 + 0.0800805i 0.567746 0.823204i \(-0.307816\pi\)
−0.429042 + 0.903284i \(0.641149\pi\)
\(762\) 482.840 + 628.807i 0.633648 + 0.825206i
\(763\) −244.179 422.930i −0.320024 0.554299i
\(764\) 172.665i 0.226001i
\(765\) 106.760 399.519i 0.139555 0.522246i
\(766\) −564.786 −0.737319
\(767\) 759.192 438.320i 0.989820 0.571473i
\(768\) 44.3525 + 18.3537i 0.0577506 + 0.0238981i
\(769\) −682.681 + 1182.44i −0.887752 + 1.53763i −0.0452251 + 0.998977i \(0.514401\pi\)
−0.842527 + 0.538655i \(0.818933\pi\)
\(770\) −223.491 129.032i −0.290248 0.167575i
\(771\) 344.141 831.630i 0.446357 1.07864i
\(772\) −138.606 240.073i −0.179541 0.310975i
\(773\) 231.520i 0.299508i −0.988723 0.149754i \(-0.952152\pi\)
0.988723 0.149754i \(-0.0478482\pi\)
\(774\) −560.444 149.762i −0.724088 0.193492i
\(775\) 50.3709 0.0649947
\(776\) −199.861 + 115.390i −0.257552 + 0.148698i
\(777\) 121.005 92.9160i 0.155734 0.119583i
\(778\) 312.539 541.333i 0.401721 0.695801i
\(779\) −102.130 58.9646i −0.131104 0.0756927i
\(780\) −248.621 + 32.8175i −0.318745 + 0.0420738i
\(781\) 623.478 + 1079.90i 0.798307 + 1.38271i
\(782\) 472.316i 0.603984i
\(783\) −332.892 254.899i −0.425150 0.325541i
\(784\) 28.0000 0.0357143
\(785\) 74.4273 42.9706i 0.0948119 0.0547397i
\(786\) 8.02212 + 60.7745i 0.0102063 + 0.0773212i
\(787\) 395.226 684.552i 0.502193 0.869824i −0.497804 0.867290i \(-0.665860\pi\)
0.999997 0.00253434i \(-0.000806706\pi\)
\(788\) −68.2961 39.4308i −0.0866702 0.0500390i
\(789\) 344.894 + 449.159i 0.437128 + 0.569276i
\(790\) −575.038 995.995i −0.727896 1.26075i
\(791\) 331.314i 0.418854i
\(792\) 238.583 + 238.259i 0.301242 + 0.300832i
\(793\) 635.796 0.801760
\(794\) 470.487 271.636i 0.592553 0.342110i
\(795\) −920.786 381.036i −1.15822 0.479290i
\(796\) 88.0429 152.495i 0.110607 0.191576i
\(797\) −66.4876 38.3866i −0.0834223 0.0481639i 0.457709 0.889102i \(-0.348670\pi\)
−0.541131 + 0.840938i \(0.682004\pi\)
\(798\) 14.9767 36.1916i 0.0187677 0.0453529i
\(799\) −265.634 460.091i −0.332458 0.575834i
\(800\) 11.9554i 0.0149443i
\(801\) −69.0515 257.005i −0.0862067 0.320855i
\(802\) −366.831 −0.457395
\(803\) 39.0954 22.5718i 0.0486867 0.0281093i
\(804\) 508.085 390.141i 0.631946 0.485251i
\(805\) −260.705 + 451.554i −0.323857 + 0.560937i
\(806\) −234.304 135.276i −0.290700 0.167836i
\(807\) −774.667 + 102.255i −0.959935 + 0.126710i
\(808\) −1.01184 1.75255i −0.00125227 0.00216900i
\(809\) 163.583i 0.202204i 0.994876 + 0.101102i \(0.0322368\pi\)
−0.994876 + 0.101102i \(0.967763\pi\)
\(810\) 516.157 298.939i 0.637231 0.369061i
\(811\) 24.8546 0.0306469 0.0153235 0.999883i \(-0.495122\pi\)
0.0153235 + 0.999883i \(0.495122\pi\)
\(812\) −71.1613 + 41.0850i −0.0876371 + 0.0505973i
\(813\) 55.8043 + 422.766i 0.0686400 + 0.520007i
\(814\) 180.027 311.817i 0.221164 0.383067i
\(815\) 786.305 + 453.974i 0.964792 + 0.557023i
\(816\) 64.4911 + 83.9874i 0.0790332 + 0.102926i
\(817\) 79.5185 + 137.730i 0.0973299 + 0.168580i
\(818\) 134.223i 0.164087i
\(819\) 184.587 49.5944i 0.225381 0.0605549i
\(820\) −351.964 −0.429224
\(821\) −251.574 + 145.246i −0.306424 + 0.176914i −0.645325 0.763908i \(-0.723278\pi\)
0.338901 + 0.940822i \(0.389945\pi\)
\(822\) 140.474 + 58.1305i 0.170894 + 0.0707184i
\(823\) −41.1232 + 71.2275i −0.0499675 + 0.0865462i −0.889927 0.456102i \(-0.849245\pi\)
0.839960 + 0.542649i \(0.182578\pi\)
\(824\) −440.534 254.342i −0.534628 0.308668i
\(825\) −32.1120 + 77.5999i −0.0389237 + 0.0940604i
\(826\) 204.319 + 353.891i 0.247360 + 0.428440i
\(827\) 1043.82i 1.26218i 0.775709 + 0.631090i \(0.217392\pi\)
−0.775709 + 0.631090i \(0.782608\pi\)
\(828\) 481.393 482.048i 0.581393 0.582184i
\(829\) −121.734 −0.146844 −0.0734222 0.997301i \(-0.523392\pi\)
−0.0734222 + 0.997301i \(0.523392\pi\)
\(830\) 957.765 552.966i 1.15393 0.666224i
\(831\) 25.3672 19.4786i 0.0305261 0.0234400i
\(832\) 32.1074 55.6117i 0.0385906 0.0668410i
\(833\) 53.4944 + 30.8850i 0.0642189 + 0.0370768i
\(834\) −147.467 + 19.4654i −0.176819 + 0.0233398i
\(835\) 379.632 + 657.542i 0.454649 + 0.787475i
\(836\) 92.4376i 0.110571i
\(837\) 638.086 + 83.3440i 0.762349 + 0.0995747i
\(838\) 227.718 0.271740
\(839\) 873.889 504.540i 1.04158 0.601359i 0.121303 0.992616i \(-0.461293\pi\)
0.920282 + 0.391257i \(0.127960\pi\)
\(840\) −15.2976 115.893i −0.0182115 0.137968i
\(841\) −299.930 + 519.494i −0.356635 + 0.617710i
\(842\) 653.803 + 377.473i 0.776488 + 0.448305i
\(843\) 323.262 + 420.987i 0.383467 + 0.499392i
\(844\) 192.738 + 333.832i 0.228363 + 0.395536i
\(845\) 544.500i 0.644379i
\(846\) 197.827 740.311i 0.233838 0.875072i
\(847\) 144.053 0.170074
\(848\) 220.983 127.585i 0.260593 0.150454i
\(849\) −839.738 347.496i −0.989090 0.409301i
\(850\) −13.1873 + 22.8410i −0.0155144 + 0.0268718i
\(851\) −630.013 363.738i −0.740321 0.427424i
\(852\) −215.980 + 521.923i −0.253497 + 0.612585i
\(853\) −572.363 991.362i −0.671000 1.16221i −0.977621 0.210375i \(-0.932532\pi\)
0.306620 0.951832i \(-0.400802\pi\)
\(854\) 296.372i 0.347039i
\(855\) −157.981 42.2157i −0.184773 0.0493751i
\(856\) −180.192 −0.210505
\(857\) −874.127 + 504.678i −1.01999 + 0.588889i −0.914100 0.405490i \(-0.867101\pi\)
−0.105886 + 0.994378i \(0.533768\pi\)
\(858\) 357.773 274.722i 0.416985 0.320189i
\(859\) −544.449 + 943.013i −0.633817 + 1.09780i 0.352947 + 0.935643i \(0.385180\pi\)
−0.986764 + 0.162160i \(0.948154\pi\)
\(860\) 411.060 + 237.326i 0.477977 + 0.275960i
\(861\) 265.947 35.1045i 0.308881 0.0407718i
\(862\) −158.598 274.701i −0.183989 0.318678i
\(863\) 989.092i 1.14611i 0.819517 + 0.573055i \(0.194242\pi\)
−0.819517 + 0.573055i \(0.805758\pi\)
\(864\) −19.7816 + 151.449i −0.0228953 + 0.175288i
\(865\) 302.721 0.349967
\(866\) 923.564 533.220i 1.06647 0.615727i
\(867\) −82.8881 627.949i −0.0956034 0.724278i
\(868\) 63.0577 109.219i 0.0726471 0.125828i
\(869\) 1791.52 + 1034.34i 2.06159 + 1.19026i
\(870\) 208.931 + 272.092i 0.240150 + 0.312750i
\(871\) −428.496 742.177i −0.491959 0.852098i
\(872\) 522.076i 0.598711i
\(873\) −519.606 518.900i −0.595196 0.594388i
\(874\) −186.767 −0.213692
\(875\) −273.056 + 157.649i −0.312065 + 0.180171i
\(876\) 18.8951 + 7.81911i 0.0215698 + 0.00892592i
\(877\) 310.022 536.973i 0.353502 0.612284i −0.633358 0.773859i \(-0.718324\pi\)
0.986860 + 0.161575i \(0.0516573\pi\)
\(878\) 614.769 + 354.937i 0.700193 + 0.404256i
\(879\) −616.064 + 1488.74i −0.700869 + 1.69367i
\(880\) −137.942 238.922i −0.156752 0.271502i
\(881\) 636.200i 0.722134i 0.932540 + 0.361067i \(0.117587\pi\)
−0.932540 + 0.361067i \(0.882413\pi\)
\(882\) 23.1181 + 86.0439i 0.0262110 + 0.0975555i
\(883\) 964.280 1.09205 0.546025 0.837769i \(-0.316140\pi\)
0.546025 + 0.837769i \(0.316140\pi\)
\(884\) 122.683 70.8312i 0.138782 0.0801258i
\(885\) 1353.14 1039.03i 1.52897 1.17405i
\(886\) 174.223 301.763i 0.196640 0.340591i
\(887\) −443.953 256.316i −0.500510 0.288970i 0.228414 0.973564i \(-0.426646\pi\)
−0.728924 + 0.684594i \(0.759979\pi\)
\(888\) 161.695 21.3434i 0.182089 0.0240354i
\(889\) 247.199 + 428.161i 0.278064 + 0.481621i
\(890\) 217.742i 0.244654i
\(891\) −535.185 + 929.883i −0.600656 + 1.04364i
\(892\) −359.886 −0.403459
\(893\) −181.933 + 105.039i −0.203732 + 0.117625i
\(894\) 93.2360 + 706.343i 0.104291 + 0.790093i
\(895\) 462.298 800.724i 0.516534 0.894664i
\(896\) 25.9230 + 14.9666i 0.0289319 + 0.0167038i
\(897\) −555.065 722.866i −0.618802 0.805871i
\(898\) 132.381 + 229.290i 0.147417 + 0.255334i
\(899\) 370.103i 0.411683i
\(900\) −36.7390 + 9.87095i −0.0408211 + 0.0109677i
\(901\) 562.922 0.624775
\(902\) 548.269 316.543i 0.607837 0.350935i
\(903\) −334.271 138.327i −0.370178 0.153186i
\(904\) −177.095 + 306.737i −0.195901 + 0.339311i
\(905\) −189.566 109.446i −0.209465 0.120935i
\(906\) 314.719 760.530i 0.347372 0.839437i
\(907\) 607.985 + 1053.06i 0.670325 + 1.16104i 0.977812 + 0.209485i \(0.0671788\pi\)
−0.307486 + 0.951552i \(0.599488\pi\)
\(908\) 189.824i 0.209057i
\(909\) 4.55017 4.55635i 0.00500568 0.00501249i
\(910\) −156.387 −0.171854
\(911\) 346.092 199.817i 0.379904 0.219338i −0.297873 0.954606i \(-0.596277\pi\)
0.677776 + 0.735268i \(0.262944\pi\)
\(912\) 33.2109 25.5016i 0.0364155 0.0279622i
\(913\) −994.635 + 1722.76i −1.08941 + 1.88692i
\(914\) −670.625 387.185i −0.733725 0.423616i
\(915\) 1226.69 161.921i 1.34065 0.176963i
\(916\) −354.467 613.954i −0.386972 0.670256i
\(917\) 38.2283i 0.0416884i
\(918\) −204.846 + 267.525i −0.223144 + 0.291421i
\(919\) −398.263 −0.433366 −0.216683 0.976242i \(-0.569524\pi\)
−0.216683 + 0.976242i \(0.569524\pi\)
\(920\) −482.732 + 278.705i −0.524708 + 0.302941i
\(921\) −200.056 1515.60i −0.217216 1.64560i
\(922\) −103.225 + 178.790i −0.111957 + 0.193916i
\(923\) 654.417 + 377.828i 0.709011 + 0.409347i
\(924\) 128.060 + 166.773i 0.138593 + 0.180491i
\(925\) 20.3115 + 35.1805i 0.0219584 + 0.0380330i
\(926\) 269.675i 0.291226i
\(927\) 417.868 1563.76i 0.450775 1.68690i
\(928\) −87.8434 −0.0946588
\(929\) 1491.17 860.930i 1.60514 0.926727i 0.614702 0.788760i \(-0.289276\pi\)
0.990437 0.137968i \(-0.0440570\pi\)
\(930\) −486.512 201.326i −0.523131 0.216480i
\(931\) 12.2128 21.1531i 0.0131179 0.0227209i
\(932\) 333.035 + 192.278i 0.357333 + 0.206306i
\(933\) −358.507 + 866.345i −0.384252 + 0.928558i
\(934\) 515.037 + 892.070i 0.551431 + 0.955107i
\(935\) 608.617i 0.650928i
\(936\) 197.404 + 52.7505i 0.210902 + 0.0563573i
\(937\) −1714.27 −1.82953 −0.914765 0.403987i \(-0.867624\pi\)
−0.914765 + 0.403987i \(0.867624\pi\)
\(938\) 345.960 199.740i 0.368827 0.212943i
\(939\) −1344.78 + 1032.61i −1.43214 + 1.09969i
\(940\) −313.492 + 542.984i −0.333502 + 0.577642i
\(941\) 76.8229 + 44.3537i 0.0816396 + 0.0471347i 0.540264 0.841496i \(-0.318324\pi\)
−0.458624 + 0.888630i \(0.651658\pi\)
\(942\) −69.4216 + 9.16353i −0.0736960 + 0.00972774i
\(943\) −639.563 1107.76i −0.678221 1.17471i
\(944\) 436.853i 0.462768i
\(945\) 343.508 142.696i 0.363501 0.151001i
\(946\) −853.768 −0.902503
\(947\) 403.626 233.034i 0.426215 0.246076i −0.271518 0.962433i \(-0.587526\pi\)
0.697733 + 0.716358i \(0.254192\pi\)
\(948\) 122.627 + 929.009i 0.129354 + 0.979967i
\(949\) 13.6785 23.6918i 0.0144136 0.0249651i
\(950\) 9.03197 + 5.21461i 0.00950733 + 0.00548906i
\(951\) −248.981 324.250i −0.261809 0.340957i
\(952\) 33.0174 + 57.1879i 0.0346822 + 0.0600713i
\(953\) 1024.37i 1.07489i −0.843299 0.537445i \(-0.819389\pi\)
0.843299 0.537445i \(-0.180611\pi\)
\(954\) 574.521 + 573.741i 0.602224 + 0.601406i
\(955\) 449.538 0.470720
\(956\) −502.412 + 290.068i −0.525536 + 0.303418i
\(957\) −570.170 235.945i −0.595789 0.246547i
\(958\) −519.838 + 900.386i −0.542628 + 0.939860i
\(959\) 82.1040 + 47.4028i 0.0856142 + 0.0494294i
\(960\) 47.7845 115.473i 0.0497755 0.120284i
\(961\) 196.481 + 340.315i 0.204455 + 0.354126i
\(962\) 218.193i 0.226812i
\(963\) −148.775 553.730i −0.154491 0.575005i
\(964\) 223.842 0.232201
\(965\) −625.036 + 360.865i −0.647706 + 0.373953i
\(966\) 336.959 258.739i 0.348818 0.267846i
\(967\) −37.7510 + 65.3866i −0.0390393 + 0.0676180i −0.884885 0.465810i \(-0.845763\pi\)
0.845846 + 0.533428i \(0.179096\pi\)
\(968\) 133.367 + 76.9993i 0.137776 + 0.0795448i
\(969\) 91.5790 12.0883i 0.0945088 0.0124750i
\(970\) 300.420 + 520.343i 0.309712 + 0.536436i
\(971\) 1674.28i 1.72429i 0.506664 + 0.862144i \(0.330878\pi\)
−0.506664 + 0.862144i \(0.669122\pi\)
\(972\) −481.734 + 64.2542i −0.495611 + 0.0661051i
\(973\) −92.7597 −0.0953337
\(974\) 231.590 133.709i 0.237772 0.137278i
\(975\) 6.66000 + 50.4552i 0.00683077 + 0.0517490i
\(976\) −158.417 + 274.387i −0.162313 + 0.281134i
\(977\) −933.331 538.859i −0.955303 0.551544i −0.0605785 0.998163i \(-0.519295\pi\)
−0.894724 + 0.446619i \(0.852628\pi\)
\(978\) −450.551 586.756i −0.460686 0.599955i
\(979\) −195.829 339.186i −0.200030 0.346462i
\(980\) 72.8988i 0.0743865i
\(981\) 1604.34 431.050i 1.63541 0.439398i
\(982\) 466.851 0.475408
\(983\) 163.825 94.5846i 0.166659 0.0962204i −0.414351 0.910117i \(-0.635991\pi\)
0.581009 + 0.813897i \(0.302658\pi\)
\(984\) 264.983 + 109.654i 0.269292 + 0.111437i
\(985\) −102.659 + 177.811i −0.104222 + 0.180519i
\(986\) −167.826 96.8944i −0.170209 0.0982701i
\(987\) 182.721 441.551i 0.185127 0.447366i
\(988\) −28.0086 48.5123i −0.0283488 0.0491016i
\(989\) 1725.00i 1.74419i
\(990\) 620.315 621.158i 0.626581 0.627433i
\(991\) −1637.86 −1.65273 −0.826367 0.563132i \(-0.809596\pi\)
−0.826367 + 0.563132i \(0.809596\pi\)
\(992\) 116.760 67.4115i 0.117702 0.0679551i
\(993\) 1158.42 889.512i 1.16659 0.895782i
\(994\) −176.122 + 305.051i −0.177185 + 0.306893i
\(995\) −397.025 229.222i −0.399020 0.230374i
\(996\) −893.349 + 117.920i −0.896937 + 0.118394i
\(997\) 298.689 + 517.345i 0.299588 + 0.518902i 0.976042 0.217584i \(-0.0698174\pi\)
−0.676454 + 0.736485i \(0.736484\pi\)
\(998\) 434.366i 0.435237i
\(999\) 199.091 + 479.266i 0.199290 + 0.479746i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.q.a.113.4 yes 24
3.2 odd 2 378.3.q.a.71.12 24
9.2 odd 6 inner 126.3.q.a.29.4 24
9.4 even 3 1134.3.b.c.323.10 24
9.5 odd 6 1134.3.b.c.323.15 24
9.7 even 3 378.3.q.a.197.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.4 24 9.2 odd 6 inner
126.3.q.a.113.4 yes 24 1.1 even 1 trivial
378.3.q.a.71.12 24 3.2 odd 2
378.3.q.a.197.12 24 9.7 even 3
1134.3.b.c.323.10 24 9.4 even 3
1134.3.b.c.323.15 24 9.5 odd 6