Properties

Label 378.3.o.a.181.8
Level $378$
Weight $3$
Character 378.181
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(181,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 181.8
Character \(\chi\) \(=\) 378.181
Dual form 378.3.o.a.307.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 1.22474i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(6.78854 - 3.91937i) q^{5} +(-6.99901 + 0.117453i) q^{7} +2.82843 q^{8} +11.0856i q^{10} +(1.05393 - 1.82546i) q^{11} +(8.95661 - 5.17110i) q^{13} +(4.80520 - 8.65506i) q^{14} +(-2.00000 + 3.46410i) q^{16} -9.44215i q^{17} +7.01239i q^{19} +(-13.5771 - 7.83874i) q^{20} +(1.49048 + 2.58159i) q^{22} +(-22.7785 - 39.4534i) q^{23} +(18.2229 - 31.5630i) q^{25} +14.6261i q^{26} +(7.20245 + 12.0052i) q^{28} +(9.93225 - 17.2032i) q^{29} +(-5.21387 + 3.01023i) q^{31} +(-2.82843 - 4.89898i) q^{32} +(11.5642 + 6.67661i) q^{34} +(-47.0528 + 28.2290i) q^{35} -40.4151 q^{37} +(-8.58839 - 4.95851i) q^{38} +(19.2009 - 11.0856i) q^{40} +(52.9968 - 30.5977i) q^{41} +(34.3646 - 59.5213i) q^{43} -4.21571 q^{44} +64.4272 q^{46} +(59.5554 + 34.3843i) q^{47} +(48.9724 - 1.64411i) q^{49} +(25.7710 + 44.6368i) q^{50} +(-17.9132 - 10.3422i) q^{52} +64.4077 q^{53} -16.5229i q^{55} +(-19.7962 + 0.332208i) q^{56} +(14.0463 + 24.3290i) q^{58} +(-36.8068 + 21.2504i) q^{59} +(9.89468 + 5.71270i) q^{61} -8.51422i q^{62} +8.00000 q^{64} +(40.5349 - 70.2085i) q^{65} +(4.32856 + 7.49729i) q^{67} +(-16.3543 + 9.44215i) q^{68} +(-1.30205 - 77.5886i) q^{70} -56.4985 q^{71} +64.7908i q^{73} +(28.5778 - 49.4982i) q^{74} +(12.1458 - 7.01239i) q^{76} +(-7.16205 + 12.9002i) q^{77} +(-57.0864 + 98.8765i) q^{79} +31.3549i q^{80} +86.5433i q^{82} +(-86.5846 - 49.9896i) q^{83} +(-37.0073 - 64.0985i) q^{85} +(48.5989 + 84.1758i) q^{86} +(2.98096 - 5.16317i) q^{88} -90.9556i q^{89} +(-62.0801 + 37.2446i) q^{91} +(-45.5569 + 78.9069i) q^{92} +(-84.2240 + 48.6267i) q^{94} +(27.4841 + 47.6039i) q^{95} +(39.5328 + 22.8243i) q^{97} +(-32.6151 + 61.1413i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 12 q^{11} + 12 q^{14} - 64 q^{16} - 12 q^{23} + 80 q^{25} + 8 q^{28} + 48 q^{29} - 348 q^{35} - 88 q^{37} + 32 q^{43} - 48 q^{44} + 48 q^{46} + 50 q^{49} - 48 q^{50} + 864 q^{53}+ \cdots - 624 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 1.22474i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) 6.78854 3.91937i 1.35771 0.783874i 0.368394 0.929670i \(-0.379908\pi\)
0.989315 + 0.145796i \(0.0465744\pi\)
\(6\) 0 0
\(7\) −6.99901 + 0.117453i −0.999859 + 0.0167790i
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 11.0856i 1.10856i
\(11\) 1.05393 1.82546i 0.0958116 0.165951i −0.814135 0.580675i \(-0.802789\pi\)
0.909947 + 0.414724i \(0.136122\pi\)
\(12\) 0 0
\(13\) 8.95661 5.17110i 0.688970 0.397777i −0.114256 0.993451i \(-0.536448\pi\)
0.803226 + 0.595674i \(0.203115\pi\)
\(14\) 4.80520 8.65506i 0.343229 0.618219i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 9.44215i 0.555421i −0.960665 0.277710i \(-0.910424\pi\)
0.960665 0.277710i \(-0.0895755\pi\)
\(18\) 0 0
\(19\) 7.01239i 0.369073i 0.982826 + 0.184537i \(0.0590784\pi\)
−0.982826 + 0.184537i \(0.940922\pi\)
\(20\) −13.5771 7.83874i −0.678854 0.391937i
\(21\) 0 0
\(22\) 1.49048 + 2.58159i 0.0677490 + 0.117345i
\(23\) −22.7785 39.4534i −0.990367 1.71537i −0.615097 0.788451i \(-0.710883\pi\)
−0.375270 0.926915i \(-0.622450\pi\)
\(24\) 0 0
\(25\) 18.2229 31.5630i 0.728915 1.26252i
\(26\) 14.6261i 0.562542i
\(27\) 0 0
\(28\) 7.20245 + 12.0052i 0.257230 + 0.428757i
\(29\) 9.93225 17.2032i 0.342491 0.593213i −0.642403 0.766367i \(-0.722063\pi\)
0.984895 + 0.173154i \(0.0553959\pi\)
\(30\) 0 0
\(31\) −5.21387 + 3.01023i −0.168189 + 0.0971042i −0.581732 0.813381i \(-0.697625\pi\)
0.413542 + 0.910485i \(0.364291\pi\)
\(32\) −2.82843 4.89898i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 11.5642 + 6.67661i 0.340124 + 0.196371i
\(35\) −47.0528 + 28.2290i −1.34436 + 0.806544i
\(36\) 0 0
\(37\) −40.4151 −1.09230 −0.546151 0.837687i \(-0.683907\pi\)
−0.546151 + 0.837687i \(0.683907\pi\)
\(38\) −8.58839 4.95851i −0.226010 0.130487i
\(39\) 0 0
\(40\) 19.2009 11.0856i 0.480023 0.277141i
\(41\) 52.9968 30.5977i 1.29260 0.746285i 0.313489 0.949592i \(-0.398502\pi\)
0.979115 + 0.203307i \(0.0651688\pi\)
\(42\) 0 0
\(43\) 34.3646 59.5213i 0.799178 1.38422i −0.120974 0.992656i \(-0.538602\pi\)
0.920152 0.391561i \(-0.128065\pi\)
\(44\) −4.21571 −0.0958116
\(45\) 0 0
\(46\) 64.4272 1.40059
\(47\) 59.5554 + 34.3843i 1.26714 + 0.731581i 0.974445 0.224626i \(-0.0721162\pi\)
0.292690 + 0.956207i \(0.405450\pi\)
\(48\) 0 0
\(49\) 48.9724 1.64411i 0.999437 0.0335534i
\(50\) 25.7710 + 44.6368i 0.515421 + 0.892735i
\(51\) 0 0
\(52\) −17.9132 10.3422i −0.344485 0.198889i
\(53\) 64.4077 1.21524 0.607620 0.794228i \(-0.292125\pi\)
0.607620 + 0.794228i \(0.292125\pi\)
\(54\) 0 0
\(55\) 16.5229i 0.300417i
\(56\) −19.7962 + 0.332208i −0.353504 + 0.00593229i
\(57\) 0 0
\(58\) 14.0463 + 24.3290i 0.242178 + 0.419465i
\(59\) −36.8068 + 21.2504i −0.623844 + 0.360177i −0.778364 0.627813i \(-0.783950\pi\)
0.154520 + 0.987990i \(0.450617\pi\)
\(60\) 0 0
\(61\) 9.89468 + 5.71270i 0.162208 + 0.0936508i 0.578907 0.815394i \(-0.303480\pi\)
−0.416699 + 0.909045i \(0.636813\pi\)
\(62\) 8.51422i 0.137326i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 40.5349 70.2085i 0.623614 1.08013i
\(66\) 0 0
\(67\) 4.32856 + 7.49729i 0.0646054 + 0.111900i 0.896519 0.443005i \(-0.146088\pi\)
−0.831913 + 0.554905i \(0.812754\pi\)
\(68\) −16.3543 + 9.44215i −0.240504 + 0.138855i
\(69\) 0 0
\(70\) −1.30205 77.5886i −0.0186006 1.10841i
\(71\) −56.4985 −0.795753 −0.397876 0.917439i \(-0.630253\pi\)
−0.397876 + 0.917439i \(0.630253\pi\)
\(72\) 0 0
\(73\) 64.7908i 0.887545i 0.896139 + 0.443773i \(0.146360\pi\)
−0.896139 + 0.443773i \(0.853640\pi\)
\(74\) 28.5778 49.4982i 0.386187 0.668895i
\(75\) 0 0
\(76\) 12.1458 7.01239i 0.159813 0.0922683i
\(77\) −7.16205 + 12.9002i −0.0930136 + 0.167535i
\(78\) 0 0
\(79\) −57.0864 + 98.8765i −0.722612 + 1.25160i 0.237337 + 0.971427i \(0.423725\pi\)
−0.959949 + 0.280174i \(0.909608\pi\)
\(80\) 31.3549i 0.391937i
\(81\) 0 0
\(82\) 86.5433i 1.05541i
\(83\) −86.5846 49.9896i −1.04319 0.602285i −0.122453 0.992474i \(-0.539076\pi\)
−0.920735 + 0.390190i \(0.872409\pi\)
\(84\) 0 0
\(85\) −37.0073 64.0985i −0.435380 0.754100i
\(86\) 48.5989 + 84.1758i 0.565104 + 0.978789i
\(87\) 0 0
\(88\) 2.98096 5.16317i 0.0338745 0.0586724i
\(89\) 90.9556i 1.02197i −0.859589 0.510986i \(-0.829280\pi\)
0.859589 0.510986i \(-0.170720\pi\)
\(90\) 0 0
\(91\) −62.0801 + 37.2446i −0.682199 + 0.409281i
\(92\) −45.5569 + 78.9069i −0.495184 + 0.857683i
\(93\) 0 0
\(94\) −84.2240 + 48.6267i −0.896000 + 0.517306i
\(95\) 27.4841 + 47.6039i 0.289307 + 0.501094i
\(96\) 0 0
\(97\) 39.5328 + 22.8243i 0.407555 + 0.235302i 0.689738 0.724059i \(-0.257726\pi\)
−0.282184 + 0.959360i \(0.591059\pi\)
\(98\) −32.6151 + 61.1413i −0.332807 + 0.623891i
\(99\) 0 0
\(100\) −72.8915 −0.728915
\(101\) −0.526801 0.304149i −0.00521585 0.00301137i 0.497390 0.867527i \(-0.334292\pi\)
−0.502606 + 0.864516i \(0.667625\pi\)
\(102\) 0 0
\(103\) 84.7729 48.9437i 0.823038 0.475181i −0.0284251 0.999596i \(-0.509049\pi\)
0.851463 + 0.524415i \(0.175716\pi\)
\(104\) 25.3331 14.6261i 0.243588 0.140635i
\(105\) 0 0
\(106\) −45.5431 + 78.8830i −0.429652 + 0.744179i
\(107\) 65.2642 0.609946 0.304973 0.952361i \(-0.401353\pi\)
0.304973 + 0.952361i \(0.401353\pi\)
\(108\) 0 0
\(109\) −197.677 −1.81355 −0.906776 0.421612i \(-0.861464\pi\)
−0.906776 + 0.421612i \(0.861464\pi\)
\(110\) 20.2364 + 11.6835i 0.183967 + 0.106213i
\(111\) 0 0
\(112\) 13.5912 24.4802i 0.121350 0.218573i
\(113\) −25.1877 43.6264i −0.222900 0.386074i 0.732787 0.680458i \(-0.238219\pi\)
−0.955687 + 0.294384i \(0.904886\pi\)
\(114\) 0 0
\(115\) −309.265 178.554i −2.68926 1.55265i
\(116\) −39.7290 −0.342491
\(117\) 0 0
\(118\) 60.1053i 0.509367i
\(119\) 1.10901 + 66.0858i 0.00931943 + 0.555342i
\(120\) 0 0
\(121\) 58.2785 + 100.941i 0.481640 + 0.834225i
\(122\) −13.9932 + 8.07898i −0.114698 + 0.0662211i
\(123\) 0 0
\(124\) 10.4277 + 6.02046i 0.0840947 + 0.0485521i
\(125\) 89.7203i 0.717763i
\(126\) 0 0
\(127\) 118.295 0.931457 0.465729 0.884928i \(-0.345792\pi\)
0.465729 + 0.884928i \(0.345792\pi\)
\(128\) −5.65685 + 9.79796i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 57.3250 + 99.2898i 0.440962 + 0.763768i
\(131\) −111.014 + 64.0941i −0.847438 + 0.489268i −0.859785 0.510655i \(-0.829403\pi\)
0.0123479 + 0.999924i \(0.496069\pi\)
\(132\) 0 0
\(133\) −0.823628 49.0798i −0.00619269 0.369021i
\(134\) −12.2430 −0.0913659
\(135\) 0 0
\(136\) 26.7064i 0.196371i
\(137\) −110.979 + 192.221i −0.810063 + 1.40307i 0.102757 + 0.994706i \(0.467234\pi\)
−0.912820 + 0.408363i \(0.866100\pi\)
\(138\) 0 0
\(139\) 206.757 119.371i 1.48746 0.858788i 0.487566 0.873086i \(-0.337885\pi\)
0.999898 + 0.0142986i \(0.00455153\pi\)
\(140\) 95.9469 + 53.2687i 0.685335 + 0.380491i
\(141\) 0 0
\(142\) 39.9504 69.1962i 0.281341 0.487297i
\(143\) 21.7999i 0.152447i
\(144\) 0 0
\(145\) 155.713i 1.07388i
\(146\) −79.3522 45.8140i −0.543508 0.313795i
\(147\) 0 0
\(148\) 40.4151 + 70.0011i 0.273075 + 0.472980i
\(149\) −51.5809 89.3407i −0.346180 0.599602i 0.639387 0.768885i \(-0.279188\pi\)
−0.985567 + 0.169283i \(0.945855\pi\)
\(150\) 0 0
\(151\) −100.671 + 174.368i −0.666697 + 1.15475i 0.312126 + 0.950041i \(0.398959\pi\)
−0.978822 + 0.204712i \(0.934374\pi\)
\(152\) 19.8340i 0.130487i
\(153\) 0 0
\(154\) −10.7351 17.8935i −0.0697084 0.116191i
\(155\) −23.5964 + 40.8702i −0.152235 + 0.263679i
\(156\) 0 0
\(157\) −81.5336 + 47.0735i −0.519322 + 0.299831i −0.736657 0.676266i \(-0.763597\pi\)
0.217335 + 0.976097i \(0.430264\pi\)
\(158\) −80.7323 139.832i −0.510964 0.885016i
\(159\) 0 0
\(160\) −38.4018 22.1713i −0.240011 0.138571i
\(161\) 164.061 + 273.460i 1.01901 + 1.69851i
\(162\) 0 0
\(163\) 9.85556 0.0604636 0.0302318 0.999543i \(-0.490375\pi\)
0.0302318 + 0.999543i \(0.490375\pi\)
\(164\) −105.994 61.1954i −0.646302 0.373143i
\(165\) 0 0
\(166\) 122.449 70.6960i 0.737645 0.425880i
\(167\) 106.856 61.6935i 0.639858 0.369422i −0.144702 0.989475i \(-0.546222\pi\)
0.784560 + 0.620053i \(0.212889\pi\)
\(168\) 0 0
\(169\) −31.0194 + 53.7272i −0.183547 + 0.317912i
\(170\) 104.672 0.615720
\(171\) 0 0
\(172\) −137.459 −0.799178
\(173\) 224.321 + 129.512i 1.29666 + 0.748624i 0.979825 0.199858i \(-0.0640481\pi\)
0.316830 + 0.948482i \(0.397381\pi\)
\(174\) 0 0
\(175\) −123.835 + 223.050i −0.707629 + 1.27457i
\(176\) 4.21571 + 7.30183i 0.0239529 + 0.0414876i
\(177\) 0 0
\(178\) 111.397 + 64.3153i 0.625828 + 0.361322i
\(179\) −23.4639 −0.131083 −0.0655416 0.997850i \(-0.520878\pi\)
−0.0655416 + 0.997850i \(0.520878\pi\)
\(180\) 0 0
\(181\) 173.634i 0.959304i 0.877459 + 0.479652i \(0.159237\pi\)
−0.877459 + 0.479652i \(0.840763\pi\)
\(182\) −1.71788 102.368i −0.00943891 0.562463i
\(183\) 0 0
\(184\) −64.4272 111.591i −0.350148 0.606474i
\(185\) −274.360 + 158.402i −1.48303 + 0.856226i
\(186\) 0 0
\(187\) −17.2362 9.95135i −0.0921724 0.0532157i
\(188\) 137.537i 0.731581i
\(189\) 0 0
\(190\) −77.7369 −0.409141
\(191\) −121.207 + 209.936i −0.634590 + 1.09914i 0.352011 + 0.935996i \(0.385498\pi\)
−0.986602 + 0.163147i \(0.947835\pi\)
\(192\) 0 0
\(193\) −124.323 215.333i −0.644159 1.11572i −0.984495 0.175412i \(-0.943874\pi\)
0.340336 0.940304i \(-0.389459\pi\)
\(194\) −55.9078 + 32.2784i −0.288185 + 0.166383i
\(195\) 0 0
\(196\) −51.8201 83.1786i −0.264388 0.424381i
\(197\) 6.15551 0.0312462 0.0156231 0.999878i \(-0.495027\pi\)
0.0156231 + 0.999878i \(0.495027\pi\)
\(198\) 0 0
\(199\) 293.738i 1.47607i 0.674761 + 0.738036i \(0.264247\pi\)
−0.674761 + 0.738036i \(0.735753\pi\)
\(200\) 51.5421 89.2735i 0.257710 0.446368i
\(201\) 0 0
\(202\) 0.745009 0.430131i 0.00368817 0.00212936i
\(203\) −67.4954 + 121.572i −0.332490 + 0.598876i
\(204\) 0 0
\(205\) 239.847 415.428i 1.16999 2.02648i
\(206\) 138.434i 0.672008i
\(207\) 0 0
\(208\) 41.3688i 0.198889i
\(209\) 12.8008 + 7.39055i 0.0612479 + 0.0353615i
\(210\) 0 0
\(211\) 37.0792 + 64.2230i 0.175731 + 0.304374i 0.940414 0.340032i \(-0.110438\pi\)
−0.764683 + 0.644406i \(0.777105\pi\)
\(212\) −64.4077 111.557i −0.303810 0.526214i
\(213\) 0 0
\(214\) −46.1488 + 79.9320i −0.215649 + 0.373514i
\(215\) 538.751i 2.50582i
\(216\) 0 0
\(217\) 36.1384 21.6810i 0.166536 0.0999126i
\(218\) 139.779 242.104i 0.641188 1.11057i
\(219\) 0 0
\(220\) −28.6185 + 16.5229i −0.130084 + 0.0751042i
\(221\) −48.8263 84.5697i −0.220934 0.382668i
\(222\) 0 0
\(223\) 240.774 + 139.011i 1.07970 + 0.623366i 0.930816 0.365488i \(-0.119098\pi\)
0.148886 + 0.988854i \(0.452431\pi\)
\(224\) 20.3716 + 33.9558i 0.0909447 + 0.151588i
\(225\) 0 0
\(226\) 71.2416 0.315228
\(227\) 87.4980 + 50.5170i 0.385454 + 0.222542i 0.680188 0.733037i \(-0.261898\pi\)
−0.294735 + 0.955579i \(0.595231\pi\)
\(228\) 0 0
\(229\) −51.0727 + 29.4869i −0.223025 + 0.128764i −0.607350 0.794434i \(-0.707767\pi\)
0.384325 + 0.923198i \(0.374434\pi\)
\(230\) 437.367 252.514i 1.90159 1.09789i
\(231\) 0 0
\(232\) 28.0927 48.6579i 0.121089 0.209732i
\(233\) 179.497 0.770374 0.385187 0.922839i \(-0.374137\pi\)
0.385187 + 0.922839i \(0.374137\pi\)
\(234\) 0 0
\(235\) 539.059 2.29387
\(236\) 73.6136 + 42.5008i 0.311922 + 0.180088i
\(237\) 0 0
\(238\) −81.7224 45.3714i −0.343371 0.190636i
\(239\) 91.2575 + 158.063i 0.381831 + 0.661350i 0.991324 0.131441i \(-0.0419604\pi\)
−0.609493 + 0.792791i \(0.708627\pi\)
\(240\) 0 0
\(241\) 4.89842 + 2.82810i 0.0203254 + 0.0117349i 0.510128 0.860098i \(-0.329598\pi\)
−0.489803 + 0.871833i \(0.662931\pi\)
\(242\) −164.836 −0.681142
\(243\) 0 0
\(244\) 22.8508i 0.0936508i
\(245\) 326.007 203.102i 1.33064 0.828988i
\(246\) 0 0
\(247\) 36.2618 + 62.8072i 0.146809 + 0.254280i
\(248\) −14.7471 + 8.51422i −0.0594640 + 0.0343315i
\(249\) 0 0
\(250\) 109.885 + 63.4419i 0.439538 + 0.253767i
\(251\) 150.523i 0.599693i −0.953987 0.299847i \(-0.903064\pi\)
0.953987 0.299847i \(-0.0969355\pi\)
\(252\) 0 0
\(253\) −96.0274 −0.379555
\(254\) −83.6472 + 144.881i −0.329320 + 0.570399i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 88.3013 50.9808i 0.343585 0.198369i −0.318271 0.948000i \(-0.603102\pi\)
0.661856 + 0.749631i \(0.269769\pi\)
\(258\) 0 0
\(259\) 282.866 4.74689i 1.09215 0.0183278i
\(260\) −162.140 −0.623614
\(261\) 0 0
\(262\) 181.286i 0.691930i
\(263\) 56.3682 97.6325i 0.214328 0.371226i −0.738737 0.673994i \(-0.764577\pi\)
0.953064 + 0.302768i \(0.0979106\pi\)
\(264\) 0 0
\(265\) 437.234 252.437i 1.64994 0.952594i
\(266\) 60.6926 + 33.6959i 0.228168 + 0.126676i
\(267\) 0 0
\(268\) 8.65713 14.9946i 0.0323027 0.0559499i
\(269\) 67.6480i 0.251479i −0.992063 0.125740i \(-0.959870\pi\)
0.992063 0.125740i \(-0.0401304\pi\)
\(270\) 0 0
\(271\) 144.406i 0.532863i −0.963854 0.266431i \(-0.914155\pi\)
0.963854 0.266431i \(-0.0858446\pi\)
\(272\) 32.7086 + 18.8843i 0.120252 + 0.0694276i
\(273\) 0 0
\(274\) −156.947 271.841i −0.572801 0.992120i
\(275\) −38.4112 66.5302i −0.139677 0.241928i
\(276\) 0 0
\(277\) 128.720 222.949i 0.464692 0.804871i −0.534495 0.845171i \(-0.679498\pi\)
0.999188 + 0.0403008i \(0.0128316\pi\)
\(278\) 337.634i 1.21451i
\(279\) 0 0
\(280\) −133.085 + 79.8438i −0.475305 + 0.285156i
\(281\) 146.075 253.010i 0.519840 0.900390i −0.479894 0.877327i \(-0.659325\pi\)
0.999734 0.0230634i \(-0.00734196\pi\)
\(282\) 0 0
\(283\) −287.137 + 165.778i −1.01462 + 0.585790i −0.912540 0.408987i \(-0.865882\pi\)
−0.102077 + 0.994776i \(0.532549\pi\)
\(284\) 56.4985 + 97.8582i 0.198938 + 0.344571i
\(285\) 0 0
\(286\) 26.6993 + 15.4148i 0.0933541 + 0.0538980i
\(287\) −367.331 + 220.378i −1.27990 + 0.767869i
\(288\) 0 0
\(289\) 199.846 0.691508
\(290\) 190.708 + 110.105i 0.657615 + 0.379674i
\(291\) 0 0
\(292\) 112.221 64.7908i 0.384318 0.221886i
\(293\) −128.607 + 74.2511i −0.438931 + 0.253417i −0.703144 0.711047i \(-0.748221\pi\)
0.264213 + 0.964464i \(0.414888\pi\)
\(294\) 0 0
\(295\) −166.576 + 288.519i −0.564666 + 0.978030i
\(296\) −114.311 −0.386187
\(297\) 0 0
\(298\) 145.893 0.489573
\(299\) −408.036 235.579i −1.36467 0.787891i
\(300\) 0 0
\(301\) −233.528 + 420.627i −0.775839 + 1.39743i
\(302\) −142.371 246.593i −0.471426 0.816533i
\(303\) 0 0
\(304\) −24.2916 14.0248i −0.0799067 0.0461341i
\(305\) 89.5607 0.293642
\(306\) 0 0
\(307\) 47.5917i 0.155022i −0.996992 0.0775109i \(-0.975303\pi\)
0.996992 0.0775109i \(-0.0246973\pi\)
\(308\) 29.5058 0.495149i 0.0957981 0.00160763i
\(309\) 0 0
\(310\) −33.3704 57.7992i −0.107646 0.186449i
\(311\) 13.1863 7.61311i 0.0423996 0.0244794i −0.478650 0.878006i \(-0.658874\pi\)
0.521050 + 0.853526i \(0.325541\pi\)
\(312\) 0 0
\(313\) 135.158 + 78.0334i 0.431814 + 0.249308i 0.700119 0.714026i \(-0.253130\pi\)
−0.268305 + 0.963334i \(0.586464\pi\)
\(314\) 133.144i 0.424025i
\(315\) 0 0
\(316\) 228.345 0.722612
\(317\) −148.788 + 257.709i −0.469363 + 0.812961i −0.999387 0.0350219i \(-0.988850\pi\)
0.530023 + 0.847983i \(0.322183\pi\)
\(318\) 0 0
\(319\) −20.9358 36.2618i −0.0656293 0.113673i
\(320\) 54.3083 31.3549i 0.169714 0.0979842i
\(321\) 0 0
\(322\) −450.927 + 7.56718i −1.40039 + 0.0235006i
\(323\) 66.2120 0.204991
\(324\) 0 0
\(325\) 376.930i 1.15978i
\(326\) −6.96893 + 12.0705i −0.0213771 + 0.0370262i
\(327\) 0 0
\(328\) 149.897 86.5433i 0.457005 0.263852i
\(329\) −420.867 233.661i −1.27923 0.710217i
\(330\) 0 0
\(331\) −151.889 + 263.079i −0.458878 + 0.794800i −0.998902 0.0468498i \(-0.985082\pi\)
0.540024 + 0.841650i \(0.318415\pi\)
\(332\) 199.959i 0.602285i
\(333\) 0 0
\(334\) 174.496i 0.522442i
\(335\) 58.7693 + 33.9305i 0.175431 + 0.101285i
\(336\) 0 0
\(337\) −150.144 260.057i −0.445531 0.771682i 0.552558 0.833474i \(-0.313652\pi\)
−0.998089 + 0.0617925i \(0.980318\pi\)
\(338\) −43.8681 75.9817i −0.129787 0.224798i
\(339\) 0 0
\(340\) −74.0145 + 128.197i −0.217690 + 0.377050i
\(341\) 12.6903i 0.0372148i
\(342\) 0 0
\(343\) −342.565 + 17.2591i −0.998733 + 0.0503182i
\(344\) 97.1979 168.352i 0.282552 0.489394i
\(345\) 0 0
\(346\) −317.238 + 183.158i −0.916874 + 0.529357i
\(347\) −19.6093 33.9643i −0.0565110 0.0978799i 0.836386 0.548141i \(-0.184664\pi\)
−0.892897 + 0.450261i \(0.851331\pi\)
\(348\) 0 0
\(349\) 391.985 + 226.313i 1.12317 + 0.648460i 0.942207 0.335030i \(-0.108747\pi\)
0.180959 + 0.983491i \(0.442080\pi\)
\(350\) −185.615 309.386i −0.530328 0.883961i
\(351\) 0 0
\(352\) −11.9238 −0.0338745
\(353\) 364.417 + 210.396i 1.03234 + 0.596024i 0.917655 0.397378i \(-0.130080\pi\)
0.114688 + 0.993402i \(0.463413\pi\)
\(354\) 0 0
\(355\) −383.542 + 221.438i −1.08040 + 0.623770i
\(356\) −157.540 + 90.9556i −0.442527 + 0.255493i
\(357\) 0 0
\(358\) 16.5915 28.7373i 0.0463449 0.0802718i
\(359\) −268.070 −0.746714 −0.373357 0.927688i \(-0.621793\pi\)
−0.373357 + 0.927688i \(0.621793\pi\)
\(360\) 0 0
\(361\) 311.826 0.863785
\(362\) −212.657 122.778i −0.587451 0.339165i
\(363\) 0 0
\(364\) 126.590 + 70.2813i 0.347774 + 0.193080i
\(365\) 253.939 + 439.835i 0.695723 + 1.20503i
\(366\) 0 0
\(367\) −24.1481 13.9419i −0.0657986 0.0379889i 0.466740 0.884395i \(-0.345428\pi\)
−0.532538 + 0.846406i \(0.678762\pi\)
\(368\) 182.228 0.495184
\(369\) 0 0
\(370\) 448.028i 1.21089i
\(371\) −450.790 + 7.56489i −1.21507 + 0.0203905i
\(372\) 0 0
\(373\) 62.6374 + 108.491i 0.167929 + 0.290861i 0.937691 0.347469i \(-0.112959\pi\)
−0.769763 + 0.638330i \(0.779625\pi\)
\(374\) 24.3757 14.0733i 0.0651757 0.0376292i
\(375\) 0 0
\(376\) 168.448 + 97.2535i 0.448000 + 0.258653i
\(377\) 205.443i 0.544941i
\(378\) 0 0
\(379\) 56.1639 0.148190 0.0740949 0.997251i \(-0.476393\pi\)
0.0740949 + 0.997251i \(0.476393\pi\)
\(380\) 54.9683 95.2078i 0.144653 0.250547i
\(381\) 0 0
\(382\) −171.412 296.895i −0.448723 0.777211i
\(383\) 491.936 284.020i 1.28443 0.741565i 0.306774 0.951782i \(-0.400750\pi\)
0.977655 + 0.210217i \(0.0674170\pi\)
\(384\) 0 0
\(385\) 1.94067 + 115.644i 0.00504070 + 0.300374i
\(386\) 351.638 0.910979
\(387\) 0 0
\(388\) 91.2971i 0.235302i
\(389\) −146.522 + 253.784i −0.376664 + 0.652401i −0.990575 0.136974i \(-0.956262\pi\)
0.613911 + 0.789376i \(0.289596\pi\)
\(390\) 0 0
\(391\) −372.525 + 215.078i −0.952750 + 0.550071i
\(392\) 138.515 4.65026i 0.353354 0.0118629i
\(393\) 0 0
\(394\) −4.35260 + 7.53893i −0.0110472 + 0.0191343i
\(395\) 894.970i 2.26575i
\(396\) 0 0
\(397\) 507.654i 1.27873i −0.768905 0.639363i \(-0.779198\pi\)
0.768905 0.639363i \(-0.220802\pi\)
\(398\) −359.755 207.704i −0.903906 0.521870i
\(399\) 0 0
\(400\) 72.8915 + 126.252i 0.182229 + 0.315630i
\(401\) −69.4682 120.322i −0.173237 0.300056i 0.766313 0.642468i \(-0.222089\pi\)
−0.939550 + 0.342412i \(0.888756\pi\)
\(402\) 0 0
\(403\) −31.1324 + 53.9229i −0.0772517 + 0.133804i
\(404\) 1.21660i 0.00301137i
\(405\) 0 0
\(406\) −101.168 168.629i −0.249182 0.415342i
\(407\) −42.5946 + 73.7761i −0.104655 + 0.181268i
\(408\) 0 0
\(409\) 416.051 240.207i 1.01724 0.587303i 0.103936 0.994584i \(-0.466856\pi\)
0.913303 + 0.407281i \(0.133523\pi\)
\(410\) 339.195 + 587.503i 0.827305 + 1.43293i
\(411\) 0 0
\(412\) −169.546 97.8873i −0.411519 0.237591i
\(413\) 255.115 153.055i 0.617713 0.370593i
\(414\) 0 0
\(415\) −783.711 −1.88846
\(416\) −50.6662 29.2522i −0.121794 0.0703177i
\(417\) 0 0
\(418\) −18.1031 + 10.4518i −0.0433088 + 0.0250043i
\(419\) 385.429 222.527i 0.919878 0.531092i 0.0362816 0.999342i \(-0.488449\pi\)
0.883596 + 0.468250i \(0.155115\pi\)
\(420\) 0 0
\(421\) −283.010 + 490.188i −0.672233 + 1.16434i 0.305036 + 0.952341i \(0.401331\pi\)
−0.977269 + 0.212001i \(0.932002\pi\)
\(422\) −104.876 −0.248521
\(423\) 0 0
\(424\) 182.172 0.429652
\(425\) −298.022 172.063i −0.701229 0.404855i
\(426\) 0 0
\(427\) −69.9240 38.8211i −0.163756 0.0909159i
\(428\) −65.2642 113.041i −0.152487 0.264114i
\(429\) 0 0
\(430\) 659.832 + 380.954i 1.53449 + 0.885940i
\(431\) 474.624 1.10121 0.550607 0.834764i \(-0.314396\pi\)
0.550607 + 0.834764i \(0.314396\pi\)
\(432\) 0 0
\(433\) 1.62996i 0.00376435i 0.999998 + 0.00188217i \(0.000599115\pi\)
−0.999998 + 0.00188217i \(0.999401\pi\)
\(434\) 1.00002 + 59.5911i 0.00230420 + 0.137307i
\(435\) 0 0
\(436\) 197.677 + 342.387i 0.453388 + 0.785291i
\(437\) 276.663 159.731i 0.633096 0.365518i
\(438\) 0 0
\(439\) −541.613 312.700i −1.23374 0.712302i −0.265935 0.963991i \(-0.585681\pi\)
−0.967808 + 0.251689i \(0.919014\pi\)
\(440\) 46.7339i 0.106213i
\(441\) 0 0
\(442\) 138.102 0.312447
\(443\) −148.901 + 257.904i −0.336119 + 0.582175i −0.983699 0.179822i \(-0.942448\pi\)
0.647580 + 0.761997i \(0.275781\pi\)
\(444\) 0 0
\(445\) −356.488 617.456i −0.801097 1.38754i
\(446\) −340.505 + 196.591i −0.763465 + 0.440787i
\(447\) 0 0
\(448\) −55.9921 + 0.939626i −0.124982 + 0.00209738i
\(449\) −191.361 −0.426194 −0.213097 0.977031i \(-0.568355\pi\)
−0.213097 + 0.977031i \(0.568355\pi\)
\(450\) 0 0
\(451\) 128.991i 0.286011i
\(452\) −50.3754 + 87.2528i −0.111450 + 0.193037i
\(453\) 0 0
\(454\) −123.741 + 71.4418i −0.272557 + 0.157361i
\(455\) −275.458 + 496.151i −0.605403 + 1.09044i
\(456\) 0 0
\(457\) 106.962 185.264i 0.234053 0.405392i −0.724944 0.688808i \(-0.758134\pi\)
0.958997 + 0.283416i \(0.0914676\pi\)
\(458\) 83.4014i 0.182099i
\(459\) 0 0
\(460\) 714.217i 1.55265i
\(461\) 268.859 + 155.226i 0.583207 + 0.336715i 0.762407 0.647098i \(-0.224017\pi\)
−0.179200 + 0.983813i \(0.557351\pi\)
\(462\) 0 0
\(463\) 83.7628 + 145.081i 0.180913 + 0.313351i 0.942192 0.335074i \(-0.108761\pi\)
−0.761279 + 0.648425i \(0.775428\pi\)
\(464\) 39.7290 + 68.8127i 0.0856229 + 0.148303i
\(465\) 0 0
\(466\) −126.924 + 219.838i −0.272368 + 0.471756i
\(467\) 315.106i 0.674744i 0.941371 + 0.337372i \(0.109538\pi\)
−0.941371 + 0.337372i \(0.890462\pi\)
\(468\) 0 0
\(469\) −31.1763 51.9653i −0.0664739 0.110800i
\(470\) −381.172 + 660.210i −0.811005 + 1.40470i
\(471\) 0 0
\(472\) −104.105 + 60.1053i −0.220562 + 0.127342i
\(473\) −72.4357 125.462i −0.153141 0.265248i
\(474\) 0 0
\(475\) 221.332 + 127.786i 0.465962 + 0.269023i
\(476\) 113.355 68.0066i 0.238140 0.142871i
\(477\) 0 0
\(478\) −258.115 −0.539990
\(479\) −778.130 449.253i −1.62449 0.937898i −0.985699 0.168516i \(-0.946102\pi\)
−0.638789 0.769382i \(-0.720564\pi\)
\(480\) 0 0
\(481\) −361.983 + 208.991i −0.752563 + 0.434492i
\(482\) −6.92741 + 3.99954i −0.0143722 + 0.00829780i
\(483\) 0 0
\(484\) 116.557 201.883i 0.240820 0.417113i
\(485\) 357.827 0.737787
\(486\) 0 0
\(487\) 328.435 0.674404 0.337202 0.941432i \(-0.390519\pi\)
0.337202 + 0.941432i \(0.390519\pi\)
\(488\) 27.9864 + 16.1580i 0.0573492 + 0.0331106i
\(489\) 0 0
\(490\) 18.2261 + 542.891i 0.0371961 + 1.10794i
\(491\) 165.906 + 287.358i 0.337894 + 0.585250i 0.984036 0.177967i \(-0.0569520\pi\)
−0.646142 + 0.763217i \(0.723619\pi\)
\(492\) 0 0
\(493\) −162.435 93.7818i −0.329483 0.190227i
\(494\) −102.564 −0.207619
\(495\) 0 0
\(496\) 24.0818i 0.0485521i
\(497\) 395.434 6.63593i 0.795641 0.0133520i
\(498\) 0 0
\(499\) −63.7291 110.382i −0.127714 0.221206i 0.795077 0.606509i \(-0.207430\pi\)
−0.922790 + 0.385302i \(0.874097\pi\)
\(500\) −155.400 + 89.7203i −0.310800 + 0.179441i
\(501\) 0 0
\(502\) 184.352 + 106.436i 0.367236 + 0.212024i
\(503\) 147.803i 0.293844i 0.989148 + 0.146922i \(0.0469366\pi\)
−0.989148 + 0.146922i \(0.953063\pi\)
\(504\) 0 0
\(505\) −4.76828 −0.00944215
\(506\) 67.9016 117.609i 0.134193 0.232429i
\(507\) 0 0
\(508\) −118.295 204.893i −0.232864 0.403333i
\(509\) 211.358 122.028i 0.415242 0.239740i −0.277798 0.960640i \(-0.589604\pi\)
0.693039 + 0.720900i \(0.256271\pi\)
\(510\) 0 0
\(511\) −7.60989 453.472i −0.0148922 0.887420i
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) 144.195i 0.280536i
\(515\) 383.656 664.512i 0.744964 1.29032i
\(516\) 0 0
\(517\) 125.534 72.4771i 0.242813 0.140188i
\(518\) −194.203 + 349.795i −0.374909 + 0.675281i
\(519\) 0 0
\(520\) 114.650 198.580i 0.220481 0.381884i
\(521\) 147.106i 0.282354i −0.989984 0.141177i \(-0.954911\pi\)
0.989984 0.141177i \(-0.0450886\pi\)
\(522\) 0 0
\(523\) 62.8703i 0.120211i −0.998192 0.0601055i \(-0.980856\pi\)
0.998192 0.0601055i \(-0.0191437\pi\)
\(524\) 222.029 + 128.188i 0.423719 + 0.244634i
\(525\) 0 0
\(526\) 79.7166 + 138.073i 0.151553 + 0.262497i
\(527\) 28.4231 + 49.2302i 0.0539337 + 0.0934159i
\(528\) 0 0
\(529\) −773.216 + 1339.25i −1.46166 + 2.53166i
\(530\) 714.001i 1.34717i
\(531\) 0 0
\(532\) −84.1851 + 50.5064i −0.158243 + 0.0949368i
\(533\) 316.448 548.103i 0.593710 1.02834i
\(534\) 0 0
\(535\) 443.049 255.795i 0.828129 0.478121i
\(536\) 12.2430 + 21.2055i 0.0228415 + 0.0395626i
\(537\) 0 0
\(538\) 82.8515 + 47.8343i 0.153999 + 0.0889114i
\(539\) 48.6121 91.1298i 0.0901895 0.169072i
\(540\) 0 0
\(541\) 9.15847 0.0169288 0.00846439 0.999964i \(-0.497306\pi\)
0.00846439 + 0.999964i \(0.497306\pi\)
\(542\) 176.860 + 102.110i 0.326311 + 0.188395i
\(543\) 0 0
\(544\) −46.2569 + 26.7064i −0.0850311 + 0.0490927i
\(545\) −1341.94 + 774.770i −2.46228 + 1.42160i
\(546\) 0 0
\(547\) 394.904 683.994i 0.721945 1.25045i −0.238274 0.971198i \(-0.576582\pi\)
0.960219 0.279247i \(-0.0900849\pi\)
\(548\) 443.914 0.810063
\(549\) 0 0
\(550\) 108.643 0.197533
\(551\) 120.635 + 69.6488i 0.218939 + 0.126404i
\(552\) 0 0
\(553\) 387.935 698.743i 0.701510 1.26355i
\(554\) 182.037 + 315.298i 0.328587 + 0.569129i
\(555\) 0 0
\(556\) −413.515 238.743i −0.743732 0.429394i
\(557\) −676.050 −1.21373 −0.606867 0.794803i \(-0.707574\pi\)
−0.606867 + 0.794803i \(0.707574\pi\)
\(558\) 0 0
\(559\) 710.812i 1.27158i
\(560\) −3.68274 219.454i −0.00657632 0.391882i
\(561\) 0 0
\(562\) 206.581 + 357.810i 0.367583 + 0.636672i
\(563\) 317.573 183.351i 0.564074 0.325668i −0.190705 0.981647i \(-0.561077\pi\)
0.754779 + 0.655979i \(0.227744\pi\)
\(564\) 0 0
\(565\) −341.976 197.440i −0.605267 0.349451i
\(566\) 468.892i 0.828432i
\(567\) 0 0
\(568\) −159.802 −0.281341
\(569\) 111.553 193.216i 0.196051 0.339570i −0.751193 0.660082i \(-0.770521\pi\)
0.947245 + 0.320512i \(0.103855\pi\)
\(570\) 0 0
\(571\) 191.237 + 331.233i 0.334917 + 0.580093i 0.983469 0.181077i \(-0.0579585\pi\)
−0.648552 + 0.761170i \(0.724625\pi\)
\(572\) −37.7585 + 21.7999i −0.0660113 + 0.0381117i
\(573\) 0 0
\(574\) −10.1648 605.718i −0.0177087 1.05526i
\(575\) −1660.36 −2.88758
\(576\) 0 0
\(577\) 591.373i 1.02491i 0.858714 + 0.512455i \(0.171264\pi\)
−0.858714 + 0.512455i \(0.828736\pi\)
\(578\) −141.312 + 244.760i −0.244485 + 0.423460i
\(579\) 0 0
\(580\) −269.702 + 155.713i −0.465004 + 0.268470i
\(581\) 611.878 + 339.708i 1.05315 + 0.584696i
\(582\) 0 0
\(583\) 67.8810 117.573i 0.116434 0.201670i
\(584\) 183.256i 0.313795i
\(585\) 0 0
\(586\) 210.014i 0.358386i
\(587\) 309.364 + 178.611i 0.527025 + 0.304278i 0.739804 0.672822i \(-0.234918\pi\)
−0.212779 + 0.977100i \(0.568251\pi\)
\(588\) 0 0
\(589\) −21.1089 36.5617i −0.0358386 0.0620742i
\(590\) −235.575 408.027i −0.399279 0.691572i
\(591\) 0 0
\(592\) 80.8303 140.002i 0.136538 0.236490i
\(593\) 755.558i 1.27413i −0.770811 0.637064i \(-0.780149\pi\)
0.770811 0.637064i \(-0.219851\pi\)
\(594\) 0 0
\(595\) 266.543 + 444.279i 0.447971 + 0.746688i
\(596\) −103.162 + 178.681i −0.173090 + 0.299801i
\(597\) 0 0
\(598\) 577.049 333.160i 0.964965 0.557123i
\(599\) −496.902 860.660i −0.829553 1.43683i −0.898389 0.439200i \(-0.855262\pi\)
0.0688358 0.997628i \(-0.478072\pi\)
\(600\) 0 0
\(601\) −203.743 117.631i −0.339006 0.195725i 0.320826 0.947138i \(-0.396039\pi\)
−0.659832 + 0.751413i \(0.729373\pi\)
\(602\) −350.031 583.440i −0.581448 0.969169i
\(603\) 0 0
\(604\) 402.685 0.666697
\(605\) 791.252 + 456.830i 1.30785 + 0.755090i
\(606\) 0 0
\(607\) 467.352 269.826i 0.769937 0.444523i −0.0629152 0.998019i \(-0.520040\pi\)
0.832852 + 0.553496i \(0.186706\pi\)
\(608\) 34.3535 19.8340i 0.0565025 0.0326218i
\(609\) 0 0
\(610\) −63.3289 + 109.689i −0.103818 + 0.179818i
\(611\) 711.219 1.16402
\(612\) 0 0
\(613\) −261.237 −0.426161 −0.213081 0.977035i \(-0.568350\pi\)
−0.213081 + 0.977035i \(0.568350\pi\)
\(614\) 58.2877 + 33.6524i 0.0949311 + 0.0548085i
\(615\) 0 0
\(616\) −20.2573 + 36.4872i −0.0328853 + 0.0592325i
\(617\) −333.055 576.868i −0.539797 0.934956i −0.998915 0.0465807i \(-0.985168\pi\)
0.459117 0.888376i \(-0.348166\pi\)
\(618\) 0 0
\(619\) 581.338 + 335.636i 0.939157 + 0.542223i 0.889696 0.456553i \(-0.150916\pi\)
0.0494614 + 0.998776i \(0.484250\pi\)
\(620\) 94.3856 0.152235
\(621\) 0 0
\(622\) 21.5331i 0.0346192i
\(623\) 10.6830 + 636.599i 0.0171477 + 1.02183i
\(624\) 0 0
\(625\) 103.925 + 180.004i 0.166280 + 0.288006i
\(626\) −191.142 + 110.356i −0.305339 + 0.176287i
\(627\) 0 0
\(628\) 163.067 + 94.1469i 0.259661 + 0.149915i
\(629\) 381.606i 0.606687i
\(630\) 0 0
\(631\) 252.355 0.399929 0.199965 0.979803i \(-0.435917\pi\)
0.199965 + 0.979803i \(0.435917\pi\)
\(632\) −161.465 + 279.665i −0.255482 + 0.442508i
\(633\) 0 0
\(634\) −210.418 364.455i −0.331890 0.574850i
\(635\) 803.051 463.642i 1.26465 0.730145i
\(636\) 0 0
\(637\) 430.125 267.967i 0.675235 0.420670i
\(638\) 59.2153 0.0928139
\(639\) 0 0
\(640\) 88.6852i 0.138571i
\(641\) −287.254 + 497.539i −0.448135 + 0.776192i −0.998265 0.0588868i \(-0.981245\pi\)
0.550130 + 0.835079i \(0.314578\pi\)
\(642\) 0 0
\(643\) 128.360 74.1086i 0.199626 0.115254i −0.396855 0.917881i \(-0.629898\pi\)
0.596481 + 0.802627i \(0.296565\pi\)
\(644\) 309.586 557.621i 0.480723 0.865871i
\(645\) 0 0
\(646\) −46.8190 + 81.0929i −0.0724752 + 0.125531i
\(647\) 904.316i 1.39771i −0.715265 0.698853i \(-0.753694\pi\)
0.715265 0.698853i \(-0.246306\pi\)
\(648\) 0 0
\(649\) 89.5856i 0.138036i
\(650\) 461.643 + 266.529i 0.710219 + 0.410045i
\(651\) 0 0
\(652\) −9.85556 17.0703i −0.0151159 0.0261815i
\(653\) −43.6173 75.5473i −0.0667952 0.115693i 0.830694 0.556730i \(-0.187944\pi\)
−0.897489 + 0.441037i \(0.854611\pi\)
\(654\) 0 0
\(655\) −502.417 + 870.212i −0.767049 + 1.32857i
\(656\) 244.782i 0.373143i
\(657\) 0 0
\(658\) 583.774 350.232i 0.887194 0.532267i
\(659\) 225.512 390.598i 0.342203 0.592713i −0.642639 0.766170i \(-0.722160\pi\)
0.984842 + 0.173457i \(0.0554936\pi\)
\(660\) 0 0
\(661\) −227.522 + 131.360i −0.344209 + 0.198729i −0.662132 0.749388i \(-0.730348\pi\)
0.317923 + 0.948117i \(0.397015\pi\)
\(662\) −214.803 372.050i −0.324476 0.562008i
\(663\) 0 0
\(664\) −244.898 141.392i −0.368823 0.212940i
\(665\) −197.953 329.952i −0.297674 0.496169i
\(666\) 0 0
\(667\) −904.965 −1.35677
\(668\) −213.713 123.387i −0.319929 0.184711i
\(669\) 0 0
\(670\) −83.1123 + 47.9849i −0.124048 + 0.0716193i
\(671\) 20.8566 12.0415i 0.0310828 0.0179457i
\(672\) 0 0
\(673\) 294.210 509.587i 0.437162 0.757187i −0.560307 0.828285i \(-0.689317\pi\)
0.997469 + 0.0710979i \(0.0226503\pi\)
\(674\) 424.671 0.630075
\(675\) 0 0
\(676\) 124.078 0.183547
\(677\) −923.740 533.321i −1.36446 0.787772i −0.374247 0.927329i \(-0.622099\pi\)
−0.990214 + 0.139557i \(0.955432\pi\)
\(678\) 0 0
\(679\) −279.371 155.104i −0.411445 0.228430i
\(680\) −104.672 181.298i −0.153930 0.266614i
\(681\) 0 0
\(682\) −15.5423 8.97337i −0.0227893 0.0131574i
\(683\) 91.4075 0.133832 0.0669162 0.997759i \(-0.478684\pi\)
0.0669162 + 0.997759i \(0.478684\pi\)
\(684\) 0 0
\(685\) 1739.86i 2.53995i
\(686\) 221.092 431.759i 0.322292 0.629387i
\(687\) 0 0
\(688\) 137.459 + 238.085i 0.199794 + 0.346054i
\(689\) 576.875 333.059i 0.837264 0.483394i
\(690\) 0 0
\(691\) −17.8222 10.2897i −0.0257920 0.0148910i 0.487049 0.873375i \(-0.338073\pi\)
−0.512841 + 0.858484i \(0.671407\pi\)
\(692\) 518.048i 0.748624i
\(693\) 0 0
\(694\) 55.4635 0.0799186
\(695\) 935.721 1620.72i 1.34636 2.33197i
\(696\) 0 0
\(697\) −288.908 500.403i −0.414502 0.717939i
\(698\) −554.351 + 320.054i −0.794199 + 0.458531i
\(699\) 0 0
\(700\) 510.169 8.56135i 0.728813 0.0122305i
\(701\) 509.822 0.727278 0.363639 0.931540i \(-0.381534\pi\)
0.363639 + 0.931540i \(0.381534\pi\)
\(702\) 0 0
\(703\) 283.407i 0.403139i
\(704\) 8.43142 14.6037i 0.0119765 0.0207438i
\(705\) 0 0
\(706\) −515.364 + 297.545i −0.729977 + 0.421452i
\(707\) 3.72281 + 2.06687i 0.00526565 + 0.00292343i
\(708\) 0 0
\(709\) 596.846 1033.77i 0.841814 1.45806i −0.0465457 0.998916i \(-0.514821\pi\)
0.888360 0.459148i \(-0.151845\pi\)
\(710\) 626.322i 0.882144i
\(711\) 0 0
\(712\) 257.261i 0.361322i
\(713\) 237.528 + 137.137i 0.333139 + 0.192338i
\(714\) 0 0
\(715\) −85.4417 147.989i −0.119499 0.206978i
\(716\) 23.4639 + 40.6407i 0.0327708 + 0.0567607i
\(717\) 0 0
\(718\) 189.554 328.318i 0.264003 0.457267i
\(719\) 721.258i 1.00314i 0.865117 + 0.501571i \(0.167244\pi\)
−0.865117 + 0.501571i \(0.832756\pi\)
\(720\) 0 0
\(721\) −587.578 + 352.514i −0.814949 + 0.488924i
\(722\) −220.495 + 381.908i −0.305394 + 0.528958i
\(723\) 0 0
\(724\) 300.743 173.634i 0.415391 0.239826i
\(725\) −361.989 626.983i −0.499295 0.864804i
\(726\) 0 0
\(727\) −127.774 73.7701i −0.175754 0.101472i 0.409542 0.912291i \(-0.365689\pi\)
−0.585296 + 0.810819i \(0.699022\pi\)
\(728\) −175.589 + 105.344i −0.241194 + 0.144703i
\(729\) 0 0
\(730\) −718.248 −0.983901
\(731\) −562.009 324.476i −0.768822 0.443880i
\(732\) 0 0
\(733\) −597.569 + 345.006i −0.815237 + 0.470677i −0.848771 0.528760i \(-0.822657\pi\)
0.0335343 + 0.999438i \(0.489324\pi\)
\(734\) 34.1506 19.7168i 0.0465267 0.0268622i
\(735\) 0 0
\(736\) −128.854 + 223.182i −0.175074 + 0.303237i
\(737\) 18.2480 0.0247598
\(738\) 0 0
\(739\) 456.471 0.617687 0.308844 0.951113i \(-0.400058\pi\)
0.308844 + 0.951113i \(0.400058\pi\)
\(740\) 548.720 + 316.804i 0.741513 + 0.428113i
\(741\) 0 0
\(742\) 309.492 557.452i 0.417105 0.751283i
\(743\) −35.6377 61.7263i −0.0479646 0.0830772i 0.841046 0.540963i \(-0.181940\pi\)
−0.889011 + 0.457886i \(0.848607\pi\)
\(744\) 0 0
\(745\) −700.318 404.329i −0.940024 0.542723i
\(746\) −177.165 −0.237487
\(747\) 0 0
\(748\) 39.8054i 0.0532157i
\(749\) −456.785 + 7.66550i −0.609860 + 0.0102343i
\(750\) 0 0
\(751\) 678.540 + 1175.27i 0.903515 + 1.56493i 0.822898 + 0.568189i \(0.192356\pi\)
0.0806166 + 0.996745i \(0.474311\pi\)
\(752\) −238.221 + 137.537i −0.316784 + 0.182895i
\(753\) 0 0
\(754\) 251.615 + 145.270i 0.333707 + 0.192666i
\(755\) 1578.27i 2.09042i
\(756\) 0 0
\(757\) 310.769 0.410527 0.205264 0.978707i \(-0.434195\pi\)
0.205264 + 0.978707i \(0.434195\pi\)
\(758\) −39.7139 + 68.7865i −0.0523930 + 0.0907473i
\(759\) 0 0
\(760\) 77.7369 + 134.644i 0.102285 + 0.177163i
\(761\) −231.955 + 133.919i −0.304803 + 0.175978i −0.644599 0.764521i \(-0.722975\pi\)
0.339795 + 0.940499i \(0.389642\pi\)
\(762\) 0 0
\(763\) 1383.55 23.2178i 1.81330 0.0304297i
\(764\) 484.827 0.634590
\(765\) 0 0
\(766\) 803.329i 1.04873i
\(767\) −219.776 + 380.664i −0.286540 + 0.496302i
\(768\) 0 0
\(769\) −1021.03 + 589.492i −1.32774 + 0.766569i −0.984949 0.172844i \(-0.944704\pi\)
−0.342788 + 0.939413i \(0.611371\pi\)
\(770\) −143.007 79.3959i −0.185723 0.103112i
\(771\) 0 0
\(772\) −248.645 + 430.667i −0.322080 + 0.557858i
\(773\) 586.849i 0.759184i −0.925154 0.379592i \(-0.876064\pi\)
0.925154 0.379592i \(-0.123936\pi\)
\(774\) 0 0
\(775\) 219.420i 0.283123i
\(776\) 111.816 + 64.5568i 0.144092 + 0.0831917i
\(777\) 0 0
\(778\) −207.214 358.905i −0.266342 0.461317i
\(779\) 214.563 + 371.634i 0.275434 + 0.477065i
\(780\) 0 0
\(781\) −59.5453 + 103.135i −0.0762424 + 0.132056i
\(782\) 608.331i 0.777917i
\(783\) 0 0
\(784\) −92.2494 + 172.934i −0.117665 + 0.220579i
\(785\) −368.996 + 639.120i −0.470059 + 0.814166i
\(786\) 0 0
\(787\) 525.886 303.620i 0.668216 0.385795i −0.127184 0.991879i \(-0.540594\pi\)
0.795400 + 0.606084i \(0.207261\pi\)
\(788\) −6.15551 10.6617i −0.00781156 0.0135300i
\(789\) 0 0
\(790\) −1096.11 632.839i −1.38748 0.801062i
\(791\) 181.413 + 302.383i 0.229347 + 0.382280i
\(792\) 0 0
\(793\) 118.164 0.149009
\(794\) 621.747 + 358.966i 0.783056 + 0.452098i
\(795\) 0 0
\(796\) 508.770 293.738i 0.639158 0.369018i
\(797\) 138.769 80.1182i 0.174114 0.100525i −0.410410 0.911901i \(-0.634615\pi\)
0.584524 + 0.811376i \(0.301281\pi\)
\(798\) 0 0
\(799\) 324.662 562.331i 0.406335 0.703793i
\(800\) −206.168 −0.257710
\(801\) 0 0
\(802\) 196.486 0.244995
\(803\) 118.273 + 68.2848i 0.147289 + 0.0850371i
\(804\) 0 0
\(805\) 2185.52 + 1213.38i 2.71493 + 1.50730i
\(806\) −44.0279 76.2586i −0.0546252 0.0946136i
\(807\) 0 0
\(808\) −1.49002 0.860263i −0.00184408 0.00106468i
\(809\) 806.158 0.996487 0.498244 0.867037i \(-0.333978\pi\)
0.498244 + 0.867037i \(0.333978\pi\)
\(810\) 0 0
\(811\) 19.2228i 0.0237026i 0.999930 + 0.0118513i \(0.00377248\pi\)
−0.999930 + 0.0118513i \(0.996228\pi\)
\(812\) 278.064 4.66630i 0.342443 0.00574668i
\(813\) 0 0
\(814\) −60.2379 104.335i −0.0740023 0.128176i
\(815\) 66.9049 38.6276i 0.0820919 0.0473958i
\(816\) 0 0
\(817\) 417.387 + 240.978i 0.510877 + 0.294955i
\(818\) 679.408i 0.830572i
\(819\) 0 0
\(820\) −959.389 −1.16999
\(821\) −712.768 + 1234.55i −0.868171 + 1.50372i −0.00430682 + 0.999991i \(0.501371\pi\)
−0.863864 + 0.503725i \(0.831962\pi\)
\(822\) 0 0
\(823\) −307.257 532.185i −0.373338 0.646641i 0.616739 0.787168i \(-0.288454\pi\)
−0.990077 + 0.140527i \(0.955120\pi\)
\(824\) 239.774 138.434i 0.290988 0.168002i
\(825\) 0 0
\(826\) 7.05956 + 420.678i 0.00854668 + 0.509295i
\(827\) 681.029 0.823494 0.411747 0.911298i \(-0.364919\pi\)
0.411747 + 0.911298i \(0.364919\pi\)
\(828\) 0 0
\(829\) 1137.71i 1.37239i −0.727419 0.686194i \(-0.759280\pi\)
0.727419 0.686194i \(-0.240720\pi\)
\(830\) 554.167 959.846i 0.667671 1.15644i
\(831\) 0 0
\(832\) 71.6529 41.3688i 0.0861213 0.0497221i
\(833\) −15.5240 462.405i −0.0186362 0.555108i
\(834\) 0 0
\(835\) 483.599 837.618i 0.579160 1.00314i
\(836\) 29.5622i 0.0353615i
\(837\) 0 0
\(838\) 629.402i 0.751077i
\(839\) −470.831 271.834i −0.561181 0.323998i 0.192438 0.981309i \(-0.438360\pi\)
−0.753619 + 0.657311i \(0.771694\pi\)
\(840\) 0 0
\(841\) 223.201 + 386.595i 0.265399 + 0.459685i
\(842\) −400.237 693.230i −0.475341 0.823314i
\(843\) 0 0
\(844\) 74.1583 128.446i 0.0878653 0.152187i
\(845\) 486.306i 0.575510i
\(846\) 0 0
\(847\) −419.748 699.644i −0.495570 0.826027i
\(848\) −128.815 + 223.115i −0.151905 + 0.263107i
\(849\) 0 0
\(850\) 421.467 243.334i 0.495844 0.286275i
\(851\) 920.594 + 1594.52i 1.08178 + 1.87370i
\(852\) 0 0
\(853\) −1448.28 836.167i −1.69787 0.980266i −0.947777 0.318935i \(-0.896675\pi\)
−0.750094 0.661331i \(-0.769992\pi\)
\(854\) 96.9897 58.1884i 0.113571 0.0681363i
\(855\) 0 0
\(856\) 184.595 0.215649
\(857\) −828.715 478.459i −0.966996 0.558295i −0.0686767 0.997639i \(-0.521878\pi\)
−0.898319 + 0.439344i \(0.855211\pi\)
\(858\) 0 0
\(859\) 1415.32 817.134i 1.64763 0.951262i 0.669624 0.742700i \(-0.266455\pi\)
0.978009 0.208561i \(-0.0668781\pi\)
\(860\) −933.144 + 538.751i −1.08505 + 0.626454i
\(861\) 0 0
\(862\) −335.610 + 581.293i −0.389338 + 0.674354i
\(863\) −1264.39 −1.46511 −0.732555 0.680708i \(-0.761672\pi\)
−0.732555 + 0.680708i \(0.761672\pi\)
\(864\) 0 0
\(865\) 2030.42 2.34731
\(866\) −1.99629 1.15256i −0.00230518 0.00133090i
\(867\) 0 0
\(868\) −73.6911 40.9125i −0.0848976 0.0471343i
\(869\) 120.330 + 208.417i 0.138469 + 0.239836i
\(870\) 0 0
\(871\) 77.5385 + 44.7669i 0.0890224 + 0.0513971i
\(872\) −559.116 −0.641188
\(873\) 0 0
\(874\) 451.788i 0.516920i
\(875\) 10.5379 + 627.954i 0.0120434 + 0.717662i
\(876\) 0 0
\(877\) −157.796 273.311i −0.179927 0.311643i 0.761928 0.647661i \(-0.224253\pi\)
−0.941855 + 0.336019i \(0.890919\pi\)
\(878\) 765.957 442.225i 0.872388 0.503673i
\(879\) 0 0
\(880\) 57.2371 + 33.0458i 0.0650421 + 0.0375521i
\(881\) 1325.05i 1.50403i 0.659148 + 0.752013i \(0.270917\pi\)
−0.659148 + 0.752013i \(0.729083\pi\)
\(882\) 0 0
\(883\) 53.0789 0.0601120 0.0300560 0.999548i \(-0.490431\pi\)
0.0300560 + 0.999548i \(0.490431\pi\)
\(884\) −97.6527 + 169.139i −0.110467 + 0.191334i
\(885\) 0 0
\(886\) −210.577 364.731i −0.237672 0.411660i
\(887\) −569.288 + 328.679i −0.641813 + 0.370551i −0.785313 0.619099i \(-0.787498\pi\)
0.143499 + 0.989650i \(0.454165\pi\)
\(888\) 0 0
\(889\) −827.949 + 13.8941i −0.931326 + 0.0156290i
\(890\) 1008.30 1.13292
\(891\) 0 0
\(892\) 556.043i 0.623366i
\(893\) −241.116 + 417.625i −0.270007 + 0.467665i
\(894\) 0 0
\(895\) −159.286 + 91.9636i −0.177973 + 0.102753i
\(896\) 38.4416 69.2405i 0.0429036 0.0772773i
\(897\) 0 0
\(898\) 135.313 234.369i 0.150682 0.260990i
\(899\) 119.594i 0.133029i
\(900\) 0 0
\(901\) 608.147i 0.674969i
\(902\) 157.981 + 91.2104i 0.175145 + 0.101120i
\(903\) 0 0
\(904\) −71.2416 123.394i −0.0788071 0.136498i
\(905\) 680.536 + 1178.72i 0.751973 + 1.30246i
\(906\) 0 0
\(907\) 254.110 440.131i 0.280165 0.485260i −0.691260 0.722606i \(-0.742944\pi\)
0.971425 + 0.237346i \(0.0762774\pi\)
\(908\) 202.068i 0.222542i
\(909\) 0 0
\(910\) −412.880 688.198i −0.453715 0.756261i
\(911\) 615.535 1066.14i 0.675670 1.17029i −0.300603 0.953749i \(-0.597188\pi\)
0.976273 0.216545i \(-0.0694787\pi\)
\(912\) 0 0
\(913\) −182.508 + 105.371i −0.199899 + 0.115412i
\(914\) 151.268 + 262.003i 0.165501 + 0.286656i
\(915\) 0 0
\(916\) 102.145 + 58.9737i 0.111513 + 0.0643818i
\(917\) 769.463 461.635i 0.839109 0.503419i
\(918\) 0 0
\(919\) −953.211 −1.03723 −0.518613 0.855009i \(-0.673552\pi\)
−0.518613 + 0.855009i \(0.673552\pi\)
\(920\) −874.734 505.028i −0.950797 0.548943i
\(921\) 0 0
\(922\) −380.223 + 219.522i −0.412390 + 0.238093i
\(923\) −506.035 + 292.159i −0.548250 + 0.316532i
\(924\) 0 0
\(925\) −736.480 + 1275.62i −0.796195 + 1.37905i
\(926\) −236.917 −0.255850
\(927\) 0 0
\(928\) −112.371 −0.121089
\(929\) 1161.63 + 670.670i 1.25041 + 0.721927i 0.971192 0.238300i \(-0.0765901\pi\)
0.279222 + 0.960227i \(0.409923\pi\)
\(930\) 0 0
\(931\) 11.5292 + 343.414i 0.0123836 + 0.368865i
\(932\) −179.497 310.898i −0.192593 0.333582i
\(933\) 0 0
\(934\) −385.924 222.813i −0.413195 0.238558i
\(935\) −156.012 −0.166858
\(936\) 0 0
\(937\) 1468.66i 1.56741i 0.621136 + 0.783703i \(0.286672\pi\)
−0.621136 + 0.783703i \(0.713328\pi\)
\(938\) 85.6891 1.43798i 0.0913530 0.00153303i
\(939\) 0 0
\(940\) −539.059 933.677i −0.573467 0.993274i
\(941\) −466.720 + 269.461i −0.495983 + 0.286356i −0.727053 0.686581i \(-0.759111\pi\)
0.231070 + 0.972937i \(0.425777\pi\)
\(942\) 0 0
\(943\) −2414.37 1393.94i −2.56031 1.47819i
\(944\) 170.003i 0.180088i
\(945\) 0 0
\(946\) 204.879 0.216574
\(947\) 233.960 405.231i 0.247054 0.427910i −0.715653 0.698456i \(-0.753871\pi\)
0.962707 + 0.270546i \(0.0872041\pi\)
\(948\) 0 0
\(949\) 335.040 + 580.306i 0.353045 + 0.611492i
\(950\) −313.010 + 180.717i −0.329485 + 0.190228i
\(951\) 0 0
\(952\) 3.13676 + 186.919i 0.00329491 + 0.196343i
\(953\) −209.542 −0.219876 −0.109938 0.993938i \(-0.535065\pi\)
−0.109938 + 0.993938i \(0.535065\pi\)
\(954\) 0 0
\(955\) 1900.22i 1.98975i
\(956\) 182.515 316.125i 0.190915 0.330675i
\(957\) 0 0
\(958\) 1100.44 635.340i 1.14869 0.663194i
\(959\) 754.164 1358.39i 0.786406 1.41646i
\(960\) 0 0
\(961\) −462.377 + 800.860i −0.481142 + 0.833362i
\(962\) 591.115i 0.614465i
\(963\) 0 0
\(964\) 11.3124i 0.0117349i
\(965\) −1687.94 974.533i −1.74916 1.00988i
\(966\) 0 0
\(967\) −231.563 401.080i −0.239466 0.414767i 0.721095 0.692836i \(-0.243639\pi\)
−0.960561 + 0.278069i \(0.910306\pi\)
\(968\) 164.836 + 285.505i 0.170286 + 0.294943i
\(969\) 0 0
\(970\) −253.022 + 438.247i −0.260847 + 0.451801i
\(971\) 20.0008i 0.0205981i 0.999947 + 0.0102991i \(0.00327835\pi\)
−0.999947 + 0.0102991i \(0.996722\pi\)
\(972\) 0 0
\(973\) −1433.08 + 859.767i −1.47284 + 0.883625i
\(974\) −232.238 + 402.249i −0.238438 + 0.412986i
\(975\) 0 0
\(976\) −39.5787 + 22.8508i −0.0405520 + 0.0234127i
\(977\) 558.279 + 966.968i 0.571422 + 0.989732i 0.996420 + 0.0845376i \(0.0269413\pi\)
−0.424998 + 0.905194i \(0.639725\pi\)
\(978\) 0 0
\(979\) −166.035 95.8606i −0.169597 0.0979168i
\(980\) −677.790 361.559i −0.691623 0.368938i
\(981\) 0 0
\(982\) −469.253 −0.477855
\(983\) −595.403 343.756i −0.605700 0.349701i 0.165581 0.986196i \(-0.447050\pi\)
−0.771281 + 0.636495i \(0.780383\pi\)
\(984\) 0 0
\(985\) 41.7869 24.1257i 0.0424233 0.0244931i
\(986\) 229.718 132.628i 0.232979 0.134511i
\(987\) 0 0
\(988\) 72.5236 125.614i 0.0734044 0.127140i
\(989\) −3131.09 −3.16592
\(990\) 0 0
\(991\) −470.055 −0.474324 −0.237162 0.971470i \(-0.576217\pi\)
−0.237162 + 0.971470i \(0.576217\pi\)
\(992\) 29.4941 + 17.0284i 0.0297320 + 0.0171658i
\(993\) 0 0
\(994\) −271.486 + 488.998i −0.273125 + 0.491949i
\(995\) 1151.27 + 1994.06i 1.15705 + 2.00408i
\(996\) 0 0
\(997\) 1667.02 + 962.456i 1.67204 + 0.965353i 0.966494 + 0.256688i \(0.0826312\pi\)
0.705545 + 0.708665i \(0.250702\pi\)
\(998\) 180.253 0.180614
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.o.a.181.8 32
3.2 odd 2 126.3.o.a.97.12 yes 32
7.6 odd 2 inner 378.3.o.a.181.1 32
9.2 odd 6 1134.3.c.e.811.1 16
9.4 even 3 inner 378.3.o.a.307.1 32
9.5 odd 6 126.3.o.a.13.13 yes 32
9.7 even 3 1134.3.c.d.811.16 16
21.20 even 2 126.3.o.a.97.13 yes 32
63.13 odd 6 inner 378.3.o.a.307.8 32
63.20 even 6 1134.3.c.e.811.8 16
63.34 odd 6 1134.3.c.d.811.9 16
63.41 even 6 126.3.o.a.13.12 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.12 32 63.41 even 6
126.3.o.a.13.13 yes 32 9.5 odd 6
126.3.o.a.97.12 yes 32 3.2 odd 2
126.3.o.a.97.13 yes 32 21.20 even 2
378.3.o.a.181.1 32 7.6 odd 2 inner
378.3.o.a.181.8 32 1.1 even 1 trivial
378.3.o.a.307.1 32 9.4 even 3 inner
378.3.o.a.307.8 32 63.13 odd 6 inner
1134.3.c.d.811.9 16 63.34 odd 6
1134.3.c.d.811.16 16 9.7 even 3
1134.3.c.e.811.1 16 9.2 odd 6
1134.3.c.e.811.8 16 63.20 even 6