Properties

Label 126.3.o.a.13.12
Level $126$
Weight $3$
Character 126.13
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(13,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.13"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 13.12
Character \(\chi\) \(=\) 126.13
Dual form 126.3.o.a.97.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(-0.208863 - 2.99272i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(-6.78854 - 3.91937i) q^{5} +(3.51763 - 2.37198i) q^{6} +(-6.99901 - 0.117453i) q^{7} -2.82843 q^{8} +(-8.91275 + 1.25014i) q^{9} -11.0856i q^{10} +(-1.05393 - 1.82546i) q^{11} +(5.39241 + 2.63096i) q^{12} +(8.95661 + 5.17110i) q^{13} +(-4.80520 - 8.65506i) q^{14} +(-10.3117 + 21.1348i) q^{15} +(-2.00000 - 3.46410i) q^{16} -9.44215i q^{17} +(-7.83337 - 10.0319i) q^{18} -7.01239i q^{19} +(13.5771 - 7.83874i) q^{20} +(1.11033 + 20.9706i) q^{21} +(1.49048 - 2.58159i) q^{22} +(22.7785 - 39.4534i) q^{23} +(0.590754 + 8.46469i) q^{24} +(18.2229 + 31.5630i) q^{25} +14.6261i q^{26} +(5.60286 + 26.4123i) q^{27} +(7.20245 - 12.0052i) q^{28} +(-9.93225 - 17.2032i) q^{29} +(-33.1762 + 2.31538i) q^{30} +(-5.21387 - 3.01023i) q^{31} +(2.82843 - 4.89898i) q^{32} +(-5.24295 + 3.53538i) q^{33} +(11.5642 - 6.67661i) q^{34} +(47.0528 + 28.2290i) q^{35} +(6.74745 - 16.6875i) q^{36} -40.4151 q^{37} +(8.58839 - 4.95851i) q^{38} +(13.6050 - 27.8847i) q^{39} +(19.2009 + 11.0856i) q^{40} +(-52.9968 - 30.5977i) q^{41} +(-24.8985 + 16.1883i) q^{42} +(34.3646 + 59.5213i) q^{43} +4.21571 q^{44} +(65.4044 + 26.4457i) q^{45} +64.4272 q^{46} +(-59.5554 + 34.3843i) q^{47} +(-9.94936 + 6.70896i) q^{48} +(48.9724 + 1.64411i) q^{49} +(-25.7710 + 44.6368i) q^{50} +(-28.2577 + 1.97212i) q^{51} +(-17.9132 + 10.3422i) q^{52} -64.4077 q^{53} +(-28.3865 + 25.5384i) q^{54} +16.5229i q^{55} +(19.7962 + 0.332208i) q^{56} +(-20.9861 + 1.46463i) q^{57} +(14.0463 - 24.3290i) q^{58} +(36.8068 + 21.2504i) q^{59} +(-26.2949 - 38.9952i) q^{60} +(9.89468 - 5.71270i) q^{61} -8.51422i q^{62} +(62.5273 - 7.70290i) q^{63} +8.00000 q^{64} +(-40.5349 - 70.2085i) q^{65} +(-8.03727 - 3.92139i) q^{66} +(4.32856 - 7.49729i) q^{67} +(16.3543 + 9.44215i) q^{68} +(-122.831 - 59.9292i) q^{69} +(-1.30205 + 77.5886i) q^{70} +56.4985 q^{71} +(25.2091 - 3.53592i) q^{72} -64.7908i q^{73} +(-28.5778 - 49.4982i) q^{74} +(90.6530 - 61.1283i) q^{75} +(12.1458 + 7.01239i) q^{76} +(7.16205 + 12.9002i) q^{77} +(43.7718 - 3.05485i) q^{78} +(-57.0864 - 98.8765i) q^{79} +31.3549i q^{80} +(77.8743 - 22.2843i) q^{81} -86.5433i q^{82} +(86.5846 - 49.9896i) q^{83} +(-37.4325 - 19.0475i) q^{84} +(-37.0073 + 64.0985i) q^{85} +(-48.5989 + 84.1758i) q^{86} +(-49.4098 + 33.3176i) q^{87} +(2.98096 + 5.16317i) q^{88} -90.9556i q^{89} +(13.8586 + 98.8036i) q^{90} +(-62.0801 - 37.2446i) q^{91} +(45.5569 + 78.9069i) q^{92} +(-7.91980 + 16.2324i) q^{93} +(-84.2240 - 48.6267i) q^{94} +(-27.4841 + 47.6039i) q^{95} +(-15.2520 - 7.44148i) q^{96} +(39.5328 - 22.8243i) q^{97} +(32.6151 + 61.1413i) q^{98} +(11.6755 + 14.9523i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 24 q^{9} - 12 q^{11} - 12 q^{14} + 48 q^{15} - 64 q^{16} - 54 q^{21} + 12 q^{23} + 80 q^{25} + 8 q^{28} - 48 q^{29} - 168 q^{30} + 348 q^{35} - 72 q^{36} - 88 q^{37} + 252 q^{39}+ \cdots - 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.353553 + 0.612372i
\(3\) −0.208863 2.99272i −0.0696210 0.997574i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) −6.78854 3.91937i −1.35771 0.783874i −0.368394 0.929670i \(-0.620092\pi\)
−0.989315 + 0.145796i \(0.953426\pi\)
\(6\) 3.51763 2.37198i 0.586272 0.395329i
\(7\) −6.99901 0.117453i −0.999859 0.0167790i
\(8\) −2.82843 −0.353553
\(9\) −8.91275 + 1.25014i −0.990306 + 0.138904i
\(10\) 11.0856i 1.10856i
\(11\) −1.05393 1.82546i −0.0958116 0.165951i 0.814135 0.580675i \(-0.197211\pi\)
−0.909947 + 0.414724i \(0.863878\pi\)
\(12\) 5.39241 + 2.63096i 0.449367 + 0.219247i
\(13\) 8.95661 + 5.17110i 0.688970 + 0.397777i 0.803226 0.595674i \(-0.203115\pi\)
−0.114256 + 0.993451i \(0.536448\pi\)
\(14\) −4.80520 8.65506i −0.343229 0.618219i
\(15\) −10.3117 + 21.1348i −0.687446 + 1.40899i
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 9.44215i 0.555421i −0.960665 0.277710i \(-0.910424\pi\)
0.960665 0.277710i \(-0.0895755\pi\)
\(18\) −7.83337 10.0319i −0.435187 0.557326i
\(19\) 7.01239i 0.369073i −0.982826 0.184537i \(-0.940922\pi\)
0.982826 0.184537i \(-0.0590784\pi\)
\(20\) 13.5771 7.83874i 0.678854 0.391937i
\(21\) 1.11033 + 20.9706i 0.0528729 + 0.998601i
\(22\) 1.49048 2.58159i 0.0677490 0.117345i
\(23\) 22.7785 39.4534i 0.990367 1.71537i 0.375270 0.926915i \(-0.377550\pi\)
0.615097 0.788451i \(-0.289117\pi\)
\(24\) 0.590754 + 8.46469i 0.0246147 + 0.352695i
\(25\) 18.2229 + 31.5630i 0.728915 + 1.26252i
\(26\) 14.6261i 0.562542i
\(27\) 5.60286 + 26.4123i 0.207513 + 0.978232i
\(28\) 7.20245 12.0052i 0.257230 0.428757i
\(29\) −9.93225 17.2032i −0.342491 0.593213i 0.642403 0.766367i \(-0.277937\pi\)
−0.984895 + 0.173154i \(0.944604\pi\)
\(30\) −33.1762 + 2.31538i −1.10587 + 0.0771794i
\(31\) −5.21387 3.01023i −0.168189 0.0971042i 0.413542 0.910485i \(-0.364291\pi\)
−0.581732 + 0.813381i \(0.697625\pi\)
\(32\) 2.82843 4.89898i 0.0883883 0.153093i
\(33\) −5.24295 + 3.53538i −0.158877 + 0.107133i
\(34\) 11.5642 6.67661i 0.340124 0.196371i
\(35\) 47.0528 + 28.2290i 1.34436 + 0.806544i
\(36\) 6.74745 16.6875i 0.187429 0.463541i
\(37\) −40.4151 −1.09230 −0.546151 0.837687i \(-0.683907\pi\)
−0.546151 + 0.837687i \(0.683907\pi\)
\(38\) 8.58839 4.95851i 0.226010 0.130487i
\(39\) 13.6050 27.8847i 0.348845 0.714992i
\(40\) 19.2009 + 11.0856i 0.480023 + 0.277141i
\(41\) −52.9968 30.5977i −1.29260 0.746285i −0.313489 0.949592i \(-0.601498\pi\)
−0.979115 + 0.203307i \(0.934831\pi\)
\(42\) −24.8985 + 16.1883i −0.592822 + 0.385437i
\(43\) 34.3646 + 59.5213i 0.799178 + 1.38422i 0.920152 + 0.391561i \(0.128065\pi\)
−0.120974 + 0.992656i \(0.538602\pi\)
\(44\) 4.21571 0.0958116
\(45\) 65.4044 + 26.4457i 1.45343 + 0.587683i
\(46\) 64.4272 1.40059
\(47\) −59.5554 + 34.3843i −1.26714 + 0.731581i −0.974445 0.224626i \(-0.927884\pi\)
−0.292690 + 0.956207i \(0.594550\pi\)
\(48\) −9.94936 + 6.70896i −0.207278 + 0.139770i
\(49\) 48.9724 + 1.64411i 0.999437 + 0.0335534i
\(50\) −25.7710 + 44.6368i −0.515421 + 0.892735i
\(51\) −28.2577 + 1.97212i −0.554073 + 0.0386690i
\(52\) −17.9132 + 10.3422i −0.344485 + 0.198889i
\(53\) −64.4077 −1.21524 −0.607620 0.794228i \(-0.707875\pi\)
−0.607620 + 0.794228i \(0.707875\pi\)
\(54\) −28.3865 + 25.5384i −0.525675 + 0.472933i
\(55\) 16.5229i 0.300417i
\(56\) 19.7962 + 0.332208i 0.353504 + 0.00593229i
\(57\) −20.9861 + 1.46463i −0.368178 + 0.0256952i
\(58\) 14.0463 24.3290i 0.242178 0.419465i
\(59\) 36.8068 + 21.2504i 0.623844 + 0.360177i 0.778364 0.627813i \(-0.216050\pi\)
−0.154520 + 0.987990i \(0.549383\pi\)
\(60\) −26.2949 38.9952i −0.438248 0.649920i
\(61\) 9.89468 5.71270i 0.162208 0.0936508i −0.416699 0.909045i \(-0.636813\pi\)
0.578907 + 0.815394i \(0.303480\pi\)
\(62\) 8.51422i 0.137326i
\(63\) 62.5273 7.70290i 0.992497 0.122268i
\(64\) 8.00000 0.125000
\(65\) −40.5349 70.2085i −0.623614 1.08013i
\(66\) −8.03727 3.92139i −0.121777 0.0594150i
\(67\) 4.32856 7.49729i 0.0646054 0.111900i −0.831913 0.554905i \(-0.812754\pi\)
0.896519 + 0.443005i \(0.146088\pi\)
\(68\) 16.3543 + 9.44215i 0.240504 + 0.138855i
\(69\) −122.831 59.9292i −1.78015 0.868539i
\(70\) −1.30205 + 77.5886i −0.0186006 + 1.10841i
\(71\) 56.4985 0.795753 0.397876 0.917439i \(-0.369747\pi\)
0.397876 + 0.917439i \(0.369747\pi\)
\(72\) 25.2091 3.53592i 0.350126 0.0491100i
\(73\) 64.7908i 0.887545i −0.896139 0.443773i \(-0.853640\pi\)
0.896139 0.443773i \(-0.146360\pi\)
\(74\) −28.5778 49.4982i −0.386187 0.668895i
\(75\) 90.6530 61.1283i 1.20871 0.815044i
\(76\) 12.1458 + 7.01239i 0.159813 + 0.0922683i
\(77\) 7.16205 + 12.9002i 0.0930136 + 0.167535i
\(78\) 43.7718 3.05485i 0.561177 0.0391647i
\(79\) −57.0864 98.8765i −0.722612 1.25160i −0.959949 0.280174i \(-0.909608\pi\)
0.237337 0.971427i \(-0.423725\pi\)
\(80\) 31.3549i 0.391937i
\(81\) 77.8743 22.2843i 0.961411 0.275115i
\(82\) 86.5433i 1.05541i
\(83\) 86.5846 49.9896i 1.04319 0.602285i 0.122453 0.992474i \(-0.460924\pi\)
0.920735 + 0.390190i \(0.127591\pi\)
\(84\) −37.4325 19.0475i −0.445625 0.226756i
\(85\) −37.0073 + 64.0985i −0.435380 + 0.754100i
\(86\) −48.5989 + 84.1758i −0.565104 + 0.978789i
\(87\) −49.4098 + 33.3176i −0.567929 + 0.382961i
\(88\) 2.98096 + 5.16317i 0.0338745 + 0.0586724i
\(89\) 90.9556i 1.02197i −0.859589 0.510986i \(-0.829280\pi\)
0.859589 0.510986i \(-0.170720\pi\)
\(90\) 13.8586 + 98.8036i 0.153984 + 1.09782i
\(91\) −62.0801 37.2446i −0.682199 0.409281i
\(92\) 45.5569 + 78.9069i 0.495184 + 0.857683i
\(93\) −7.91980 + 16.2324i −0.0851591 + 0.174542i
\(94\) −84.2240 48.6267i −0.896000 0.517306i
\(95\) −27.4841 + 47.6039i −0.289307 + 0.501094i
\(96\) −15.2520 7.44148i −0.158875 0.0775154i
\(97\) 39.5328 22.8243i 0.407555 0.235302i −0.282184 0.959360i \(-0.591059\pi\)
0.689738 + 0.724059i \(0.257726\pi\)
\(98\) 32.6151 + 61.1413i 0.332807 + 0.623891i
\(99\) 11.6755 + 14.9523i 0.117934 + 0.151033i
\(100\) −72.8915 −0.728915
\(101\) 0.526801 0.304149i 0.00521585 0.00301137i −0.497390 0.867527i \(-0.665708\pi\)
0.502606 + 0.864516i \(0.332375\pi\)
\(102\) −22.3966 33.2140i −0.219574 0.325627i
\(103\) 84.7729 + 48.9437i 0.823038 + 0.475181i 0.851463 0.524415i \(-0.175716\pi\)
−0.0284251 + 0.999596i \(0.509049\pi\)
\(104\) −25.3331 14.6261i −0.243588 0.140635i
\(105\) 74.6541 146.712i 0.710991 1.39726i
\(106\) −45.5431 78.8830i −0.429652 0.744179i
\(107\) −65.2642 −0.609946 −0.304973 0.952361i \(-0.598647\pi\)
−0.304973 + 0.952361i \(0.598647\pi\)
\(108\) −51.3502 16.7078i −0.475465 0.154702i
\(109\) −197.677 −1.81355 −0.906776 0.421612i \(-0.861464\pi\)
−0.906776 + 0.421612i \(0.861464\pi\)
\(110\) −20.2364 + 11.6835i −0.183967 + 0.106213i
\(111\) 8.44123 + 120.951i 0.0760471 + 1.08965i
\(112\) 13.5912 + 24.4802i 0.121350 + 0.218573i
\(113\) 25.1877 43.6264i 0.222900 0.386074i −0.732787 0.680458i \(-0.761781\pi\)
0.955687 + 0.294384i \(0.0951143\pi\)
\(114\) −16.6332 24.6670i −0.145905 0.216377i
\(115\) −309.265 + 178.554i −2.68926 + 1.55265i
\(116\) 39.7290 0.342491
\(117\) −86.2927 34.8918i −0.737544 0.298220i
\(118\) 60.1053i 0.509367i
\(119\) −1.10901 + 66.0858i −0.00931943 + 0.555342i
\(120\) 29.1659 59.7783i 0.243049 0.498153i
\(121\) 58.2785 100.941i 0.481640 0.834225i
\(122\) 13.9932 + 8.07898i 0.114698 + 0.0662211i
\(123\) −80.5013 + 164.995i −0.654482 + 1.34142i
\(124\) 10.4277 6.02046i 0.0840947 0.0485521i
\(125\) 89.7203i 0.717763i
\(126\) 53.6476 + 71.1332i 0.425774 + 0.564550i
\(127\) 118.295 0.931457 0.465729 0.884928i \(-0.345792\pi\)
0.465729 + 0.884928i \(0.345792\pi\)
\(128\) 5.65685 + 9.79796i 0.0441942 + 0.0765466i
\(129\) 170.953 115.276i 1.32522 0.893609i
\(130\) 57.3250 99.2898i 0.440962 0.763768i
\(131\) 111.014 + 64.0941i 0.847438 + 0.489268i 0.859785 0.510655i \(-0.170597\pi\)
−0.0123479 + 0.999924i \(0.503931\pi\)
\(132\) −0.880506 12.6164i −0.00667050 0.0955791i
\(133\) −0.823628 + 49.0798i −0.00619269 + 0.369021i
\(134\) 12.2430 0.0913659
\(135\) 65.4842 201.261i 0.485068 1.49082i
\(136\) 26.7064i 0.196371i
\(137\) 110.979 + 192.221i 0.810063 + 1.40307i 0.912820 + 0.408363i \(0.133900\pi\)
−0.102757 + 0.994706i \(0.532766\pi\)
\(138\) −13.4565 192.813i −0.0975106 1.39719i
\(139\) 206.757 + 119.371i 1.48746 + 0.858788i 0.999898 0.0142986i \(-0.00455153\pi\)
0.487566 + 0.873086i \(0.337885\pi\)
\(140\) −95.9469 + 53.2687i −0.685335 + 0.380491i
\(141\) 115.342 + 171.051i 0.818025 + 1.21313i
\(142\) 39.9504 + 69.1962i 0.281341 + 0.487297i
\(143\) 21.7999i 0.152447i
\(144\) 22.1561 + 28.3744i 0.153862 + 0.197044i
\(145\) 155.713i 1.07388i
\(146\) 79.3522 45.8140i 0.543508 0.313795i
\(147\) −5.30815 146.904i −0.0361099 0.999348i
\(148\) 40.4151 70.0011i 0.273075 0.472980i
\(149\) 51.5809 89.3407i 0.346180 0.599602i −0.639387 0.768885i \(-0.720812\pi\)
0.985567 + 0.169283i \(0.0541452\pi\)
\(150\) 138.968 + 67.8026i 0.926453 + 0.452017i
\(151\) −100.671 174.368i −0.666697 1.15475i −0.978822 0.204712i \(-0.934374\pi\)
0.312126 0.950041i \(-0.398959\pi\)
\(152\) 19.8340i 0.130487i
\(153\) 11.8040 + 84.1556i 0.0771502 + 0.550036i
\(154\) −10.7351 + 17.8935i −0.0697084 + 0.116191i
\(155\) 23.5964 + 40.8702i 0.152235 + 0.263679i
\(156\) 34.6927 + 51.4492i 0.222389 + 0.329802i
\(157\) −81.5336 47.0735i −0.519322 0.299831i 0.217335 0.976097i \(-0.430264\pi\)
−0.736657 + 0.676266i \(0.763597\pi\)
\(158\) 80.7323 139.832i 0.510964 0.885016i
\(159\) 13.4524 + 192.754i 0.0846062 + 1.21229i
\(160\) −38.4018 + 22.1713i −0.240011 + 0.138571i
\(161\) −164.061 + 273.460i −1.01901 + 1.69851i
\(162\) 82.3581 + 79.6188i 0.508383 + 0.491474i
\(163\) 9.85556 0.0604636 0.0302318 0.999543i \(-0.490375\pi\)
0.0302318 + 0.999543i \(0.490375\pi\)
\(164\) 105.994 61.1954i 0.646302 0.373143i
\(165\) 49.4485 3.45103i 0.299688 0.0209153i
\(166\) 122.449 + 70.6960i 0.737645 + 0.425880i
\(167\) −106.856 61.6935i −0.639858 0.369422i 0.144702 0.989475i \(-0.453778\pi\)
−0.784560 + 0.620053i \(0.787111\pi\)
\(168\) −3.14049 59.3139i −0.0186934 0.353059i
\(169\) −31.0194 53.7272i −0.183547 0.317912i
\(170\) −104.672 −0.615720
\(171\) 8.76645 + 62.4997i 0.0512658 + 0.365495i
\(172\) −137.459 −0.799178
\(173\) −224.321 + 129.512i −1.29666 + 0.748624i −0.979825 0.199858i \(-0.935952\pi\)
−0.316830 + 0.948482i \(0.602619\pi\)
\(174\) −75.7435 36.9553i −0.435308 0.212387i
\(175\) −123.835 223.050i −0.707629 1.27457i
\(176\) −4.21571 + 7.30183i −0.0239529 + 0.0414876i
\(177\) 55.9090 114.591i 0.315870 0.647406i
\(178\) 111.397 64.3153i 0.625828 0.361322i
\(179\) 23.4639 0.131083 0.0655416 0.997850i \(-0.479122\pi\)
0.0655416 + 0.997850i \(0.479122\pi\)
\(180\) −111.210 + 86.8379i −0.617832 + 0.482433i
\(181\) 173.634i 0.959304i −0.877459 0.479652i \(-0.840763\pi\)
0.877459 0.479652i \(-0.159237\pi\)
\(182\) 1.71788 102.368i 0.00943891 0.562463i
\(183\) −19.1631 28.4189i −0.104717 0.155294i
\(184\) −64.4272 + 111.591i −0.350148 + 0.606474i
\(185\) 274.360 + 158.402i 1.48303 + 0.856226i
\(186\) −25.4807 + 1.77831i −0.136993 + 0.00956078i
\(187\) −17.2362 + 9.95135i −0.0921724 + 0.0532157i
\(188\) 137.537i 0.731581i
\(189\) −36.1123 185.518i −0.191070 0.981576i
\(190\) −77.7369 −0.409141
\(191\) 121.207 + 209.936i 0.634590 + 1.09914i 0.986602 + 0.163147i \(0.0521645\pi\)
−0.352011 + 0.935996i \(0.614502\pi\)
\(192\) −1.67090 23.9418i −0.00870263 0.124697i
\(193\) −124.323 + 215.333i −0.644159 + 1.11572i 0.340336 + 0.940304i \(0.389459\pi\)
−0.984495 + 0.175412i \(0.943874\pi\)
\(194\) 55.9078 + 32.2784i 0.288185 + 0.166383i
\(195\) −201.648 + 135.974i −1.03409 + 0.697300i
\(196\) −51.8201 + 83.1786i −0.264388 + 0.424381i
\(197\) −6.15551 −0.0312462 −0.0156231 0.999878i \(-0.504973\pi\)
−0.0156231 + 0.999878i \(0.504973\pi\)
\(198\) −10.0569 + 24.8723i −0.0507926 + 0.125618i
\(199\) 293.738i 1.47607i −0.674761 0.738036i \(-0.735753\pi\)
0.674761 0.738036i \(-0.264247\pi\)
\(200\) −51.5421 89.2735i −0.257710 0.446368i
\(201\) −23.3414 11.3883i −0.116126 0.0566581i
\(202\) 0.745009 + 0.430131i 0.00368817 + 0.00212936i
\(203\) 67.4954 + 121.572i 0.332490 + 0.598876i
\(204\) 24.8419 50.9159i 0.121774 0.249588i
\(205\) 239.847 + 415.428i 1.16999 + 2.02648i
\(206\) 138.434i 0.672008i
\(207\) −153.696 + 380.115i −0.742495 + 1.83630i
\(208\) 41.3688i 0.198889i
\(209\) −12.8008 + 7.39055i −0.0612479 + 0.0353615i
\(210\) 232.473 12.3087i 1.10701 0.0586130i
\(211\) 37.0792 64.2230i 0.175731 0.304374i −0.764683 0.644406i \(-0.777105\pi\)
0.940414 + 0.340032i \(0.110438\pi\)
\(212\) 64.4077 111.557i 0.303810 0.526214i
\(213\) −11.8004 169.084i −0.0554011 0.793822i
\(214\) −46.1488 79.9320i −0.215649 0.373514i
\(215\) 538.751i 2.50582i
\(216\) −15.8473 74.7052i −0.0733670 0.345857i
\(217\) 36.1384 + 21.6810i 0.166536 + 0.0999126i
\(218\) −139.779 242.104i −0.641188 1.11057i
\(219\) −193.901 + 13.5324i −0.885391 + 0.0617918i
\(220\) −28.6185 16.5229i −0.130084 0.0751042i
\(221\) 48.8263 84.5697i 0.220934 0.382668i
\(222\) −142.166 + 95.8638i −0.640385 + 0.431819i
\(223\) 240.774 139.011i 1.07970 0.623366i 0.148886 0.988854i \(-0.452431\pi\)
0.930816 + 0.365488i \(0.119098\pi\)
\(224\) −20.3716 + 33.9558i −0.0909447 + 0.151588i
\(225\) −201.874 258.532i −0.897218 1.14903i
\(226\) 71.2416 0.315228
\(227\) −87.4980 + 50.5170i −0.385454 + 0.222542i −0.680188 0.733037i \(-0.738102\pi\)
0.294735 + 0.955579i \(0.404769\pi\)
\(228\) 18.4493 37.8137i 0.0809180 0.165849i
\(229\) −51.0727 29.4869i −0.223025 0.128764i 0.384325 0.923198i \(-0.374434\pi\)
−0.607350 + 0.794434i \(0.707767\pi\)
\(230\) −437.367 252.514i −1.90159 1.09789i
\(231\) 37.1108 24.1284i 0.160653 0.104452i
\(232\) 28.0927 + 48.6579i 0.121089 + 0.209732i
\(233\) −179.497 −0.770374 −0.385187 0.922839i \(-0.625863\pi\)
−0.385187 + 0.922839i \(0.625863\pi\)
\(234\) −18.2846 130.359i −0.0781394 0.557088i
\(235\) 539.059 2.29387
\(236\) −73.6136 + 42.5008i −0.311922 + 0.180088i
\(237\) −283.986 + 191.495i −1.19826 + 0.807997i
\(238\) −81.7224 + 45.3714i −0.343371 + 0.190636i
\(239\) −91.2575 + 158.063i −0.381831 + 0.661350i −0.991324 0.131441i \(-0.958040\pi\)
0.609493 + 0.792791i \(0.291373\pi\)
\(240\) 93.8366 6.54889i 0.390986 0.0272870i
\(241\) 4.89842 2.82810i 0.0203254 0.0117349i −0.489803 0.871833i \(-0.662931\pi\)
0.510128 + 0.860098i \(0.329598\pi\)
\(242\) 164.836 0.681142
\(243\) −82.9558 228.402i −0.341382 0.939925i
\(244\) 22.8508i 0.0936508i
\(245\) −326.007 203.102i −1.33064 0.828988i
\(246\) −259.000 + 18.0757i −1.05285 + 0.0734785i
\(247\) 36.2618 62.8072i 0.146809 0.254280i
\(248\) 14.7471 + 8.51422i 0.0594640 + 0.0343315i
\(249\) −167.689 248.682i −0.673451 0.998725i
\(250\) 109.885 63.4419i 0.439538 0.253767i
\(251\) 150.523i 0.599693i −0.953987 0.299847i \(-0.903064\pi\)
0.953987 0.299847i \(-0.0969355\pi\)
\(252\) −49.1855 + 116.003i −0.195181 + 0.460331i
\(253\) −96.0274 −0.379555
\(254\) 83.6472 + 144.881i 0.329320 + 0.570399i
\(255\) 199.558 + 97.3646i 0.782581 + 0.381822i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −88.3013 50.9808i −0.343585 0.198369i 0.318271 0.948000i \(-0.396898\pi\)
−0.661856 + 0.749631i \(0.730231\pi\)
\(258\) 262.065 + 127.862i 1.01576 + 0.495589i
\(259\) 282.866 + 4.74689i 1.09215 + 0.0183278i
\(260\) 162.140 0.623614
\(261\) 110.030 + 140.911i 0.421571 + 0.539888i
\(262\) 181.286i 0.691930i
\(263\) −56.3682 97.6325i −0.214328 0.371226i 0.738737 0.673994i \(-0.235423\pi\)
−0.953064 + 0.302768i \(0.902089\pi\)
\(264\) 14.8293 9.99957i 0.0561716 0.0378772i
\(265\) 437.234 + 252.437i 1.64994 + 0.952594i
\(266\) −60.6926 + 33.6959i −0.228168 + 0.126676i
\(267\) −272.205 + 18.9973i −1.01949 + 0.0711508i
\(268\) 8.65713 + 14.9946i 0.0323027 + 0.0559499i
\(269\) 67.6480i 0.251479i −0.992063 0.125740i \(-0.959870\pi\)
0.992063 0.125740i \(-0.0401304\pi\)
\(270\) 292.797 62.1113i 1.08443 0.230042i
\(271\) 144.406i 0.532863i 0.963854 + 0.266431i \(0.0858446\pi\)
−0.963854 + 0.266431i \(0.914155\pi\)
\(272\) −32.7086 + 18.8843i −0.120252 + 0.0694276i
\(273\) −98.4965 + 193.567i −0.360793 + 0.709038i
\(274\) −156.947 + 271.841i −0.572801 + 0.992120i
\(275\) 38.4112 66.5302i 0.139677 0.241928i
\(276\) 226.631 152.820i 0.821127 0.553695i
\(277\) 128.720 + 222.949i 0.464692 + 0.804871i 0.999188 0.0403008i \(-0.0128316\pi\)
−0.534495 + 0.845171i \(0.679498\pi\)
\(278\) 337.634i 1.21451i
\(279\) 50.2332 + 20.3114i 0.180047 + 0.0728007i
\(280\) −133.085 79.8438i −0.475305 0.285156i
\(281\) −146.075 253.010i −0.519840 0.900390i −0.999734 0.0230634i \(-0.992658\pi\)
0.479894 0.877327i \(-0.340675\pi\)
\(282\) −127.935 + 262.215i −0.453670 + 0.929841i
\(283\) −287.137 165.778i −1.01462 0.585790i −0.102077 0.994776i \(-0.532549\pi\)
−0.912540 + 0.408987i \(0.865882\pi\)
\(284\) −56.4985 + 97.8582i −0.198938 + 0.344571i
\(285\) 148.206 + 72.3096i 0.520020 + 0.253718i
\(286\) 26.6993 15.4148i 0.0933541 0.0538980i
\(287\) 367.331 + 220.378i 1.27990 + 0.767869i
\(288\) −19.0847 + 47.1993i −0.0662662 + 0.163887i
\(289\) 199.846 0.691508
\(290\) −190.708 + 110.105i −0.657615 + 0.379674i
\(291\) −76.5636 113.543i −0.263105 0.390184i
\(292\) 112.221 + 64.7908i 0.384318 + 0.221886i
\(293\) 128.607 + 74.2511i 0.438931 + 0.253417i 0.703144 0.711047i \(-0.251779\pi\)
−0.264213 + 0.964464i \(0.585112\pi\)
\(294\) 176.167 110.378i 0.599206 0.375436i
\(295\) −166.576 288.519i −0.564666 0.978030i
\(296\) 114.311 0.386187
\(297\) 42.3094 38.0644i 0.142456 0.128163i
\(298\) 145.893 0.489573
\(299\) 408.036 235.579i 1.36467 0.787891i
\(300\) 15.2243 + 218.144i 0.0507478 + 0.727147i
\(301\) −233.528 420.627i −0.775839 1.39743i
\(302\) 142.371 246.593i 0.471426 0.816533i
\(303\) −1.02026 1.51304i −0.00336720 0.00499354i
\(304\) −24.2916 + 14.0248i −0.0799067 + 0.0461341i
\(305\) −89.5607 −0.293642
\(306\) −94.7224 + 73.9638i −0.309550 + 0.241712i
\(307\) 47.5917i 0.155022i 0.996992 + 0.0775109i \(0.0246973\pi\)
−0.996992 + 0.0775109i \(0.975303\pi\)
\(308\) −29.5058 0.495149i −0.0957981 0.00160763i
\(309\) 128.769 263.924i 0.416727 0.854123i
\(310\) −33.3704 + 57.7992i −0.107646 + 0.186449i
\(311\) −13.1863 7.61311i −0.0423996 0.0244794i 0.478650 0.878006i \(-0.341126\pi\)
−0.521050 + 0.853526i \(0.674459\pi\)
\(312\) −38.4806 + 78.8698i −0.123335 + 0.252788i
\(313\) 135.158 78.0334i 0.431814 0.249308i −0.268305 0.963334i \(-0.586464\pi\)
0.700119 + 0.714026i \(0.253130\pi\)
\(314\) 133.144i 0.424025i
\(315\) −454.660 192.776i −1.44336 0.611988i
\(316\) 228.345 0.722612
\(317\) 148.788 + 257.709i 0.469363 + 0.812961i 0.999387 0.0350219i \(-0.0111501\pi\)
−0.530023 + 0.847983i \(0.677817\pi\)
\(318\) −226.562 + 152.774i −0.712461 + 0.480420i
\(319\) −20.9358 + 36.2618i −0.0656293 + 0.113673i
\(320\) −54.3083 31.3549i −0.169714 0.0979842i
\(321\) 13.6313 + 195.318i 0.0424651 + 0.608466i
\(322\) −450.927 7.56718i −1.40039 0.0235006i
\(323\) −66.2120 −0.204991
\(324\) −39.2767 + 157.167i −0.121224 + 0.485082i
\(325\) 376.930i 1.15978i
\(326\) 6.96893 + 12.0705i 0.0213771 + 0.0370262i
\(327\) 41.2875 + 591.593i 0.126261 + 1.80915i
\(328\) 149.897 + 86.5433i 0.457005 + 0.263852i
\(329\) 420.867 233.661i 1.27923 0.710217i
\(330\) 39.1920 + 58.1215i 0.118764 + 0.176126i
\(331\) −151.889 263.079i −0.458878 0.794800i 0.540024 0.841650i \(-0.318415\pi\)
−0.998902 + 0.0468498i \(0.985082\pi\)
\(332\) 199.959i 0.602285i
\(333\) 360.210 50.5245i 1.08171 0.151725i
\(334\) 174.496i 0.522442i
\(335\) −58.7693 + 33.9305i −0.175431 + 0.101285i
\(336\) 70.4237 45.7876i 0.209594 0.136272i
\(337\) −150.144 + 260.057i −0.445531 + 0.771682i −0.998089 0.0617925i \(-0.980318\pi\)
0.552558 + 0.833474i \(0.313652\pi\)
\(338\) 43.8681 75.9817i 0.129787 0.224798i
\(339\) −135.822 66.2678i −0.400656 0.195480i
\(340\) −74.0145 128.197i −0.217690 0.377050i
\(341\) 12.6903i 0.0372148i
\(342\) −70.3473 + 54.9306i −0.205694 + 0.160616i
\(343\) −342.565 17.2591i −0.998733 0.0503182i
\(344\) −97.1979 168.352i −0.282552 0.489394i
\(345\) 598.957 + 888.250i 1.73611 + 2.57464i
\(346\) −317.238 183.158i −0.916874 0.529357i
\(347\) 19.6093 33.9643i 0.0565110 0.0978799i −0.836386 0.548141i \(-0.815336\pi\)
0.892897 + 0.450261i \(0.148669\pi\)
\(348\) −8.29792 118.898i −0.0238446 0.341660i
\(349\) 391.985 226.313i 1.12317 0.648460i 0.180959 0.983491i \(-0.442080\pi\)
0.942207 + 0.335030i \(0.108747\pi\)
\(350\) 185.615 309.386i 0.530328 0.883961i
\(351\) −86.3979 + 265.537i −0.246148 + 0.756517i
\(352\) −11.9238 −0.0338745
\(353\) −364.417 + 210.396i −1.03234 + 0.596024i −0.917655 0.397378i \(-0.869920\pi\)
−0.114688 + 0.993402i \(0.536587\pi\)
\(354\) 179.878 12.5538i 0.508131 0.0354626i
\(355\) −383.542 221.438i −1.08040 0.623770i
\(356\) 157.540 + 90.9556i 0.442527 + 0.255493i
\(357\) 198.008 10.4839i 0.554644 0.0293667i
\(358\) 16.5915 + 28.7373i 0.0463449 + 0.0802718i
\(359\) 268.070 0.746714 0.373357 0.927688i \(-0.378207\pi\)
0.373357 + 0.927688i \(0.378207\pi\)
\(360\) −184.991 74.7998i −0.513865 0.207777i
\(361\) 311.826 0.863785
\(362\) 212.657 122.778i 0.587451 0.339165i
\(363\) −314.261 153.328i −0.865733 0.422392i
\(364\) 126.590 70.2813i 0.347774 0.193080i
\(365\) −253.939 + 439.835i −0.695723 + 1.20503i
\(366\) 21.2555 43.5651i 0.0580750 0.119030i
\(367\) −24.1481 + 13.9419i −0.0657986 + 0.0379889i −0.532538 0.846406i \(-0.678762\pi\)
0.466740 + 0.884395i \(0.345428\pi\)
\(368\) −182.228 −0.495184
\(369\) 510.598 + 206.456i 1.38374 + 0.559503i
\(370\) 448.028i 1.21089i
\(371\) 450.790 + 7.56489i 1.21507 + 0.0203905i
\(372\) −20.1955 29.9499i −0.0542891 0.0805104i
\(373\) 62.6374 108.491i 0.167929 0.290861i −0.769763 0.638330i \(-0.779625\pi\)
0.937691 + 0.347469i \(0.112959\pi\)
\(374\) −24.3757 14.0733i −0.0651757 0.0376292i
\(375\) −268.508 + 18.7393i −0.716021 + 0.0499714i
\(376\) 168.448 97.2535i 0.448000 0.258653i
\(377\) 205.443i 0.544941i
\(378\) 201.677 175.409i 0.533537 0.464046i
\(379\) 56.1639 0.148190 0.0740949 0.997251i \(-0.476393\pi\)
0.0740949 + 0.997251i \(0.476393\pi\)
\(380\) −54.9683 95.2078i −0.144653 0.250547i
\(381\) −24.7075 354.024i −0.0648490 0.929197i
\(382\) −171.412 + 296.895i −0.448723 + 0.777211i
\(383\) −491.936 284.020i −1.28443 0.741565i −0.306774 0.951782i \(-0.599250\pi\)
−0.977655 + 0.210217i \(0.932583\pi\)
\(384\) 28.1410 18.9758i 0.0732840 0.0494162i
\(385\) 1.94067 115.644i 0.00504070 0.300374i
\(386\) −351.638 −0.910979
\(387\) −380.693 487.538i −0.983704 1.25979i
\(388\) 91.2971i 0.235302i
\(389\) 146.522 + 253.784i 0.376664 + 0.652401i 0.990575 0.136974i \(-0.0437378\pi\)
−0.613911 + 0.789376i \(0.710404\pi\)
\(390\) −309.120 150.820i −0.792615 0.386717i
\(391\) −372.525 215.078i −0.952750 0.550071i
\(392\) −138.515 4.65026i −0.353354 0.0118629i
\(393\) 168.629 345.622i 0.429082 0.879445i
\(394\) −4.35260 7.53893i −0.0110472 0.0191343i
\(395\) 894.970i 2.26575i
\(396\) −37.5736 + 5.27022i −0.0948828 + 0.0133086i
\(397\) 507.654i 1.27873i 0.768905 + 0.639363i \(0.220802\pi\)
−0.768905 + 0.639363i \(0.779198\pi\)
\(398\) 359.755 207.704i 0.903906 0.521870i
\(399\) 147.054 7.78607i 0.368557 0.0195140i
\(400\) 72.8915 126.252i 0.182229 0.315630i
\(401\) 69.4682 120.322i 0.173237 0.300056i −0.766313 0.642468i \(-0.777911\pi\)
0.939550 + 0.342412i \(0.111244\pi\)
\(402\) −2.55712 36.6400i −0.00636098 0.0911442i
\(403\) −31.1324 53.9229i −0.0772517 0.133804i
\(404\) 1.21660i 0.00301137i
\(405\) −615.994 153.940i −1.52097 0.380099i
\(406\) −101.168 + 168.629i −0.249182 + 0.415342i
\(407\) 42.5946 + 73.7761i 0.104655 + 0.181268i
\(408\) 79.9249 5.57799i 0.195894 0.0136715i
\(409\) 416.051 + 240.207i 1.01724 + 0.587303i 0.913303 0.407281i \(-0.133523\pi\)
0.103936 + 0.994584i \(0.466856\pi\)
\(410\) −339.195 + 587.503i −0.827305 + 1.43293i
\(411\) 552.083 372.276i 1.34327 0.905780i
\(412\) −169.546 + 97.8873i −0.411519 + 0.237591i
\(413\) −255.115 153.055i −0.617713 0.370593i
\(414\) −574.224 + 80.5428i −1.38701 + 0.194548i
\(415\) −783.711 −1.88846
\(416\) 50.6662 29.2522i 0.121794 0.0703177i
\(417\) 314.061 643.700i 0.753145 1.54364i
\(418\) −18.1031 10.4518i −0.0433088 0.0250043i
\(419\) −385.429 222.527i −0.919878 0.531092i −0.0362816 0.999342i \(-0.511551\pi\)
−0.883596 + 0.468250i \(0.844885\pi\)
\(420\) 179.458 + 276.016i 0.427282 + 0.657182i
\(421\) −283.010 490.188i −0.672233 1.16434i −0.977269 0.212001i \(-0.932002\pi\)
0.305036 0.952341i \(-0.401331\pi\)
\(422\) 104.876 0.248521
\(423\) 487.817 380.911i 1.15323 0.900499i
\(424\) 182.172 0.429652
\(425\) 298.022 172.063i 0.701229 0.404855i
\(426\) 198.741 134.013i 0.466528 0.314585i
\(427\) −69.9240 + 38.8211i −0.163756 + 0.0909159i
\(428\) 65.2642 113.041i 0.152487 0.264114i
\(429\) −65.2409 + 4.55319i −0.152077 + 0.0106135i
\(430\) 659.832 380.954i 1.53449 0.885940i
\(431\) −474.624 −1.10121 −0.550607 0.834764i \(-0.685604\pi\)
−0.550607 + 0.834764i \(0.685604\pi\)
\(432\) 80.2891 72.2334i 0.185854 0.167207i
\(433\) 1.62996i 0.00376435i −0.999998 0.00188217i \(-0.999401\pi\)
0.999998 0.00188217i \(-0.000599115\pi\)
\(434\) −1.00002 + 59.5911i −0.00230420 + 0.137307i
\(435\) 466.004 32.5226i 1.07127 0.0747646i
\(436\) 197.677 342.387i 0.453388 0.785291i
\(437\) −276.663 159.731i −0.633096 0.365518i
\(438\) −153.682 227.910i −0.350873 0.520343i
\(439\) −541.613 + 312.700i −1.23374 + 0.712302i −0.967808 0.251689i \(-0.919014\pi\)
−0.265935 + 0.963991i \(0.585681\pi\)
\(440\) 46.7339i 0.106213i
\(441\) −438.534 + 46.5687i −0.994409 + 0.105598i
\(442\) 138.102 0.312447
\(443\) 148.901 + 257.904i 0.336119 + 0.582175i 0.983699 0.179822i \(-0.0575522\pi\)
−0.647580 + 0.761997i \(0.724219\pi\)
\(444\) −217.935 106.331i −0.490844 0.239483i
\(445\) −356.488 + 617.456i −0.801097 + 1.38754i
\(446\) 340.505 + 196.591i 0.763465 + 0.440787i
\(447\) −278.145 135.707i −0.622249 0.303596i
\(448\) −55.9921 0.939626i −0.124982 0.00209738i
\(449\) 191.361 0.426194 0.213097 0.977031i \(-0.431645\pi\)
0.213097 + 0.977031i \(0.431645\pi\)
\(450\) 173.889 430.054i 0.386420 0.955675i
\(451\) 128.991i 0.286011i
\(452\) 50.3754 + 87.2528i 0.111450 + 0.193037i
\(453\) −500.807 + 337.700i −1.10553 + 0.745474i
\(454\) −123.741 71.4418i −0.272557 0.157361i
\(455\) 275.458 + 496.151i 0.605403 + 1.09044i
\(456\) 59.3577 4.14260i 0.130170 0.00908464i
\(457\) 106.962 + 185.264i 0.234053 + 0.405392i 0.958997 0.283416i \(-0.0914676\pi\)
−0.724944 + 0.688808i \(0.758134\pi\)
\(458\) 83.4014i 0.182099i
\(459\) 249.389 52.9030i 0.543330 0.115257i
\(460\) 714.217i 1.55265i
\(461\) −268.859 + 155.226i −0.583207 + 0.336715i −0.762407 0.647098i \(-0.775983\pi\)
0.179200 + 0.983813i \(0.442649\pi\)
\(462\) 55.7924 + 28.3899i 0.120763 + 0.0614499i
\(463\) 83.7628 145.081i 0.180913 0.313351i −0.761279 0.648425i \(-0.775428\pi\)
0.942192 + 0.335074i \(0.108761\pi\)
\(464\) −39.7290 + 68.8127i −0.0856229 + 0.148303i
\(465\) 117.385 79.1537i 0.252440 0.170223i
\(466\) −126.924 219.838i −0.272368 0.471756i
\(467\) 315.106i 0.674744i 0.941371 + 0.337372i \(0.109538\pi\)
−0.941371 + 0.337372i \(0.890462\pi\)
\(468\) 146.727 114.572i 0.313519 0.244811i
\(469\) −31.1763 + 51.9653i −0.0664739 + 0.110800i
\(470\) 381.172 + 660.210i 0.811005 + 1.40470i
\(471\) −123.848 + 253.839i −0.262948 + 0.538937i
\(472\) −104.105 60.1053i −0.220562 0.127342i
\(473\) 72.4357 125.462i 0.153141 0.265248i
\(474\) −435.342 212.403i −0.918442 0.448108i
\(475\) 221.332 127.786i 0.465962 0.269023i
\(476\) −113.355 68.0066i −0.238140 0.142871i
\(477\) 574.050 80.5185i 1.20346 0.168802i
\(478\) −258.115 −0.539990
\(479\) 778.130 449.253i 1.62449 0.937898i 0.638789 0.769382i \(-0.279436\pi\)
0.985699 0.168516i \(-0.0538976\pi\)
\(480\) 74.3732 + 110.295i 0.154944 + 0.229781i
\(481\) −361.983 208.991i −0.752563 0.434492i
\(482\) 6.92741 + 3.99954i 0.0143722 + 0.00829780i
\(483\) 852.655 + 433.872i 1.76533 + 0.898286i
\(484\) 116.557 + 201.883i 0.240820 + 0.417113i
\(485\) −357.827 −0.737787
\(486\) 221.075 263.104i 0.454887 0.541366i
\(487\) 328.435 0.674404 0.337202 0.941432i \(-0.390519\pi\)
0.337202 + 0.941432i \(0.390519\pi\)
\(488\) −27.9864 + 16.1580i −0.0573492 + 0.0331106i
\(489\) −2.05846 29.4949i −0.00420953 0.0603168i
\(490\) 18.2261 542.891i 0.0371961 1.10794i
\(491\) −165.906 + 287.358i −0.337894 + 0.585250i −0.984036 0.177967i \(-0.943048\pi\)
0.646142 + 0.763217i \(0.276381\pi\)
\(492\) −205.279 304.428i −0.417233 0.618755i
\(493\) −162.435 + 93.7818i −0.329483 + 0.190227i
\(494\) 102.564 0.207619
\(495\) −20.6559 147.265i −0.0417291 0.297504i
\(496\) 24.0818i 0.0485521i
\(497\) −395.434 6.63593i −0.795641 0.0133520i
\(498\) 185.998 381.222i 0.373491 0.765505i
\(499\) −63.7291 + 110.382i −0.127714 + 0.221206i −0.922790 0.385302i \(-0.874097\pi\)
0.795077 + 0.606509i \(0.207430\pi\)
\(500\) 155.400 + 89.7203i 0.310800 + 0.179441i
\(501\) −162.313 + 332.676i −0.323978 + 0.664025i
\(502\) 184.352 106.436i 0.367236 0.212024i
\(503\) 147.803i 0.293844i 0.989148 + 0.146922i \(0.0469366\pi\)
−0.989148 + 0.146922i \(0.953063\pi\)
\(504\) −176.854 + 21.7871i −0.350901 + 0.0432283i
\(505\) −4.76828 −0.00944215
\(506\) −67.9016 117.609i −0.134193 0.232429i
\(507\) −154.312 + 104.054i −0.304362 + 0.205235i
\(508\) −118.295 + 204.893i −0.232864 + 0.403333i
\(509\) −211.358 122.028i −0.415242 0.239740i 0.277798 0.960640i \(-0.410396\pi\)
−0.693039 + 0.720900i \(0.743729\pi\)
\(510\) 21.8622 + 313.255i 0.0428670 + 0.614226i
\(511\) −7.60989 + 453.472i −0.0148922 + 0.887420i
\(512\) −22.6274 −0.0441942
\(513\) 185.213 39.2894i 0.361039 0.0765875i
\(514\) 144.195i 0.280536i
\(515\) −383.656 664.512i −0.744964 1.29032i
\(516\) 28.7100 + 411.375i 0.0556396 + 0.797239i
\(517\) 125.534 + 72.4771i 0.242813 + 0.140188i
\(518\) 194.203 + 349.795i 0.374909 + 0.675281i
\(519\) 434.446 + 644.281i 0.837082 + 1.24139i
\(520\) 114.650 + 198.580i 0.220481 + 0.381884i
\(521\) 147.106i 0.282354i −0.989984 0.141177i \(-0.954911\pi\)
0.989984 0.141177i \(-0.0450886\pi\)
\(522\) −94.7769 + 234.398i −0.181565 + 0.449038i
\(523\) 62.8703i 0.120211i 0.998192 + 0.0601055i \(0.0191437\pi\)
−0.998192 + 0.0601055i \(0.980856\pi\)
\(524\) −222.029 + 128.188i −0.423719 + 0.244634i
\(525\) −641.662 + 417.191i −1.22221 + 0.794649i
\(526\) 79.7166 138.073i 0.151553 0.262497i
\(527\) −28.4231 + 49.2302i −0.0539337 + 0.0934159i
\(528\) 22.7328 + 11.0914i 0.0430546 + 0.0210064i
\(529\) −773.216 1339.25i −1.46166 2.53166i
\(530\) 714.001i 1.34717i
\(531\) −354.616 143.386i −0.667827 0.270030i
\(532\) −84.1851 50.5064i −0.158243 0.0949368i
\(533\) −316.448 548.103i −0.593710 1.02834i
\(534\) −215.744 319.948i −0.404016 0.599154i
\(535\) 443.049 + 255.795i 0.828129 + 0.478121i
\(536\) −12.2430 + 21.2055i −0.0228415 + 0.0395626i
\(537\) −4.90074 70.2209i −0.00912615 0.130765i
\(538\) 82.8515 47.8343i 0.153999 0.0889114i
\(539\) −48.6121 91.1298i −0.0901895 0.169072i
\(540\) 283.109 + 314.682i 0.524276 + 0.582745i
\(541\) 9.15847 0.0169288 0.00846439 0.999964i \(-0.497306\pi\)
0.00846439 + 0.999964i \(0.497306\pi\)
\(542\) −176.860 + 102.110i −0.326311 + 0.188395i
\(543\) −519.638 + 36.2657i −0.956976 + 0.0667877i
\(544\) −46.2569 26.7064i −0.0850311 0.0490927i
\(545\) 1341.94 + 774.770i 2.46228 + 1.42160i
\(546\) −306.718 + 16.2398i −0.561755 + 0.0297432i
\(547\) 394.904 + 683.994i 0.721945 + 1.25045i 0.960219 + 0.279247i \(0.0900849\pi\)
−0.238274 + 0.971198i \(0.576582\pi\)
\(548\) −443.914 −0.810063
\(549\) −81.0472 + 63.2856i −0.147627 + 0.115274i
\(550\) 108.643 0.197533
\(551\) −120.635 + 69.6488i −0.218939 + 0.126404i
\(552\) 347.418 + 169.505i 0.629380 + 0.307075i
\(553\) 387.935 + 698.743i 0.701510 + 1.26355i
\(554\) −182.037 + 315.298i −0.328587 + 0.569129i
\(555\) 416.749 854.167i 0.750898 1.53904i
\(556\) −413.515 + 238.743i −0.743732 + 0.429394i
\(557\) 676.050 1.21373 0.606867 0.794803i \(-0.292426\pi\)
0.606867 + 0.794803i \(0.292426\pi\)
\(558\) 10.6439 + 75.8851i 0.0190752 + 0.135995i
\(559\) 710.812i 1.27158i
\(560\) 3.68274 219.454i 0.00657632 0.391882i
\(561\) 33.3816 + 49.5048i 0.0595038 + 0.0882438i
\(562\) 206.581 357.810i 0.367583 0.636672i
\(563\) −317.573 183.351i −0.564074 0.325668i 0.190705 0.981647i \(-0.438923\pi\)
−0.754779 + 0.655979i \(0.772256\pi\)
\(564\) −411.610 + 28.7264i −0.729806 + 0.0509334i
\(565\) −341.976 + 197.440i −0.605267 + 0.349451i
\(566\) 468.892i 0.828432i
\(567\) −547.661 + 146.822i −0.965892 + 0.258945i
\(568\) −159.802 −0.281341
\(569\) −111.553 193.216i −0.196051 0.339570i 0.751193 0.660082i \(-0.229479\pi\)
−0.947245 + 0.320512i \(0.896145\pi\)
\(570\) 16.2364 + 232.645i 0.0284848 + 0.408149i
\(571\) 191.237 331.233i 0.334917 0.580093i −0.648552 0.761170i \(-0.724625\pi\)
0.983469 + 0.181077i \(0.0579585\pi\)
\(572\) 37.7585 + 21.7999i 0.0660113 + 0.0381117i
\(573\) 602.965 406.586i 1.05229 0.709574i
\(574\) −10.1648 + 605.718i −0.0177087 + 1.05526i
\(575\) 1660.36 2.88758
\(576\) −71.3020 + 10.0011i −0.123788 + 0.0173630i
\(577\) 591.373i 1.02491i −0.858714 0.512455i \(-0.828736\pi\)
0.858714 0.512455i \(-0.171264\pi\)
\(578\) 141.312 + 244.760i 0.244485 + 0.423460i
\(579\) 670.399 + 327.088i 1.15786 + 0.564919i
\(580\) −269.702 155.713i −0.465004 0.268470i
\(581\) −611.878 + 339.708i −1.05315 + 0.584696i
\(582\) 84.9231 174.058i 0.145916 0.299069i
\(583\) 67.8810 + 117.573i 0.116434 + 0.201670i
\(584\) 183.256i 0.313795i
\(585\) 449.048 + 575.077i 0.767603 + 0.983037i
\(586\) 210.014i 0.358386i
\(587\) −309.364 + 178.611i −0.527025 + 0.304278i −0.739804 0.672822i \(-0.765082\pi\)
0.212779 + 0.977100i \(0.431749\pi\)
\(588\) 259.754 + 137.710i 0.441758 + 0.234201i
\(589\) −21.1089 + 36.5617i −0.0358386 + 0.0620742i
\(590\) 235.575 408.027i 0.399279 0.691572i
\(591\) 1.28566 + 18.4217i 0.00217539 + 0.0311704i
\(592\) 80.8303 + 140.002i 0.136538 + 0.236490i
\(593\) 755.558i 1.27413i −0.770811 0.637064i \(-0.780149\pi\)
0.770811 0.637064i \(-0.219851\pi\)
\(594\) 76.5365 + 24.9027i 0.128849 + 0.0419237i
\(595\) 266.543 444.279i 0.447971 0.746688i
\(596\) 103.162 + 178.681i 0.173090 + 0.299801i
\(597\) −879.077 + 61.3511i −1.47249 + 0.102766i
\(598\) 577.049 + 333.160i 0.964965 + 0.557123i
\(599\) 496.902 860.660i 0.829553 1.43683i −0.0688358 0.997628i \(-0.521928\pi\)
0.898389 0.439200i \(-0.144738\pi\)
\(600\) −256.405 + 172.897i −0.427342 + 0.288162i
\(601\) −203.743 + 117.631i −0.339006 + 0.195725i −0.659832 0.751413i \(-0.729373\pi\)
0.320826 + 0.947138i \(0.396039\pi\)
\(602\) 350.031 583.440i 0.581448 0.969169i
\(603\) −29.2068 + 72.2328i −0.0484358 + 0.119789i
\(604\) 402.685 0.666697
\(605\) −791.252 + 456.830i −1.30785 + 0.755090i
\(606\) 1.13166 2.31944i 0.00186742 0.00382746i
\(607\) 467.352 + 269.826i 0.769937 + 0.444523i 0.832852 0.553496i \(-0.186706\pi\)
−0.0629152 + 0.998019i \(0.520040\pi\)
\(608\) −34.3535 19.8340i −0.0565025 0.0326218i
\(609\) 349.733 227.387i 0.574274 0.373377i
\(610\) −63.3289 109.689i −0.103818 0.179818i
\(611\) −711.219 −1.16402
\(612\) −157.566 63.7105i −0.257460 0.104102i
\(613\) −261.237 −0.426161 −0.213081 0.977035i \(-0.568350\pi\)
−0.213081 + 0.977035i \(0.568350\pi\)
\(614\) −58.2877 + 33.6524i −0.0949311 + 0.0548085i
\(615\) 1193.16 804.563i 1.94010 1.30823i
\(616\) −20.2573 36.4872i −0.0328853 0.0592325i
\(617\) 333.055 576.868i 0.539797 0.934956i −0.459117 0.888376i \(-0.651834\pi\)
0.998915 0.0465807i \(-0.0148325\pi\)
\(618\) 414.293 28.9137i 0.670377 0.0467858i
\(619\) 581.338 335.636i 0.939157 0.542223i 0.0494614 0.998776i \(-0.484250\pi\)
0.889696 + 0.456553i \(0.150916\pi\)
\(620\) −94.3856 −0.152235
\(621\) 1169.68 + 380.579i 1.88354 + 0.612848i
\(622\) 21.5331i 0.0346192i
\(623\) −10.6830 + 636.599i −0.0171477 + 1.02183i
\(624\) −123.805 + 8.64042i −0.198406 + 0.0138468i
\(625\) 103.925 180.004i 0.166280 0.288006i
\(626\) 191.142 + 110.356i 0.305339 + 0.176287i
\(627\) 24.7915 + 36.7656i 0.0395398 + 0.0586374i
\(628\) 163.067 94.1469i 0.259661 0.149915i
\(629\) 381.606i 0.606687i
\(630\) −85.3916 693.156i −0.135542 1.10025i
\(631\) 252.355 0.399929 0.199965 0.979803i \(-0.435917\pi\)
0.199965 + 0.979803i \(0.435917\pi\)
\(632\) 161.465 + 279.665i 0.255482 + 0.442508i
\(633\) −199.946 97.5538i −0.315870 0.154113i
\(634\) −210.418 + 364.455i −0.331890 + 0.574850i
\(635\) −803.051 463.642i −1.26465 0.730145i
\(636\) −347.312 169.454i −0.546089 0.266437i
\(637\) 430.125 + 267.967i 0.675235 + 0.420670i
\(638\) −59.2153 −0.0928139
\(639\) −503.557 + 70.6308i −0.788039 + 0.110533i
\(640\) 88.6852i 0.138571i
\(641\) 287.254 + 497.539i 0.448135 + 0.776192i 0.998265 0.0588868i \(-0.0187551\pi\)
−0.550130 + 0.835079i \(0.685422\pi\)
\(642\) −229.575 + 154.805i −0.357594 + 0.241130i
\(643\) 128.360 + 74.1086i 0.199626 + 0.115254i 0.596481 0.802627i \(-0.296565\pi\)
−0.396855 + 0.917881i \(0.629898\pi\)
\(644\) −309.586 557.621i −0.480723 0.865871i
\(645\) −1612.33 + 112.525i −2.49974 + 0.174458i
\(646\) −46.8190 81.0929i −0.0724752 0.125531i
\(647\) 904.316i 1.39771i −0.715265 0.698853i \(-0.753694\pi\)
0.715265 0.698853i \(-0.246306\pi\)
\(648\) −220.262 + 63.0296i −0.339910 + 0.0972679i
\(649\) 89.5856i 0.138036i
\(650\) −461.643 + 266.529i −0.710219 + 0.410045i
\(651\) 57.3373 112.681i 0.0880757 0.173088i
\(652\) −9.85556 + 17.0703i −0.0151159 + 0.0261815i
\(653\) 43.6173 75.5473i 0.0667952 0.115693i −0.830694 0.556730i \(-0.812056\pi\)
0.897489 + 0.441037i \(0.145389\pi\)
\(654\) −695.355 + 468.886i −1.06323 + 0.716951i
\(655\) −502.417 870.212i −0.767049 1.32857i
\(656\) 244.782i 0.373143i
\(657\) 80.9974 + 577.464i 0.123284 + 0.878941i
\(658\) 583.774 + 350.232i 0.887194 + 0.532267i
\(659\) −225.512 390.598i −0.342203 0.592713i 0.642639 0.766170i \(-0.277840\pi\)
−0.984842 + 0.173457i \(0.944506\pi\)
\(660\) −43.4711 + 89.0983i −0.0658653 + 0.134997i
\(661\) −227.522 131.360i −0.344209 0.198729i 0.317923 0.948117i \(-0.397015\pi\)
−0.662132 + 0.749388i \(0.730348\pi\)
\(662\) 214.803 372.050i 0.324476 0.562008i
\(663\) −263.291 128.460i −0.397121 0.193756i
\(664\) −244.898 + 141.392i −0.368823 + 0.212940i
\(665\) 197.953 329.952i 0.297674 0.496169i
\(666\) 316.587 + 405.439i 0.475355 + 0.608768i
\(667\) −904.965 −1.35677
\(668\) 213.713 123.387i 0.319929 0.184711i
\(669\) −466.309 691.534i −0.697024 1.03368i
\(670\) −83.1123 47.9849i −0.124048 0.0716193i
\(671\) −20.8566 12.0415i −0.0310828 0.0179457i
\(672\) 105.875 + 53.8744i 0.157552 + 0.0801702i
\(673\) 294.210 + 509.587i 0.437162 + 0.757187i 0.997469 0.0710979i \(-0.0226503\pi\)
−0.560307 + 0.828285i \(0.689317\pi\)
\(674\) −424.671 −0.630075
\(675\) −731.549 + 658.150i −1.08378 + 0.975038i
\(676\) 124.078 0.183547
\(677\) 923.740 533.321i 1.36446 0.787772i 0.374247 0.927329i \(-0.377901\pi\)
0.990214 + 0.139557i \(0.0445680\pi\)
\(678\) −14.8797 213.206i −0.0219465 0.314463i
\(679\) −279.371 + 155.104i −0.411445 + 0.228430i
\(680\) 104.672 181.298i 0.153930 0.266614i
\(681\) 169.458 + 251.306i 0.248837 + 0.369025i
\(682\) −15.5423 + 8.97337i −0.0227893 + 0.0131574i
\(683\) −91.4075 −0.133832 −0.0669162 0.997759i \(-0.521316\pi\)
−0.0669162 + 0.997759i \(0.521316\pi\)
\(684\) −117.019 47.3157i −0.171081 0.0691751i
\(685\) 1739.86i 2.53995i
\(686\) −221.092 431.759i −0.322292 0.629387i
\(687\) −77.5787 + 159.005i −0.112924 + 0.231449i
\(688\) 137.459 238.085i 0.199794 0.346054i
\(689\) −576.875 333.059i −0.837264 0.483394i
\(690\) −664.354 + 1361.66i −0.962831 + 1.97342i
\(691\) −17.8222 + 10.2897i −0.0257920 + 0.0148910i −0.512841 0.858484i \(-0.671407\pi\)
0.487049 + 0.873375i \(0.338073\pi\)
\(692\) 518.048i 0.748624i
\(693\) −79.9606 106.023i −0.115383 0.152991i
\(694\) 55.4635 0.0799186
\(695\) −935.721 1620.72i −1.34636 2.33197i
\(696\) 139.752 94.2363i 0.200793 0.135397i
\(697\) −288.908 + 500.403i −0.414502 + 0.717939i
\(698\) 554.351 + 320.054i 0.794199 + 0.458531i
\(699\) 37.4903 + 537.185i 0.0536342 + 0.768504i
\(700\) 510.169 + 8.56135i 0.728813 + 0.0122305i
\(701\) −509.822 −0.727278 −0.363639 0.931540i \(-0.618466\pi\)
−0.363639 + 0.931540i \(0.618466\pi\)
\(702\) −386.308 + 81.9479i −0.550296 + 0.116735i
\(703\) 283.407i 0.403139i
\(704\) −8.43142 14.6037i −0.0119765 0.0207438i
\(705\) −112.589 1613.25i −0.159701 2.28830i
\(706\) −515.364 297.545i −0.729977 0.421452i
\(707\) −3.72281 + 2.06687i −0.00526565 + 0.00292343i
\(708\) 142.568 + 211.428i 0.201368 + 0.298627i
\(709\) 596.846 + 1033.77i 0.841814 + 1.45806i 0.888360 + 0.459148i \(0.151845\pi\)
−0.0465457 + 0.998916i \(0.514821\pi\)
\(710\) 626.322i 0.882144i
\(711\) 632.406 + 809.896i 0.889460 + 1.13909i
\(712\) 257.261i 0.361322i
\(713\) −237.528 + 137.137i −0.333139 + 0.192338i
\(714\) 152.853 + 235.096i 0.214080 + 0.329266i
\(715\) −85.4417 + 147.989i −0.119499 + 0.206978i
\(716\) −23.4639 + 40.6407i −0.0327708 + 0.0567607i
\(717\) 492.098 + 240.095i 0.686329 + 0.334860i
\(718\) 189.554 + 328.318i 0.264003 + 0.457267i
\(719\) 721.258i 1.00314i 0.865117 + 0.501571i \(0.167244\pi\)
−0.865117 + 0.501571i \(0.832756\pi\)
\(720\) −39.1980 279.459i −0.0544416 0.388137i
\(721\) −587.578 352.514i −0.814949 0.488924i
\(722\) 220.495 + 381.908i 0.305394 + 0.528958i
\(723\) −9.48682 14.0689i −0.0131215 0.0194591i
\(724\) 300.743 + 173.634i 0.415391 + 0.239826i
\(725\) 361.989 626.983i 0.499295 0.864804i
\(726\) −34.4282 493.309i −0.0474218 0.679489i
\(727\) −127.774 + 73.7701i −0.175754 + 0.101472i −0.585296 0.810819i \(-0.699022\pi\)
0.409542 + 0.912291i \(0.365689\pi\)
\(728\) 175.589 + 105.344i 0.241194 + 0.144703i
\(729\) −666.216 + 295.968i −0.913877 + 0.405992i
\(730\) −718.248 −0.983901
\(731\) 562.009 324.476i 0.768822 0.443880i
\(732\) 68.3860 4.77269i 0.0934236 0.00652006i
\(733\) −597.569 345.006i −0.815237 0.470677i 0.0335343 0.999438i \(-0.489324\pi\)
−0.848771 + 0.528760i \(0.822657\pi\)
\(734\) −34.1506 19.7168i −0.0465267 0.0268622i
\(735\) −539.737 + 1018.07i −0.734336 + 1.38513i
\(736\) −128.854 223.182i −0.175074 0.303237i
\(737\) −18.2480 −0.0247598
\(738\) 108.191 + 771.339i 0.146600 + 1.04518i
\(739\) 456.471 0.617687 0.308844 0.951113i \(-0.400058\pi\)
0.308844 + 0.951113i \(0.400058\pi\)
\(740\) −548.720 + 316.804i −0.741513 + 0.428113i
\(741\) −195.538 95.4033i −0.263884 0.128749i
\(742\) 309.492 + 557.452i 0.417105 + 0.751283i
\(743\) 35.6377 61.7263i 0.0479646 0.0830772i −0.841046 0.540963i \(-0.818060\pi\)
0.889011 + 0.457886i \(0.151393\pi\)
\(744\) 22.4006 45.9121i 0.0301083 0.0617099i
\(745\) −700.318 + 404.329i −0.940024 + 0.542723i
\(746\) 177.165 0.237487
\(747\) −709.213 + 553.788i −0.949415 + 0.741349i
\(748\) 39.8054i 0.0532157i
\(749\) 456.785 + 7.66550i 0.609860 + 0.0102343i
\(750\) −212.815 315.603i −0.283753 0.420804i
\(751\) 678.540 1175.27i 0.903515 1.56493i 0.0806166 0.996745i \(-0.474311\pi\)
0.822898 0.568189i \(-0.192356\pi\)
\(752\) 238.221 + 137.537i 0.316784 + 0.182895i
\(753\) −450.473 + 31.4387i −0.598238 + 0.0417513i
\(754\) 251.615 145.270i 0.333707 0.192666i
\(755\) 1578.27i 2.09042i
\(756\) 357.439 + 122.970i 0.472803 + 0.162658i
\(757\) 310.769 0.410527 0.205264 0.978707i \(-0.434195\pi\)
0.205264 + 0.978707i \(0.434195\pi\)
\(758\) 39.7139 + 68.7865i 0.0523930 + 0.0907473i
\(759\) 20.0566 + 287.383i 0.0264250 + 0.378634i
\(760\) 77.7369 134.644i 0.102285 0.177163i
\(761\) 231.955 + 133.919i 0.304803 + 0.175978i 0.644599 0.764521i \(-0.277025\pi\)
−0.339795 + 0.940499i \(0.610358\pi\)
\(762\) 416.118 280.593i 0.546087 0.368232i
\(763\) 1383.55 + 23.2178i 1.81330 + 0.0304297i
\(764\) −484.827 −0.634590
\(765\) 249.705 617.558i 0.326411 0.807265i
\(766\) 803.329i 1.04873i
\(767\) 219.776 + 380.664i 0.286540 + 0.496302i
\(768\) 43.1393 + 21.0477i 0.0561709 + 0.0274058i
\(769\) −1021.03 589.492i −1.32774 0.766569i −0.342788 0.939413i \(-0.611371\pi\)
−0.984949 + 0.172844i \(0.944704\pi\)
\(770\) 143.007 79.3959i 0.185723 0.103112i
\(771\) −134.128 + 274.909i −0.173967 + 0.356562i
\(772\) −248.645 430.667i −0.322080 0.557858i
\(773\) 586.849i 0.759184i −0.925154 0.379592i \(-0.876064\pi\)
0.925154 0.379592i \(-0.123936\pi\)
\(774\) 327.919 810.994i 0.423668 1.04780i
\(775\) 219.420i 0.283123i
\(776\) −111.816 + 64.5568i −0.144092 + 0.0831917i
\(777\) −44.8742 847.531i −0.0577531 1.09077i
\(778\) −207.214 + 358.905i −0.266342 + 0.461317i
\(779\) −214.563 + 371.634i −0.275434 + 0.477065i
\(780\) −33.8650 485.239i −0.0434166 0.622101i
\(781\) −59.5453 103.135i −0.0762424 0.132056i
\(782\) 608.331i 0.777917i
\(783\) 398.726 358.720i 0.509228 0.458136i
\(784\) −92.2494 172.934i −0.117665 0.220579i
\(785\) 368.996 + 639.120i 0.470059 + 0.814166i
\(786\) 542.537 37.8639i 0.690251 0.0481729i
\(787\) 525.886 + 303.620i 0.668216 + 0.385795i 0.795400 0.606084i \(-0.207261\pi\)
−0.127184 + 0.991879i \(0.540594\pi\)
\(788\) 6.15551 10.6617i 0.00781156 0.0135300i
\(789\) −280.414 + 189.086i −0.355404 + 0.239653i
\(790\) −1096.11 + 632.839i −1.38748 + 0.801062i
\(791\) −181.413 + 302.383i −0.229347 + 0.382280i
\(792\) −33.0232 42.2914i −0.0416960 0.0533983i
\(793\) 118.164 0.149009
\(794\) −621.747 + 358.966i −0.783056 + 0.452098i
\(795\) 664.152 1361.25i 0.835412 1.71226i
\(796\) 508.770 + 293.738i 0.639158 + 0.369018i
\(797\) −138.769 80.1182i −0.174114 0.100525i 0.410410 0.911901i \(-0.365385\pi\)
−0.584524 + 0.811376i \(0.698719\pi\)
\(798\) 113.519 + 174.598i 0.142254 + 0.218795i
\(799\) 324.662 + 562.331i 0.406335 + 0.703793i
\(800\) 206.168 0.257710
\(801\) 113.707 + 810.664i 0.141956 + 1.01207i
\(802\) 196.486 0.244995
\(803\) −118.273 + 68.2848i −0.147289 + 0.0850371i
\(804\) 43.0664 29.0402i 0.0535652 0.0361196i
\(805\) 2185.52 1213.38i 2.71493 1.50730i
\(806\) 44.0279 76.2586i 0.0546252 0.0946136i
\(807\) −202.452 + 14.1292i −0.250869 + 0.0175083i
\(808\) −1.49002 + 0.860263i −0.00184408 + 0.00106468i
\(809\) −806.158 −0.996487 −0.498244 0.867037i \(-0.666022\pi\)
−0.498244 + 0.867037i \(0.666022\pi\)
\(810\) −247.036 863.287i −0.304983 1.06579i
\(811\) 19.2228i 0.0237026i −0.999930 0.0118513i \(-0.996228\pi\)
0.999930 0.0118513i \(-0.00377248\pi\)
\(812\) −278.064 4.66630i −0.342443 0.00574668i
\(813\) 432.166 30.1610i 0.531570 0.0370985i
\(814\) −60.2379 + 104.335i −0.0740023 + 0.128176i
\(815\) −66.9049 38.6276i −0.0820919 0.0473958i
\(816\) 63.3471 + 93.9434i 0.0776312 + 0.115127i
\(817\) 417.387 240.978i 0.510877 0.294955i
\(818\) 679.408i 0.830572i
\(819\) 599.865 + 254.343i 0.732436 + 0.310553i
\(820\) −959.389 −1.16999
\(821\) 712.768 + 1234.55i 0.868171 + 1.50372i 0.863864 + 0.503725i \(0.168038\pi\)
0.00430682 + 0.999991i \(0.498629\pi\)
\(822\) 846.324 + 412.922i 1.02959 + 0.502338i
\(823\) −307.257 + 532.185i −0.373338 + 0.646641i −0.990077 0.140527i \(-0.955120\pi\)
0.616739 + 0.787168i \(0.288454\pi\)
\(824\) −239.774 138.434i −0.290988 0.168002i
\(825\) −207.129 101.058i −0.251065 0.122495i
\(826\) 7.05956 420.678i 0.00854668 0.509295i
\(827\) −681.029 −0.823494 −0.411747 0.911298i \(-0.635081\pi\)
−0.411747 + 0.911298i \(0.635081\pi\)
\(828\) −504.682 646.325i −0.609519 0.780586i
\(829\) 1137.71i 1.37239i 0.727419 + 0.686194i \(0.240720\pi\)
−0.727419 + 0.686194i \(0.759280\pi\)
\(830\) −554.167 959.846i −0.667671 1.15644i
\(831\) 640.340 431.788i 0.770565 0.519601i
\(832\) 71.6529 + 41.3688i 0.0861213 + 0.0497221i
\(833\) 15.5240 462.405i 0.0186362 0.555108i
\(834\) 1010.44 70.5192i 1.21156 0.0845553i
\(835\) 483.599 + 837.618i 0.579160 + 1.00314i
\(836\) 29.5622i 0.0353615i
\(837\) 50.2945 154.576i 0.0600890 0.184679i
\(838\) 629.402i 0.751077i
\(839\) 470.831 271.834i 0.561181 0.323998i −0.192438 0.981309i \(-0.561640\pi\)
0.753619 + 0.657311i \(0.228306\pi\)
\(840\) −211.154 + 414.964i −0.251373 + 0.494004i
\(841\) 223.201 386.595i 0.265399 0.459685i
\(842\) 400.237 693.230i 0.475341 0.823314i
\(843\) −726.677 + 490.007i −0.862014 + 0.581265i
\(844\) 74.1583 + 128.446i 0.0878653 + 0.152187i
\(845\) 486.306i 0.575510i
\(846\) 811.458 + 328.107i 0.959170 + 0.387833i
\(847\) −419.748 + 699.644i −0.495570 + 0.826027i
\(848\) 128.815 + 223.115i 0.151905 + 0.263107i
\(849\) −436.156 + 893.945i −0.513729 + 1.05294i
\(850\) 421.467 + 243.334i 0.495844 + 0.286275i
\(851\) −920.594 + 1594.52i −1.08178 + 1.87370i
\(852\) 304.663 + 148.645i 0.357585 + 0.174466i
\(853\) −1448.28 + 836.167i −1.69787 + 0.980266i −0.750094 + 0.661331i \(0.769992\pi\)
−0.947777 + 0.318935i \(0.896675\pi\)
\(854\) −96.9897 58.1884i −0.113571 0.0681363i
\(855\) 185.448 458.641i 0.216898 0.536422i
\(856\) 184.595 0.215649
\(857\) 828.715 478.459i 0.966996 0.558295i 0.0686767 0.997639i \(-0.478122\pi\)
0.898319 + 0.439344i \(0.144789\pi\)
\(858\) −51.7088 76.6839i −0.0602667 0.0893752i
\(859\) 1415.32 + 817.134i 1.64763 + 0.951262i 0.978009 + 0.208561i \(0.0668781\pi\)
0.669624 + 0.742700i \(0.266455\pi\)
\(860\) 933.144 + 538.751i 1.08505 + 0.626454i
\(861\) 582.809 1145.35i 0.676898 1.33025i
\(862\) −335.610 581.293i −0.389338 0.674354i
\(863\) 1264.39 1.46511 0.732555 0.680708i \(-0.238328\pi\)
0.732555 + 0.680708i \(0.238328\pi\)
\(864\) 145.240 + 47.2569i 0.168102 + 0.0546955i
\(865\) 2030.42 2.34731
\(866\) 1.99629 1.15256i 0.00230518 0.00133090i
\(867\) −41.7404 598.083i −0.0481435 0.689830i
\(868\) −73.6911 + 40.9125i −0.0848976 + 0.0471343i
\(869\) −120.330 + 208.417i −0.138469 + 0.239836i
\(870\) 369.347 + 547.739i 0.424536 + 0.629586i
\(871\) 77.5385 44.7669i 0.0890224 0.0513971i
\(872\) 559.116 0.641188
\(873\) −323.813 + 252.848i −0.370919 + 0.289632i
\(874\) 451.788i 0.516920i
\(875\) −10.5379 + 627.954i −0.0120434 + 0.717662i
\(876\) 170.462 349.378i 0.194591 0.398834i
\(877\) −157.796 + 273.311i −0.179927 + 0.311643i −0.941855 0.336019i \(-0.890919\pi\)
0.761928 + 0.647661i \(0.224253\pi\)
\(878\) −765.957 442.225i −0.872388 0.503673i
\(879\) 195.352 400.392i 0.222243 0.455509i
\(880\) 57.2371 33.0458i 0.0650421 0.0375521i
\(881\) 1325.05i 1.50403i 0.659148 + 0.752013i \(0.270917\pi\)
−0.659148 + 0.752013i \(0.729083\pi\)
\(882\) −367.125 504.164i −0.416242 0.571614i
\(883\) 53.0789 0.0601120 0.0300560 0.999548i \(-0.490431\pi\)
0.0300560 + 0.999548i \(0.490431\pi\)
\(884\) 97.6527 + 169.139i 0.110467 + 0.191334i
\(885\) −828.665 + 558.778i −0.936344 + 0.631387i
\(886\) −210.577 + 364.731i −0.237672 + 0.411660i
\(887\) 569.288 + 328.679i 0.641813 + 0.370551i 0.785313 0.619099i \(-0.212502\pi\)
−0.143499 + 0.989650i \(0.545835\pi\)
\(888\) −23.8754 342.102i −0.0268867 0.385250i
\(889\) −827.949 13.8941i −0.931326 0.0156290i
\(890\) −1008.30 −1.13292
\(891\) −122.753 118.670i −0.137770 0.133188i
\(892\) 556.043i 0.623366i
\(893\) 241.116 + 417.625i 0.270007 + 0.467665i
\(894\) −30.4716 436.616i −0.0340846 0.488385i
\(895\) −159.286 91.9636i −0.177973 0.102753i
\(896\) −38.4416 69.2405i −0.0429036 0.0772773i
\(897\) −790.247 1171.93i −0.880989 1.30650i
\(898\) 135.313 + 234.369i 0.150682 + 0.260990i
\(899\) 119.594i 0.133029i
\(900\) 649.664 91.1244i 0.721849 0.101249i
\(901\) 608.147i 0.674969i
\(902\) −157.981 + 91.2104i −0.175145 + 0.101120i
\(903\) −1210.04 + 786.736i −1.34003 + 0.871247i
\(904\) −71.2416 + 123.394i −0.0788071 + 0.136498i
\(905\) −680.536 + 1178.72i −0.751973 + 1.30246i
\(906\) −767.720 374.571i −0.847373 0.413434i
\(907\) 254.110 + 440.131i 0.280165 + 0.485260i 0.971425 0.237346i \(-0.0762774\pi\)
−0.691260 + 0.722606i \(0.742944\pi\)
\(908\) 202.068i 0.222542i
\(909\) −4.31502 + 3.36938i −0.00474700 + 0.00370669i
\(910\) −412.880 + 688.198i −0.453715 + 0.756261i
\(911\) −615.535 1066.14i −0.675670 1.17029i −0.976273 0.216545i \(-0.930521\pi\)
0.300603 0.953749i \(-0.402812\pi\)
\(912\) 47.0459 + 69.7688i 0.0515854 + 0.0765009i
\(913\) −182.508 105.371i −0.199899 0.115412i
\(914\) −151.268 + 262.003i −0.165501 + 0.286656i
\(915\) 18.7059 + 268.030i 0.0204436 + 0.292929i
\(916\) 102.145 58.9737i 0.111513 0.0643818i
\(917\) −769.463 461.635i −0.839109 0.503419i
\(918\) 241.137 + 268.029i 0.262677 + 0.291971i
\(919\) −953.211 −1.03723 −0.518613 0.855009i \(-0.673552\pi\)
−0.518613 + 0.855009i \(0.673552\pi\)
\(920\) 874.734 505.028i 0.950797 0.548943i
\(921\) 142.429 9.94015i 0.154646 0.0107928i
\(922\) −380.223 219.522i −0.412390 0.238093i
\(923\) 506.035 + 292.159i 0.548250 + 0.316532i
\(924\) 4.68083 + 88.4061i 0.00506584 + 0.0956776i
\(925\) −736.480 1275.62i −0.796195 1.37905i
\(926\) 236.917 0.255850
\(927\) −816.746 330.245i −0.881064 0.356251i
\(928\) −112.371 −0.121089
\(929\) −1161.63 + 670.670i −1.25041 + 0.721927i −0.971192 0.238300i \(-0.923410\pi\)
−0.279222 + 0.960227i \(0.590077\pi\)
\(930\) 179.947 + 87.7960i 0.193491 + 0.0944043i
\(931\) 11.5292 343.414i 0.0123836 0.368865i
\(932\) 179.497 310.898i 0.192593 0.333582i
\(933\) −20.0298 + 41.0530i −0.0214681 + 0.0440010i
\(934\) −385.924 + 222.813i −0.413195 + 0.238558i
\(935\) 156.012 0.166858
\(936\) 244.072 + 98.6888i 0.260761 + 0.105437i
\(937\) 1468.66i 1.56741i −0.621136 0.783703i \(-0.713328\pi\)
0.621136 0.783703i \(-0.286672\pi\)
\(938\) −85.6891 1.43798i −0.0913530 0.00153303i
\(939\) −261.762 388.191i −0.278766 0.413409i
\(940\) −539.059 + 933.677i −0.573467 + 0.993274i
\(941\) 466.720 + 269.461i 0.495983 + 0.286356i 0.727053 0.686581i \(-0.240889\pi\)
−0.231070 + 0.972937i \(0.574223\pi\)
\(942\) −398.462 + 27.8088i −0.422996 + 0.0295210i
\(943\) −2414.37 + 1393.94i −2.56031 + 1.47819i
\(944\) 170.003i 0.180088i
\(945\) −481.963 + 1400.93i −0.510014 + 1.48247i
\(946\) 204.879 0.216574
\(947\) −233.960 405.231i −0.247054 0.427910i 0.715653 0.698456i \(-0.246129\pi\)
−0.962707 + 0.270546i \(0.912796\pi\)
\(948\) −47.6929 683.374i −0.0503090 0.720859i
\(949\) 335.040 580.306i 0.353045 0.611492i
\(950\) 313.010 + 180.717i 0.329485 + 0.190228i
\(951\) 740.174 499.107i 0.778311 0.524824i
\(952\) 3.13676 186.919i 0.00329491 0.196343i
\(953\) 209.542 0.219876 0.109938 0.993938i \(-0.464935\pi\)
0.109938 + 0.993938i \(0.464935\pi\)
\(954\) 504.529 + 646.129i 0.528856 + 0.677284i
\(955\) 1900.22i 1.98975i
\(956\) −182.515 316.125i −0.190915 0.330675i
\(957\) 112.894 + 55.0811i 0.117967 + 0.0575560i
\(958\) 1100.44 + 635.340i 1.14869 + 0.663194i
\(959\) −754.164 1358.39i −0.786406 1.41646i
\(960\) −82.4936 + 169.079i −0.0859308 + 0.176124i
\(961\) −462.377 800.860i −0.481142 0.833362i
\(962\) 591.115i 0.614465i
\(963\) 581.684 81.5893i 0.604033 0.0847240i
\(964\) 11.3124i 0.0117349i
\(965\) 1687.94 974.533i 1.74916 1.00988i
\(966\) 71.5355 + 1351.08i 0.0740533 + 1.39863i
\(967\) −231.563 + 401.080i −0.239466 + 0.414767i −0.960561 0.278069i \(-0.910306\pi\)
0.721095 + 0.692836i \(0.243639\pi\)
\(968\) −164.836 + 285.505i −0.170286 + 0.294943i
\(969\) 13.8292 + 198.154i 0.0142717 + 0.204493i
\(970\) −253.022 438.247i −0.260847 0.451801i
\(971\) 20.0008i 0.0205981i 0.999947 + 0.0102991i \(0.00327835\pi\)
−0.999947 + 0.0102991i \(0.996722\pi\)
\(972\) 478.559 + 84.7180i 0.492345 + 0.0871584i
\(973\) −1433.08 859.767i −1.47284 0.883625i
\(974\) 232.238 + 402.249i 0.238438 + 0.412986i
\(975\) 1128.04 78.7267i 1.15697 0.0807453i
\(976\) −39.5787 22.8508i −0.0405520 0.0234127i
\(977\) −558.279 + 966.968i −0.571422 + 0.989732i 0.424998 + 0.905194i \(0.360275\pi\)
−0.996420 + 0.0845376i \(0.973059\pi\)
\(978\) 34.6682 23.3772i 0.0354481 0.0239030i
\(979\) −166.035 + 95.8606i −0.169597 + 0.0979168i
\(980\) 677.790 361.559i 0.691623 0.368938i
\(981\) 1761.85 247.124i 1.79597 0.251910i
\(982\) −469.253 −0.477855
\(983\) 595.403 343.756i 0.605700 0.349701i −0.165581 0.986196i \(-0.552950\pi\)
0.771281 + 0.636495i \(0.219617\pi\)
\(984\) 227.692 466.677i 0.231394 0.474265i
\(985\) 41.7869 + 24.1257i 0.0424233 + 0.0244931i
\(986\) −229.718 132.628i −0.232979 0.134511i
\(987\) −787.186 1210.74i −0.797555 1.22668i
\(988\) 72.5236 + 125.614i 0.0734044 + 0.127140i
\(989\) 3131.09 3.16592
\(990\) 165.756 129.430i 0.167430 0.130737i
\(991\) −470.055 −0.474324 −0.237162 0.971470i \(-0.576217\pi\)
−0.237162 + 0.971470i \(0.576217\pi\)
\(992\) −29.4941 + 17.0284i −0.0297320 + 0.0171658i
\(993\) −755.597 + 509.507i −0.760924 + 0.513099i
\(994\) −271.486 488.998i −0.273125 0.491949i
\(995\) −1151.27 + 1994.06i −1.15705 + 2.00408i
\(996\) 598.420 41.7639i 0.600823 0.0419317i
\(997\) 1667.02 962.456i 1.67204 0.965353i 0.705545 0.708665i \(-0.250702\pi\)
0.966494 0.256688i \(-0.0826312\pi\)
\(998\) −180.253 −0.180614
\(999\) −226.440 1067.46i −0.226667 1.06852i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.o.a.13.12 32
3.2 odd 2 378.3.o.a.307.8 32
7.6 odd 2 inner 126.3.o.a.13.13 yes 32
9.2 odd 6 378.3.o.a.181.1 32
9.4 even 3 1134.3.c.e.811.8 16
9.5 odd 6 1134.3.c.d.811.9 16
9.7 even 3 inner 126.3.o.a.97.13 yes 32
21.20 even 2 378.3.o.a.307.1 32
63.13 odd 6 1134.3.c.e.811.1 16
63.20 even 6 378.3.o.a.181.8 32
63.34 odd 6 inner 126.3.o.a.97.12 yes 32
63.41 even 6 1134.3.c.d.811.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.12 32 1.1 even 1 trivial
126.3.o.a.13.13 yes 32 7.6 odd 2 inner
126.3.o.a.97.12 yes 32 63.34 odd 6 inner
126.3.o.a.97.13 yes 32 9.7 even 3 inner
378.3.o.a.181.1 32 9.2 odd 6
378.3.o.a.181.8 32 63.20 even 6
378.3.o.a.307.1 32 21.20 even 2
378.3.o.a.307.8 32 3.2 odd 2
1134.3.c.d.811.9 16 9.5 odd 6
1134.3.c.d.811.16 16 63.41 even 6
1134.3.c.e.811.1 16 63.13 odd 6
1134.3.c.e.811.8 16 9.4 even 3