Properties

Label 378.2.d.c
Level 378378
Weight 22
Character orbit 378.d
Analytic conductor 3.0183.018
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,2,Mod(377,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.377"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 378=2337 378 = 2 \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 378.d (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,8,0,0,0,0,0,0,0,0,4,0,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.018345196403.01834519640
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2q42β3q5+(β2+2)q7β1q82β2q106β1q11+β2q13+(β3+2β1)q14+q16+β3q17++(4β3+β1)q98+O(q100) q + \beta_1 q^{2} - q^{4} - 2 \beta_{3} q^{5} + ( - \beta_{2} + 2) q^{7} - \beta_1 q^{8} - 2 \beta_{2} q^{10} - 6 \beta_1 q^{11} + \beta_{2} q^{13} + (\beta_{3} + 2 \beta_1) q^{14} + q^{16} + \beta_{3} q^{17}+ \cdots + (4 \beta_{3} + \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+8q7+4q16+24q22+28q258q288q3744q4312q46+4q49+12q584q6428q6724q70+32q7924q8524q88+12q91+O(q100) 4 q - 4 q^{4} + 8 q^{7} + 4 q^{16} + 24 q^{22} + 28 q^{25} - 8 q^{28} - 8 q^{37} - 44 q^{43} - 12 q^{46} + 4 q^{49} + 12 q^{58} - 4 q^{64} - 28 q^{67} - 24 q^{70} + 32 q^{79} - 24 q^{85} - 24 q^{88} + 12 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ123 \zeta_{12}^{3} Copy content Toggle raw display
β2\beta_{2}== 2ζ1221 2\zeta_{12}^{2} - 1 Copy content Toggle raw display
β3\beta_{3}== ζ123+2ζ12 -\zeta_{12}^{3} + 2\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+β1)/2 ( \beta_{3} + \beta_1 ) / 2 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β2+1)/2 ( \beta_{2} + 1 ) / 2 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== β1 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/378Z)×\left(\mathbb{Z}/378\mathbb{Z}\right)^\times.

nn 2929 325325
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
377.1
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
1.00000i 0 −1.00000 −3.46410 0 2.00000 + 1.73205i 1.00000i 0 3.46410i
377.2 1.00000i 0 −1.00000 3.46410 0 2.00000 1.73205i 1.00000i 0 3.46410i
377.3 1.00000i 0 −1.00000 −3.46410 0 2.00000 1.73205i 1.00000i 0 3.46410i
377.4 1.00000i 0 −1.00000 3.46410 0 2.00000 + 1.73205i 1.00000i 0 3.46410i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 378.2.d.c 4
3.b odd 2 1 inner 378.2.d.c 4
4.b odd 2 1 3024.2.k.f 4
7.b odd 2 1 inner 378.2.d.c 4
9.c even 3 1 1134.2.m.a 4
9.c even 3 1 1134.2.m.d 4
9.d odd 6 1 1134.2.m.a 4
9.d odd 6 1 1134.2.m.d 4
12.b even 2 1 3024.2.k.f 4
21.c even 2 1 inner 378.2.d.c 4
28.d even 2 1 3024.2.k.f 4
63.l odd 6 1 1134.2.m.a 4
63.l odd 6 1 1134.2.m.d 4
63.o even 6 1 1134.2.m.a 4
63.o even 6 1 1134.2.m.d 4
84.h odd 2 1 3024.2.k.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.d.c 4 1.a even 1 1 trivial
378.2.d.c 4 3.b odd 2 1 inner
378.2.d.c 4 7.b odd 2 1 inner
378.2.d.c 4 21.c even 2 1 inner
1134.2.m.a 4 9.c even 3 1
1134.2.m.a 4 9.d odd 6 1
1134.2.m.a 4 63.l odd 6 1
1134.2.m.a 4 63.o even 6 1
1134.2.m.d 4 9.c even 3 1
1134.2.m.d 4 9.d odd 6 1
1134.2.m.d 4 63.l odd 6 1
1134.2.m.d 4 63.o even 6 1
3024.2.k.f 4 4.b odd 2 1
3024.2.k.f 4 12.b even 2 1
3024.2.k.f 4 28.d even 2 1
3024.2.k.f 4 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(378,[χ])S_{2}^{\mathrm{new}}(378, [\chi]):

T5212 T_{5}^{2} - 12 Copy content Toggle raw display
T132+3 T_{13}^{2} + 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
77 (T24T+7)2 (T^{2} - 4 T + 7)^{2} Copy content Toggle raw display
1111 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
1313 (T2+3)2 (T^{2} + 3)^{2} Copy content Toggle raw display
1717 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
1919 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
2323 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
2929 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
3131 (T2+27)2 (T^{2} + 27)^{2} Copy content Toggle raw display
3737 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
4141 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
4343 (T+11)4 (T + 11)^{4} Copy content Toggle raw display
4747 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
5353 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
5959 (T275)2 (T^{2} - 75)^{2} Copy content Toggle raw display
6161 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
6767 (T+7)4 (T + 7)^{4} Copy content Toggle raw display
7171 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
7373 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
7979 (T8)4 (T - 8)^{4} Copy content Toggle raw display
8383 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
8989 (T227)2 (T^{2} - 27)^{2} Copy content Toggle raw display
9797 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
show more
show less