gp: [N,k,chi] = [378,2,Mod(377,378)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(378, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("378.377");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,-4,0,0,8,0,0,0,0,0,0,0,0,4,0,0,0,0,0,24]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
ζ 12 3 \zeta_{12}^{3} ζ 1 2 3
v^3
β 2 \beta_{2} β 2 = = =
2 ζ 12 2 − 1 2\zeta_{12}^{2} - 1 2 ζ 1 2 2 − 1
2*v^2 - 1
β 3 \beta_{3} β 3 = = =
− ζ 12 3 + 2 ζ 12 -\zeta_{12}^{3} + 2\zeta_{12} − ζ 1 2 3 + 2 ζ 1 2
-v^3 + 2*v
ζ 12 \zeta_{12} ζ 1 2 = = =
( β 3 + β 1 ) / 2 ( \beta_{3} + \beta_1 ) / 2 ( β 3 + β 1 ) / 2
(b3 + b1) / 2
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2 = = =
( β 2 + 1 ) / 2 ( \beta_{2} + 1 ) / 2 ( β 2 + 1 ) / 2
(b2 + 1) / 2
ζ 12 3 \zeta_{12}^{3} ζ 1 2 3 = = =
β 1 \beta_1 β 1
b1
Character values
We give the values of χ \chi χ on generators for ( Z / 378 Z ) × \left(\mathbb{Z}/378\mathbb{Z}\right)^\times ( Z / 3 7 8 Z ) × .
n n n
29 29 2 9
325 325 3 2 5
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 378 , [ χ ] ) S_{2}^{\mathrm{new}}(378, [\chi]) S 2 n e w ( 3 7 8 , [ χ ] ) :
T 5 2 − 12 T_{5}^{2} - 12 T 5 2 − 1 2
T5^2 - 12
T 13 2 + 3 T_{13}^{2} + 3 T 1 3 2 + 3
T13^2 + 3
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 1 ) 2 (T^{2} + 1)^{2} ( T 2 + 1 ) 2
(T^2 + 1)^2
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
( T 2 − 12 ) 2 (T^{2} - 12)^{2} ( T 2 − 1 2 ) 2
(T^2 - 12)^2
7 7 7
( T 2 − 4 T + 7 ) 2 (T^{2} - 4 T + 7)^{2} ( T 2 − 4 T + 7 ) 2
(T^2 - 4*T + 7)^2
11 11 1 1
( T 2 + 36 ) 2 (T^{2} + 36)^{2} ( T 2 + 3 6 ) 2
(T^2 + 36)^2
13 13 1 3
( T 2 + 3 ) 2 (T^{2} + 3)^{2} ( T 2 + 3 ) 2
(T^2 + 3)^2
17 17 1 7
( T 2 − 3 ) 2 (T^{2} - 3)^{2} ( T 2 − 3 ) 2
(T^2 - 3)^2
19 19 1 9
( T 2 + 48 ) 2 (T^{2} + 48)^{2} ( T 2 + 4 8 ) 2
(T^2 + 48)^2
23 23 2 3
( T 2 + 9 ) 2 (T^{2} + 9)^{2} ( T 2 + 9 ) 2
(T^2 + 9)^2
29 29 2 9
( T 2 + 9 ) 2 (T^{2} + 9)^{2} ( T 2 + 9 ) 2
(T^2 + 9)^2
31 31 3 1
( T 2 + 27 ) 2 (T^{2} + 27)^{2} ( T 2 + 2 7 ) 2
(T^2 + 27)^2
37 37 3 7
( T + 2 ) 4 (T + 2)^{4} ( T + 2 ) 4
(T + 2)^4
41 41 4 1
( T 2 − 48 ) 2 (T^{2} - 48)^{2} ( T 2 − 4 8 ) 2
(T^2 - 48)^2
43 43 4 3
( T + 11 ) 4 (T + 11)^{4} ( T + 1 1 ) 4
(T + 11)^4
47 47 4 7
( T 2 − 48 ) 2 (T^{2} - 48)^{2} ( T 2 − 4 8 ) 2
(T^2 - 48)^2
53 53 5 3
( T 2 + 9 ) 2 (T^{2} + 9)^{2} ( T 2 + 9 ) 2
(T^2 + 9)^2
59 59 5 9
( T 2 − 75 ) 2 (T^{2} - 75)^{2} ( T 2 − 7 5 ) 2
(T^2 - 75)^2
61 61 6 1
( T 2 + 192 ) 2 (T^{2} + 192)^{2} ( T 2 + 1 9 2 ) 2
(T^2 + 192)^2
67 67 6 7
( T + 7 ) 4 (T + 7)^{4} ( T + 7 ) 4
(T + 7)^4
71 71 7 1
( T 2 + 9 ) 2 (T^{2} + 9)^{2} ( T 2 + 9 ) 2
(T^2 + 9)^2
73 73 7 3
( T 2 + 48 ) 2 (T^{2} + 48)^{2} ( T 2 + 4 8 ) 2
(T^2 + 48)^2
79 79 7 9
( T − 8 ) 4 (T - 8)^{4} ( T − 8 ) 4
(T - 8)^4
83 83 8 3
( T 2 − 12 ) 2 (T^{2} - 12)^{2} ( T 2 − 1 2 ) 2
(T^2 - 12)^2
89 89 8 9
( T 2 − 27 ) 2 (T^{2} - 27)^{2} ( T 2 − 2 7 ) 2
(T^2 - 27)^2
97 97 9 7
( T 2 + 48 ) 2 (T^{2} + 48)^{2} ( T 2 + 4 8 ) 2
(T^2 + 48)^2
show more
show less