Properties

Label 8-378e4-1.1-c1e4-0-3
Degree $8$
Conductor $20415837456$
Sign $1$
Analytic cond. $82.9995$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 8·7-s + 3·16-s + 4·25-s − 16·28-s − 8·37-s − 44·43-s + 34·49-s − 4·64-s − 28·67-s + 32·79-s − 8·100-s + 16·109-s + 24·112-s − 28·121-s + 127-s + 131-s + 137-s + 139-s + 16·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 46·169-s + 88·172-s + ⋯
L(s)  = 1  − 4-s + 3.02·7-s + 3/4·16-s + 4/5·25-s − 3.02·28-s − 1.31·37-s − 6.70·43-s + 34/7·49-s − 1/2·64-s − 3.42·67-s + 3.60·79-s − 4/5·100-s + 1.53·109-s + 2.26·112-s − 2.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.31·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.53·169-s + 6.70·172-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(82.9995\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{12} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.067271434\)
\(L(\frac12)\) \(\approx\) \(2.067271434\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3 \( 1 \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 + 31 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 49 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 35 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 11 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 46 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 97 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 43 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 + 7 T + p T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 133 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 154 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 151 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 146 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.268345140362973909937409676722, −7.982325305409017081479046817808, −7.976214258126713115784085842596, −7.58097140254410139026035015797, −7.39251321746416321140727485722, −7.03983853065696803929709335219, −6.70479405118618531543716796525, −6.50200967289606503170204745064, −6.33805318076580756535377255225, −5.80658807229212780804422961734, −5.32647056895037338950990251867, −5.25192054419838463801047032516, −5.09326916409939077370862112546, −5.00730869776337642163543849441, −4.44823347395466669575215431044, −4.41590517591630275298128708970, −4.25814546414026737499904151892, −3.37595957445088214530734210099, −3.35477266239183925133216579936, −3.26702218997399691608563766513, −2.45996292262262875043062996812, −1.76967742243704503004371937678, −1.65773064102172855830350171016, −1.61915126982252147919498589474, −0.59204550983037465145953103618, 0.59204550983037465145953103618, 1.61915126982252147919498589474, 1.65773064102172855830350171016, 1.76967742243704503004371937678, 2.45996292262262875043062996812, 3.26702218997399691608563766513, 3.35477266239183925133216579936, 3.37595957445088214530734210099, 4.25814546414026737499904151892, 4.41590517591630275298128708970, 4.44823347395466669575215431044, 5.00730869776337642163543849441, 5.09326916409939077370862112546, 5.25192054419838463801047032516, 5.32647056895037338950990251867, 5.80658807229212780804422961734, 6.33805318076580756535377255225, 6.50200967289606503170204745064, 6.70479405118618531543716796525, 7.03983853065696803929709335219, 7.39251321746416321140727485722, 7.58097140254410139026035015797, 7.976214258126713115784085842596, 7.982325305409017081479046817808, 8.268345140362973909937409676722

Graph of the $Z$-function along the critical line