Properties

Label 378.2.d
Level 378378
Weight 22
Character orbit 378.d
Rep. character χ378(377,)\chi_{378}(377,\cdot)
Character field Q\Q
Dimension 1212
Newform subspaces 33
Sturm bound 144144
Trace bound 2222

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 378=2337 378 = 2 \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 378.d (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 144144
Trace bound: 2222
Distinguishing TpT_p: 55, 1313

Dimensions

The following table gives the dimensions of various subspaces of M2(378,[χ])M_{2}(378, [\chi]).

Total New Old
Modular forms 84 12 72
Cusp forms 60 12 48
Eisenstein series 24 0 24

Trace form

12q12q4+6q7+12q16+12q256q28+12q3760q43+30q4936q5812q6412q6718q70+24q79+72q8536q91+O(q100) 12 q - 12 q^{4} + 6 q^{7} + 12 q^{16} + 12 q^{25} - 6 q^{28} + 12 q^{37} - 60 q^{43} + 30 q^{49} - 36 q^{58} - 12 q^{64} - 12 q^{67} - 18 q^{70} + 24 q^{79} + 72 q^{85} - 36 q^{91}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(378,[χ])S_{2}^{\mathrm{new}}(378, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
378.2.d.a 378.d 21.c 44 3.0183.018 Q(ζ12)\Q(\zeta_{12}) None 378.2.d.a 00 00 00 10-10 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qζ123q2q4+(2ζ12+ζ123)q5+q-\zeta_{12}^{3}q^{2}-q^{4}+(-2\zeta_{12}+\zeta_{12}^{3})q^{5}+\cdots
378.2.d.b 378.d 21.c 44 3.0183.018 Q(ζ12)\Q(\zeta_{12}) None 378.2.d.b 00 00 00 88 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q2q4β3q5+(β2+2)q7+q-\beta_1 q^{2}-q^{4}-\beta_{3} q^{5}+(-\beta_{2}+2)q^{7}+\cdots
378.2.d.c 378.d 21.c 44 3.0183.018 Q(ζ12)\Q(\zeta_{12}) None 378.2.d.c 00 00 00 88 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2q42β3q5+(β2+2)q7+q+\beta_1 q^{2}-q^{4}-2\beta_{3} q^{5}+(-\beta_{2}+2)q^{7}+\cdots

Decomposition of S2old(378,[χ])S_{2}^{\mathrm{old}}(378, [\chi]) into lower level spaces

S2old(378,[χ]) S_{2}^{\mathrm{old}}(378, [\chi]) \simeq S2new(42,[χ])S_{2}^{\mathrm{new}}(42, [\chi])3^{\oplus 3}\oplusS2new(63,[χ])S_{2}^{\mathrm{new}}(63, [\chi])4^{\oplus 4}\oplusS2new(189,[χ])S_{2}^{\mathrm{new}}(189, [\chi])2^{\oplus 2}