Defining parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(63, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 4 | 8 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(63, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
63.2.c.a | $4$ | $0.503$ | \(\Q(\sqrt{-2}, \sqrt{7})\) | \(\Q(\sqrt{-7}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-2+\beta _{2})q^{4}-\beta _{2}q^{7}+(-2\beta _{1}+\cdots)q^{8}+\cdots\) |