Properties

Label 63.2.c
Level $63$
Weight $2$
Character orbit 63.c
Rep. character $\chi_{63}(62,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(63, [\chi])\).

Total New Old
Modular forms 12 4 8
Cusp forms 4 4 0
Eisenstein series 8 0 8

Trace form

\( 4 q - 8 q^{4} + 12 q^{16} + 20 q^{22} - 20 q^{25} - 28 q^{28} + 44 q^{46} + 28 q^{49} - 52 q^{58} - 24 q^{64} - 16 q^{67} + 32 q^{79} + 28 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.2.c.a 63.c 21.c $4$ $0.503$ \(\Q(\sqrt{-2}, \sqrt{7})\) \(\Q(\sqrt{-7}) \) 63.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{1}q^{2}+(-2+\beta _{2})q^{4}-\beta _{2}q^{7}+(-2\beta _{1}+\cdots)q^{8}+\cdots\)