Defining parameters
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(189, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 30 | 10 | 20 |
Cusp forms | 18 | 10 | 8 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(189, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
189.2.c.a | $2$ | $1.509$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(1\) | \(q+2 q^{4}+\beta q^{7}+(-2\beta+1)q^{13}+\cdots\) |
189.2.c.b | $4$ | $1.509$ | \(\Q(\sqrt{-3}, \sqrt{-5})\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q-\beta _{1}q^{2}-3q^{4}-\beta _{3}q^{5}+(-2+\beta _{2}+\cdots)q^{7}+\cdots\) |
189.2.c.c | $4$ | $1.509$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q-\beta _{1}q^{2}-\beta _{2}q^{5}+(1-\beta _{3})q^{7}-2\beta _{1}q^{8}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(189, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(189, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)