Properties

Label 3751.2.a.p.1.12
Level $3751$
Weight $2$
Character 3751.1
Self dual yes
Analytic conductor $29.952$
Analytic rank $1$
Dimension $30$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3751,2,Mod(1,3751)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3751, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3751.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3751.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,-9,-1,29,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9518857982\)
Analytic rank: \(1\)
Dimension: \(30\)
Twist minimal: no (minimal twist has level 341)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 3751.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.18669 q^{2} -1.13252 q^{3} -0.591757 q^{4} +1.29761 q^{5} +1.34395 q^{6} +3.67025 q^{7} +3.07562 q^{8} -1.71740 q^{9} -1.53987 q^{10} +0.670175 q^{12} +6.11622 q^{13} -4.35547 q^{14} -1.46957 q^{15} -2.46631 q^{16} -2.44407 q^{17} +2.03803 q^{18} +3.43054 q^{19} -0.767870 q^{20} -4.15663 q^{21} -6.88465 q^{23} -3.48320 q^{24} -3.31620 q^{25} -7.25808 q^{26} +5.34254 q^{27} -2.17190 q^{28} -10.1661 q^{29} +1.74393 q^{30} +1.00000 q^{31} -3.22449 q^{32} +2.90037 q^{34} +4.76256 q^{35} +1.01628 q^{36} -0.348078 q^{37} -4.07100 q^{38} -6.92673 q^{39} +3.99096 q^{40} -7.25096 q^{41} +4.93264 q^{42} -7.12769 q^{43} -2.22852 q^{45} +8.16997 q^{46} -5.47399 q^{47} +2.79314 q^{48} +6.47074 q^{49} +3.93532 q^{50} +2.76796 q^{51} -3.61931 q^{52} +4.42926 q^{53} -6.33997 q^{54} +11.2883 q^{56} -3.88515 q^{57} +12.0640 q^{58} +0.570768 q^{59} +0.869627 q^{60} -7.17115 q^{61} -1.18669 q^{62} -6.30330 q^{63} +8.75910 q^{64} +7.93647 q^{65} -5.96971 q^{67} +1.44630 q^{68} +7.79699 q^{69} -5.65170 q^{70} -11.8183 q^{71} -5.28208 q^{72} +10.3057 q^{73} +0.413062 q^{74} +3.75566 q^{75} -2.03004 q^{76} +8.21991 q^{78} +7.80045 q^{79} -3.20031 q^{80} -0.898323 q^{81} +8.60468 q^{82} -14.2120 q^{83} +2.45971 q^{84} -3.17146 q^{85} +8.45839 q^{86} +11.5133 q^{87} +0.0753162 q^{89} +2.64457 q^{90} +22.4480 q^{91} +4.07403 q^{92} -1.13252 q^{93} +6.49596 q^{94} +4.45150 q^{95} +3.65179 q^{96} +15.1304 q^{97} -7.67879 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 9 q^{2} - q^{3} + 29 q^{4} - q^{5} - 11 q^{6} - 11 q^{7} - 27 q^{8} + 25 q^{9} - 8 q^{10} - 16 q^{12} - 2 q^{13} - 3 q^{14} - 11 q^{15} + 35 q^{16} - 32 q^{17} - 4 q^{18} - 17 q^{19} - 4 q^{20}+ \cdots - 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.18669 −0.839120 −0.419560 0.907728i \(-0.637816\pi\)
−0.419560 + 0.907728i \(0.637816\pi\)
\(3\) −1.13252 −0.653860 −0.326930 0.945049i \(-0.606014\pi\)
−0.326930 + 0.945049i \(0.606014\pi\)
\(4\) −0.591757 −0.295878
\(5\) 1.29761 0.580310 0.290155 0.956980i \(-0.406293\pi\)
0.290155 + 0.956980i \(0.406293\pi\)
\(6\) 1.34395 0.548667
\(7\) 3.67025 1.38722 0.693612 0.720349i \(-0.256018\pi\)
0.693612 + 0.720349i \(0.256018\pi\)
\(8\) 3.07562 1.08740
\(9\) −1.71740 −0.572467
\(10\) −1.53987 −0.486949
\(11\) 0 0
\(12\) 0.670175 0.193463
\(13\) 6.11622 1.69633 0.848167 0.529729i \(-0.177707\pi\)
0.848167 + 0.529729i \(0.177707\pi\)
\(14\) −4.35547 −1.16405
\(15\) −1.46957 −0.379441
\(16\) −2.46631 −0.616578
\(17\) −2.44407 −0.592775 −0.296387 0.955068i \(-0.595782\pi\)
−0.296387 + 0.955068i \(0.595782\pi\)
\(18\) 2.03803 0.480369
\(19\) 3.43054 0.787019 0.393510 0.919321i \(-0.371261\pi\)
0.393510 + 0.919321i \(0.371261\pi\)
\(20\) −0.767870 −0.171701
\(21\) −4.15663 −0.907050
\(22\) 0 0
\(23\) −6.88465 −1.43555 −0.717774 0.696276i \(-0.754839\pi\)
−0.717774 + 0.696276i \(0.754839\pi\)
\(24\) −3.48320 −0.711005
\(25\) −3.31620 −0.663241
\(26\) −7.25808 −1.42343
\(27\) 5.34254 1.02817
\(28\) −2.17190 −0.410450
\(29\) −10.1661 −1.88779 −0.943897 0.330240i \(-0.892870\pi\)
−0.943897 + 0.330240i \(0.892870\pi\)
\(30\) 1.74393 0.318396
\(31\) 1.00000 0.179605
\(32\) −3.22449 −0.570014
\(33\) 0 0
\(34\) 2.90037 0.497409
\(35\) 4.76256 0.805020
\(36\) 1.01628 0.169381
\(37\) −0.348078 −0.0572236 −0.0286118 0.999591i \(-0.509109\pi\)
−0.0286118 + 0.999591i \(0.509109\pi\)
\(38\) −4.07100 −0.660403
\(39\) −6.92673 −1.10916
\(40\) 3.99096 0.631027
\(41\) −7.25096 −1.13241 −0.566205 0.824264i \(-0.691589\pi\)
−0.566205 + 0.824264i \(0.691589\pi\)
\(42\) 4.93264 0.761124
\(43\) −7.12769 −1.08696 −0.543482 0.839421i \(-0.682894\pi\)
−0.543482 + 0.839421i \(0.682894\pi\)
\(44\) 0 0
\(45\) −2.22852 −0.332208
\(46\) 8.16997 1.20460
\(47\) −5.47399 −0.798464 −0.399232 0.916850i \(-0.630723\pi\)
−0.399232 + 0.916850i \(0.630723\pi\)
\(48\) 2.79314 0.403155
\(49\) 6.47074 0.924391
\(50\) 3.93532 0.556538
\(51\) 2.76796 0.387592
\(52\) −3.61931 −0.501908
\(53\) 4.42926 0.608405 0.304203 0.952607i \(-0.401610\pi\)
0.304203 + 0.952607i \(0.401610\pi\)
\(54\) −6.33997 −0.862760
\(55\) 0 0
\(56\) 11.2883 1.50846
\(57\) −3.88515 −0.514600
\(58\) 12.0640 1.58408
\(59\) 0.570768 0.0743077 0.0371538 0.999310i \(-0.488171\pi\)
0.0371538 + 0.999310i \(0.488171\pi\)
\(60\) 0.869627 0.112268
\(61\) −7.17115 −0.918172 −0.459086 0.888392i \(-0.651823\pi\)
−0.459086 + 0.888392i \(0.651823\pi\)
\(62\) −1.18669 −0.150710
\(63\) −6.30330 −0.794141
\(64\) 8.75910 1.09489
\(65\) 7.93647 0.984398
\(66\) 0 0
\(67\) −5.96971 −0.729316 −0.364658 0.931141i \(-0.618814\pi\)
−0.364658 + 0.931141i \(0.618814\pi\)
\(68\) 1.44630 0.175389
\(69\) 7.79699 0.938647
\(70\) −5.65170 −0.675508
\(71\) −11.8183 −1.40257 −0.701287 0.712879i \(-0.747391\pi\)
−0.701287 + 0.712879i \(0.747391\pi\)
\(72\) −5.28208 −0.622499
\(73\) 10.3057 1.20619 0.603097 0.797668i \(-0.293933\pi\)
0.603097 + 0.797668i \(0.293933\pi\)
\(74\) 0.413062 0.0480175
\(75\) 3.75566 0.433666
\(76\) −2.03004 −0.232862
\(77\) 0 0
\(78\) 8.21991 0.930721
\(79\) 7.80045 0.877620 0.438810 0.898580i \(-0.355400\pi\)
0.438810 + 0.898580i \(0.355400\pi\)
\(80\) −3.20031 −0.357806
\(81\) −0.898323 −0.0998137
\(82\) 8.60468 0.950227
\(83\) −14.2120 −1.55997 −0.779983 0.625800i \(-0.784773\pi\)
−0.779983 + 0.625800i \(0.784773\pi\)
\(84\) 2.45971 0.268376
\(85\) −3.17146 −0.343993
\(86\) 8.45839 0.912092
\(87\) 11.5133 1.23435
\(88\) 0 0
\(89\) 0.0753162 0.00798350 0.00399175 0.999992i \(-0.498729\pi\)
0.00399175 + 0.999992i \(0.498729\pi\)
\(90\) 2.64457 0.278763
\(91\) 22.4480 2.35319
\(92\) 4.07403 0.424748
\(93\) −1.13252 −0.117437
\(94\) 6.49596 0.670007
\(95\) 4.45150 0.456715
\(96\) 3.65179 0.372710
\(97\) 15.1304 1.53626 0.768132 0.640291i \(-0.221186\pi\)
0.768132 + 0.640291i \(0.221186\pi\)
\(98\) −7.67879 −0.775675
\(99\) 0 0
\(100\) 1.96239 0.196239
\(101\) 5.75155 0.572301 0.286150 0.958185i \(-0.407624\pi\)
0.286150 + 0.958185i \(0.407624\pi\)
\(102\) −3.28472 −0.325236
\(103\) −9.89872 −0.975350 −0.487675 0.873025i \(-0.662155\pi\)
−0.487675 + 0.873025i \(0.662155\pi\)
\(104\) 18.8112 1.84459
\(105\) −5.39369 −0.526370
\(106\) −5.25618 −0.510525
\(107\) −12.5814 −1.21629 −0.608147 0.793824i \(-0.708087\pi\)
−0.608147 + 0.793824i \(0.708087\pi\)
\(108\) −3.16149 −0.304214
\(109\) −2.59825 −0.248867 −0.124433 0.992228i \(-0.539711\pi\)
−0.124433 + 0.992228i \(0.539711\pi\)
\(110\) 0 0
\(111\) 0.394204 0.0374162
\(112\) −9.05198 −0.855332
\(113\) −14.8808 −1.39987 −0.699936 0.714206i \(-0.746788\pi\)
−0.699936 + 0.714206i \(0.746788\pi\)
\(114\) 4.61048 0.431811
\(115\) −8.93360 −0.833062
\(116\) 6.01585 0.558557
\(117\) −10.5040 −0.971096
\(118\) −0.677327 −0.0623530
\(119\) −8.97036 −0.822312
\(120\) −4.51984 −0.412603
\(121\) 0 0
\(122\) 8.50997 0.770456
\(123\) 8.21185 0.740437
\(124\) −0.591757 −0.0531413
\(125\) −10.7912 −0.965195
\(126\) 7.48009 0.666379
\(127\) −1.28268 −0.113819 −0.0569097 0.998379i \(-0.518125\pi\)
−0.0569097 + 0.998379i \(0.518125\pi\)
\(128\) −3.94540 −0.348728
\(129\) 8.07224 0.710721
\(130\) −9.41817 −0.826028
\(131\) 3.00127 0.262222 0.131111 0.991368i \(-0.458146\pi\)
0.131111 + 0.991368i \(0.458146\pi\)
\(132\) 0 0
\(133\) 12.5909 1.09177
\(134\) 7.08422 0.611984
\(135\) 6.93255 0.596659
\(136\) −7.51705 −0.644582
\(137\) 3.58114 0.305958 0.152979 0.988229i \(-0.451113\pi\)
0.152979 + 0.988229i \(0.451113\pi\)
\(138\) −9.25264 −0.787637
\(139\) −21.3030 −1.80690 −0.903449 0.428695i \(-0.858973\pi\)
−0.903449 + 0.428695i \(0.858973\pi\)
\(140\) −2.81828 −0.238188
\(141\) 6.19940 0.522084
\(142\) 14.0247 1.17693
\(143\) 0 0
\(144\) 4.23565 0.352971
\(145\) −13.1916 −1.09550
\(146\) −12.2297 −1.01214
\(147\) −7.32823 −0.604422
\(148\) 0.205977 0.0169312
\(149\) 11.0757 0.907353 0.453676 0.891167i \(-0.350112\pi\)
0.453676 + 0.891167i \(0.350112\pi\)
\(150\) −4.45682 −0.363898
\(151\) 21.2495 1.72926 0.864631 0.502407i \(-0.167552\pi\)
0.864631 + 0.502407i \(0.167552\pi\)
\(152\) 10.5510 0.855802
\(153\) 4.19746 0.339344
\(154\) 0 0
\(155\) 1.29761 0.104227
\(156\) 4.09894 0.328178
\(157\) 0.627936 0.0501147 0.0250574 0.999686i \(-0.492023\pi\)
0.0250574 + 0.999686i \(0.492023\pi\)
\(158\) −9.25676 −0.736428
\(159\) −5.01622 −0.397812
\(160\) −4.18413 −0.330785
\(161\) −25.2684 −1.99143
\(162\) 1.06604 0.0837556
\(163\) −4.57143 −0.358062 −0.179031 0.983843i \(-0.557296\pi\)
−0.179031 + 0.983843i \(0.557296\pi\)
\(164\) 4.29081 0.335056
\(165\) 0 0
\(166\) 16.8653 1.30900
\(167\) 16.0662 1.24324 0.621619 0.783320i \(-0.286475\pi\)
0.621619 + 0.783320i \(0.286475\pi\)
\(168\) −12.7842 −0.986324
\(169\) 24.4081 1.87755
\(170\) 3.76355 0.288651
\(171\) −5.89161 −0.450543
\(172\) 4.21786 0.321609
\(173\) 9.63625 0.732630 0.366315 0.930491i \(-0.380619\pi\)
0.366315 + 0.930491i \(0.380619\pi\)
\(174\) −13.6627 −1.03577
\(175\) −12.1713 −0.920064
\(176\) 0 0
\(177\) −0.646405 −0.0485868
\(178\) −0.0893773 −0.00669911
\(179\) 13.9372 1.04172 0.520858 0.853643i \(-0.325612\pi\)
0.520858 + 0.853643i \(0.325612\pi\)
\(180\) 1.31874 0.0982932
\(181\) −1.02584 −0.0762499 −0.0381250 0.999273i \(-0.512138\pi\)
−0.0381250 + 0.999273i \(0.512138\pi\)
\(182\) −26.6390 −1.97461
\(183\) 8.12146 0.600356
\(184\) −21.1746 −1.56101
\(185\) −0.451670 −0.0332074
\(186\) 1.34395 0.0985434
\(187\) 0 0
\(188\) 3.23927 0.236248
\(189\) 19.6085 1.42631
\(190\) −5.28258 −0.383238
\(191\) 14.3642 1.03936 0.519680 0.854361i \(-0.326051\pi\)
0.519680 + 0.854361i \(0.326051\pi\)
\(192\) −9.91985 −0.715903
\(193\) −16.1079 −1.15947 −0.579736 0.814804i \(-0.696844\pi\)
−0.579736 + 0.814804i \(0.696844\pi\)
\(194\) −17.9552 −1.28911
\(195\) −8.98820 −0.643659
\(196\) −3.82910 −0.273507
\(197\) −14.7182 −1.04863 −0.524314 0.851525i \(-0.675678\pi\)
−0.524314 + 0.851525i \(0.675678\pi\)
\(198\) 0 0
\(199\) 7.58154 0.537441 0.268720 0.963218i \(-0.413399\pi\)
0.268720 + 0.963218i \(0.413399\pi\)
\(200\) −10.1994 −0.721206
\(201\) 6.76081 0.476871
\(202\) −6.82533 −0.480229
\(203\) −37.3121 −2.61879
\(204\) −1.63796 −0.114680
\(205\) −9.40893 −0.657148
\(206\) 11.7468 0.818435
\(207\) 11.8237 0.821804
\(208\) −15.0845 −1.04592
\(209\) 0 0
\(210\) 6.40066 0.441687
\(211\) −18.7948 −1.29388 −0.646942 0.762539i \(-0.723953\pi\)
−0.646942 + 0.762539i \(0.723953\pi\)
\(212\) −2.62104 −0.180014
\(213\) 13.3844 0.917087
\(214\) 14.9303 1.02062
\(215\) −9.24898 −0.630775
\(216\) 16.4317 1.11803
\(217\) 3.67025 0.249153
\(218\) 3.08332 0.208829
\(219\) −11.6714 −0.788681
\(220\) 0 0
\(221\) −14.9485 −1.00554
\(222\) −0.467800 −0.0313967
\(223\) −18.5306 −1.24090 −0.620449 0.784246i \(-0.713050\pi\)
−0.620449 + 0.784246i \(0.713050\pi\)
\(224\) −11.8347 −0.790738
\(225\) 5.69526 0.379684
\(226\) 17.6590 1.17466
\(227\) 15.5681 1.03329 0.516646 0.856199i \(-0.327180\pi\)
0.516646 + 0.856199i \(0.327180\pi\)
\(228\) 2.29906 0.152259
\(229\) 3.53114 0.233344 0.116672 0.993170i \(-0.462777\pi\)
0.116672 + 0.993170i \(0.462777\pi\)
\(230\) 10.6014 0.699039
\(231\) 0 0
\(232\) −31.2670 −2.05278
\(233\) −5.69038 −0.372789 −0.186395 0.982475i \(-0.559680\pi\)
−0.186395 + 0.982475i \(0.559680\pi\)
\(234\) 12.4650 0.814865
\(235\) −7.10312 −0.463356
\(236\) −0.337756 −0.0219860
\(237\) −8.83416 −0.573840
\(238\) 10.6451 0.690018
\(239\) −8.94256 −0.578446 −0.289223 0.957262i \(-0.593397\pi\)
−0.289223 + 0.957262i \(0.593397\pi\)
\(240\) 3.62441 0.233955
\(241\) −22.0465 −1.42014 −0.710070 0.704131i \(-0.751337\pi\)
−0.710070 + 0.704131i \(0.751337\pi\)
\(242\) 0 0
\(243\) −15.0103 −0.962909
\(244\) 4.24358 0.271667
\(245\) 8.39651 0.536433
\(246\) −9.74495 −0.621316
\(247\) 20.9819 1.33505
\(248\) 3.07562 0.195302
\(249\) 16.0953 1.02000
\(250\) 12.8059 0.809914
\(251\) 5.12195 0.323295 0.161647 0.986849i \(-0.448319\pi\)
0.161647 + 0.986849i \(0.448319\pi\)
\(252\) 3.73002 0.234969
\(253\) 0 0
\(254\) 1.52215 0.0955080
\(255\) 3.59173 0.224923
\(256\) −12.8362 −0.802264
\(257\) −18.4105 −1.14842 −0.574209 0.818709i \(-0.694690\pi\)
−0.574209 + 0.818709i \(0.694690\pi\)
\(258\) −9.57929 −0.596380
\(259\) −1.27753 −0.0793820
\(260\) −4.69646 −0.291262
\(261\) 17.4593 1.08070
\(262\) −3.56159 −0.220036
\(263\) 14.1228 0.870852 0.435426 0.900225i \(-0.356598\pi\)
0.435426 + 0.900225i \(0.356598\pi\)
\(264\) 0 0
\(265\) 5.74746 0.353064
\(266\) −14.9416 −0.916127
\(267\) −0.0852970 −0.00522009
\(268\) 3.53262 0.215789
\(269\) 9.00512 0.549052 0.274526 0.961580i \(-0.411479\pi\)
0.274526 + 0.961580i \(0.411479\pi\)
\(270\) −8.22682 −0.500668
\(271\) 0.706167 0.0428966 0.0214483 0.999770i \(-0.493172\pi\)
0.0214483 + 0.999770i \(0.493172\pi\)
\(272\) 6.02784 0.365492
\(273\) −25.4228 −1.53866
\(274\) −4.24972 −0.256735
\(275\) 0 0
\(276\) −4.61392 −0.277725
\(277\) −18.1276 −1.08918 −0.544591 0.838702i \(-0.683315\pi\)
−0.544591 + 0.838702i \(0.683315\pi\)
\(278\) 25.2802 1.51620
\(279\) −1.71740 −0.102818
\(280\) 14.6478 0.875376
\(281\) 18.8161 1.12247 0.561237 0.827655i \(-0.310326\pi\)
0.561237 + 0.827655i \(0.310326\pi\)
\(282\) −7.35679 −0.438091
\(283\) 7.36357 0.437719 0.218859 0.975756i \(-0.429766\pi\)
0.218859 + 0.975756i \(0.429766\pi\)
\(284\) 6.99356 0.414991
\(285\) −5.04141 −0.298627
\(286\) 0 0
\(287\) −26.6129 −1.57091
\(288\) 5.53774 0.326315
\(289\) −11.0265 −0.648618
\(290\) 15.6544 0.919260
\(291\) −17.1355 −1.00450
\(292\) −6.09848 −0.356886
\(293\) −27.1689 −1.58722 −0.793611 0.608425i \(-0.791802\pi\)
−0.793611 + 0.608425i \(0.791802\pi\)
\(294\) 8.69637 0.507183
\(295\) 0.740635 0.0431215
\(296\) −1.07056 −0.0622248
\(297\) 0 0
\(298\) −13.1434 −0.761377
\(299\) −42.1080 −2.43517
\(300\) −2.22244 −0.128313
\(301\) −26.1604 −1.50786
\(302\) −25.2167 −1.45106
\(303\) −6.51374 −0.374204
\(304\) −8.46077 −0.485258
\(305\) −9.30537 −0.532824
\(306\) −4.98110 −0.284750
\(307\) −30.8870 −1.76282 −0.881408 0.472356i \(-0.843404\pi\)
−0.881408 + 0.472356i \(0.843404\pi\)
\(308\) 0 0
\(309\) 11.2105 0.637742
\(310\) −1.53987 −0.0874586
\(311\) 7.95778 0.451244 0.225622 0.974215i \(-0.427559\pi\)
0.225622 + 0.974215i \(0.427559\pi\)
\(312\) −21.3040 −1.20610
\(313\) −23.8830 −1.34995 −0.674975 0.737841i \(-0.735846\pi\)
−0.674975 + 0.737841i \(0.735846\pi\)
\(314\) −0.745168 −0.0420523
\(315\) −8.17923 −0.460847
\(316\) −4.61597 −0.259669
\(317\) 0.507853 0.0285239 0.0142619 0.999898i \(-0.495460\pi\)
0.0142619 + 0.999898i \(0.495460\pi\)
\(318\) 5.95272 0.333812
\(319\) 0 0
\(320\) 11.3659 0.635374
\(321\) 14.2487 0.795286
\(322\) 29.9858 1.67105
\(323\) −8.38448 −0.466525
\(324\) 0.531589 0.0295327
\(325\) −20.2826 −1.12508
\(326\) 5.42489 0.300457
\(327\) 2.94256 0.162724
\(328\) −22.3012 −1.23138
\(329\) −20.0909 −1.10765
\(330\) 0 0
\(331\) 21.8183 1.19924 0.599621 0.800284i \(-0.295318\pi\)
0.599621 + 0.800284i \(0.295318\pi\)
\(332\) 8.41003 0.461560
\(333\) 0.597789 0.0327587
\(334\) −19.0656 −1.04322
\(335\) −7.74637 −0.423229
\(336\) 10.2515 0.559267
\(337\) 12.6619 0.689740 0.344870 0.938651i \(-0.387923\pi\)
0.344870 + 0.938651i \(0.387923\pi\)
\(338\) −28.9650 −1.57549
\(339\) 16.8528 0.915319
\(340\) 1.87673 0.101780
\(341\) 0 0
\(342\) 6.99154 0.378059
\(343\) −1.94252 −0.104886
\(344\) −21.9221 −1.18196
\(345\) 10.1175 0.544706
\(346\) −11.4353 −0.614765
\(347\) 21.9551 1.17861 0.589306 0.807910i \(-0.299401\pi\)
0.589306 + 0.807910i \(0.299401\pi\)
\(348\) −6.81306 −0.365218
\(349\) −13.3765 −0.716027 −0.358014 0.933716i \(-0.616546\pi\)
−0.358014 + 0.933716i \(0.616546\pi\)
\(350\) 14.4436 0.772044
\(351\) 32.6762 1.74412
\(352\) 0 0
\(353\) 2.81075 0.149601 0.0748005 0.997199i \(-0.476168\pi\)
0.0748005 + 0.997199i \(0.476168\pi\)
\(354\) 0.767085 0.0407701
\(355\) −15.3356 −0.813927
\(356\) −0.0445689 −0.00236214
\(357\) 10.1591 0.537677
\(358\) −16.5392 −0.874125
\(359\) −13.9707 −0.737345 −0.368673 0.929559i \(-0.620188\pi\)
−0.368673 + 0.929559i \(0.620188\pi\)
\(360\) −6.85409 −0.361242
\(361\) −7.23142 −0.380601
\(362\) 1.21736 0.0639828
\(363\) 0 0
\(364\) −13.2838 −0.696259
\(365\) 13.3728 0.699965
\(366\) −9.63769 −0.503770
\(367\) 26.1045 1.36264 0.681322 0.731984i \(-0.261406\pi\)
0.681322 + 0.731984i \(0.261406\pi\)
\(368\) 16.9797 0.885127
\(369\) 12.4528 0.648268
\(370\) 0.535994 0.0278650
\(371\) 16.2565 0.843995
\(372\) 0.670175 0.0347470
\(373\) −23.8199 −1.23335 −0.616675 0.787218i \(-0.711521\pi\)
−0.616675 + 0.787218i \(0.711521\pi\)
\(374\) 0 0
\(375\) 12.2212 0.631102
\(376\) −16.8359 −0.868247
\(377\) −62.1780 −3.20233
\(378\) −23.2693 −1.19684
\(379\) −20.0732 −1.03109 −0.515546 0.856862i \(-0.672411\pi\)
−0.515546 + 0.856862i \(0.672411\pi\)
\(380\) −2.63421 −0.135132
\(381\) 1.45266 0.0744219
\(382\) −17.0460 −0.872147
\(383\) −12.1606 −0.621379 −0.310690 0.950511i \(-0.600560\pi\)
−0.310690 + 0.950511i \(0.600560\pi\)
\(384\) 4.46824 0.228019
\(385\) 0 0
\(386\) 19.1152 0.972936
\(387\) 12.2411 0.622251
\(388\) −8.95354 −0.454547
\(389\) 19.6085 0.994188 0.497094 0.867697i \(-0.334400\pi\)
0.497094 + 0.867697i \(0.334400\pi\)
\(390\) 10.6662 0.540107
\(391\) 16.8266 0.850957
\(392\) 19.9016 1.00518
\(393\) −3.39900 −0.171457
\(394\) 17.4660 0.879924
\(395\) 10.1220 0.509291
\(396\) 0 0
\(397\) −5.68717 −0.285431 −0.142715 0.989764i \(-0.545583\pi\)
−0.142715 + 0.989764i \(0.545583\pi\)
\(398\) −8.99696 −0.450977
\(399\) −14.2595 −0.713866
\(400\) 8.17879 0.408939
\(401\) −24.4360 −1.22027 −0.610137 0.792296i \(-0.708886\pi\)
−0.610137 + 0.792296i \(0.708886\pi\)
\(402\) −8.02301 −0.400152
\(403\) 6.11622 0.304670
\(404\) −3.40352 −0.169331
\(405\) −1.16567 −0.0579228
\(406\) 44.2780 2.19748
\(407\) 0 0
\(408\) 8.51319 0.421466
\(409\) −12.5151 −0.618832 −0.309416 0.950927i \(-0.600134\pi\)
−0.309416 + 0.950927i \(0.600134\pi\)
\(410\) 11.1655 0.551426
\(411\) −4.05571 −0.200054
\(412\) 5.85763 0.288585
\(413\) 2.09486 0.103081
\(414\) −14.0311 −0.689592
\(415\) −18.4416 −0.905264
\(416\) −19.7217 −0.966934
\(417\) 24.1261 1.18146
\(418\) 0 0
\(419\) −5.20715 −0.254386 −0.127193 0.991878i \(-0.540597\pi\)
−0.127193 + 0.991878i \(0.540597\pi\)
\(420\) 3.19175 0.155741
\(421\) −7.82052 −0.381149 −0.190574 0.981673i \(-0.561035\pi\)
−0.190574 + 0.981673i \(0.561035\pi\)
\(422\) 22.3036 1.08572
\(423\) 9.40105 0.457095
\(424\) 13.6227 0.661578
\(425\) 8.10505 0.393152
\(426\) −15.8832 −0.769545
\(427\) −26.3199 −1.27371
\(428\) 7.44515 0.359875
\(429\) 0 0
\(430\) 10.9757 0.529296
\(431\) −3.13037 −0.150785 −0.0753924 0.997154i \(-0.524021\pi\)
−0.0753924 + 0.997154i \(0.524021\pi\)
\(432\) −13.1764 −0.633949
\(433\) 18.7542 0.901268 0.450634 0.892709i \(-0.351198\pi\)
0.450634 + 0.892709i \(0.351198\pi\)
\(434\) −4.35547 −0.209069
\(435\) 14.9398 0.716307
\(436\) 1.53753 0.0736343
\(437\) −23.6180 −1.12980
\(438\) 13.8504 0.661798
\(439\) 29.6733 1.41623 0.708115 0.706097i \(-0.249546\pi\)
0.708115 + 0.706097i \(0.249546\pi\)
\(440\) 0 0
\(441\) −11.1129 −0.529184
\(442\) 17.7393 0.843771
\(443\) 8.56785 0.407071 0.203536 0.979068i \(-0.434757\pi\)
0.203536 + 0.979068i \(0.434757\pi\)
\(444\) −0.233273 −0.0110707
\(445\) 0.0977312 0.00463290
\(446\) 21.9901 1.04126
\(447\) −12.5434 −0.593281
\(448\) 32.1481 1.51886
\(449\) 27.6683 1.30575 0.652874 0.757466i \(-0.273563\pi\)
0.652874 + 0.757466i \(0.273563\pi\)
\(450\) −6.75853 −0.318600
\(451\) 0 0
\(452\) 8.80583 0.414191
\(453\) −24.0655 −1.13070
\(454\) −18.4746 −0.867055
\(455\) 29.1289 1.36558
\(456\) −11.9492 −0.559575
\(457\) 11.7843 0.551247 0.275624 0.961266i \(-0.411116\pi\)
0.275624 + 0.961266i \(0.411116\pi\)
\(458\) −4.19038 −0.195804
\(459\) −13.0576 −0.609475
\(460\) 5.28652 0.246485
\(461\) −12.2033 −0.568364 −0.284182 0.958770i \(-0.591722\pi\)
−0.284182 + 0.958770i \(0.591722\pi\)
\(462\) 0 0
\(463\) 2.42916 0.112893 0.0564463 0.998406i \(-0.482023\pi\)
0.0564463 + 0.998406i \(0.482023\pi\)
\(464\) 25.0727 1.16397
\(465\) −1.46957 −0.0681496
\(466\) 6.75274 0.312815
\(467\) 28.1598 1.30308 0.651541 0.758613i \(-0.274123\pi\)
0.651541 + 0.758613i \(0.274123\pi\)
\(468\) 6.21581 0.287326
\(469\) −21.9103 −1.01173
\(470\) 8.42923 0.388811
\(471\) −0.711149 −0.0327680
\(472\) 1.75547 0.0808019
\(473\) 0 0
\(474\) 10.4834 0.481521
\(475\) −11.3764 −0.521983
\(476\) 5.30827 0.243304
\(477\) −7.60682 −0.348292
\(478\) 10.6121 0.485386
\(479\) −1.58402 −0.0723757 −0.0361879 0.999345i \(-0.511521\pi\)
−0.0361879 + 0.999345i \(0.511521\pi\)
\(480\) 4.73861 0.216287
\(481\) −2.12892 −0.0970703
\(482\) 26.1625 1.19167
\(483\) 28.6169 1.30211
\(484\) 0 0
\(485\) 19.6334 0.891509
\(486\) 17.8126 0.807996
\(487\) 19.7180 0.893509 0.446754 0.894657i \(-0.352580\pi\)
0.446754 + 0.894657i \(0.352580\pi\)
\(488\) −22.0558 −0.998418
\(489\) 5.17722 0.234122
\(490\) −9.96409 −0.450132
\(491\) 19.0122 0.858008 0.429004 0.903303i \(-0.358865\pi\)
0.429004 + 0.903303i \(0.358865\pi\)
\(492\) −4.85942 −0.219079
\(493\) 24.8466 1.11904
\(494\) −24.8991 −1.12026
\(495\) 0 0
\(496\) −2.46631 −0.110741
\(497\) −43.3761 −1.94568
\(498\) −19.1002 −0.855902
\(499\) 33.6808 1.50776 0.753880 0.657012i \(-0.228180\pi\)
0.753880 + 0.657012i \(0.228180\pi\)
\(500\) 6.38577 0.285580
\(501\) −18.1952 −0.812903
\(502\) −6.07819 −0.271283
\(503\) 9.78776 0.436415 0.218207 0.975902i \(-0.429979\pi\)
0.218207 + 0.975902i \(0.429979\pi\)
\(504\) −19.3866 −0.863546
\(505\) 7.46328 0.332112
\(506\) 0 0
\(507\) −27.6426 −1.22765
\(508\) 0.759034 0.0336767
\(509\) −29.4262 −1.30429 −0.652146 0.758093i \(-0.726131\pi\)
−0.652146 + 0.758093i \(0.726131\pi\)
\(510\) −4.26229 −0.188737
\(511\) 37.8246 1.67326
\(512\) 23.1235 1.02192
\(513\) 18.3278 0.809192
\(514\) 21.8477 0.963660
\(515\) −12.8447 −0.566005
\(516\) −4.77680 −0.210287
\(517\) 0 0
\(518\) 1.51604 0.0666110
\(519\) −10.9132 −0.479038
\(520\) 24.4096 1.07043
\(521\) 18.4233 0.807141 0.403570 0.914949i \(-0.367769\pi\)
0.403570 + 0.914949i \(0.367769\pi\)
\(522\) −20.7188 −0.906837
\(523\) 2.63526 0.115232 0.0576160 0.998339i \(-0.481650\pi\)
0.0576160 + 0.998339i \(0.481650\pi\)
\(524\) −1.77602 −0.0775859
\(525\) 13.7842 0.601593
\(526\) −16.7595 −0.730749
\(527\) −2.44407 −0.106466
\(528\) 0 0
\(529\) 24.3984 1.06080
\(530\) −6.82048 −0.296263
\(531\) −0.980238 −0.0425387
\(532\) −7.45077 −0.323032
\(533\) −44.3485 −1.92094
\(534\) 0.101221 0.00438028
\(535\) −16.3258 −0.705827
\(536\) −18.3606 −0.793056
\(537\) −15.7842 −0.681137
\(538\) −10.6863 −0.460720
\(539\) 0 0
\(540\) −4.10238 −0.176538
\(541\) −3.48839 −0.149978 −0.0749888 0.997184i \(-0.523892\pi\)
−0.0749888 + 0.997184i \(0.523892\pi\)
\(542\) −0.838005 −0.0359954
\(543\) 1.16178 0.0498567
\(544\) 7.88089 0.337890
\(545\) −3.37151 −0.144420
\(546\) 30.1691 1.29112
\(547\) 28.6797 1.22626 0.613128 0.789984i \(-0.289911\pi\)
0.613128 + 0.789984i \(0.289911\pi\)
\(548\) −2.11917 −0.0905263
\(549\) 12.3158 0.525624
\(550\) 0 0
\(551\) −34.8751 −1.48573
\(552\) 23.9806 1.02068
\(553\) 28.6296 1.21746
\(554\) 21.5119 0.913953
\(555\) 0.511524 0.0217130
\(556\) 12.6062 0.534622
\(557\) 34.9732 1.48186 0.740931 0.671581i \(-0.234384\pi\)
0.740931 + 0.671581i \(0.234384\pi\)
\(558\) 2.03803 0.0862767
\(559\) −43.5945 −1.84385
\(560\) −11.7460 −0.496357
\(561\) 0 0
\(562\) −22.3289 −0.941890
\(563\) 3.98675 0.168021 0.0840107 0.996465i \(-0.473227\pi\)
0.0840107 + 0.996465i \(0.473227\pi\)
\(564\) −3.66853 −0.154473
\(565\) −19.3095 −0.812359
\(566\) −8.73830 −0.367298
\(567\) −3.29707 −0.138464
\(568\) −36.3486 −1.52515
\(569\) −40.8723 −1.71346 −0.856728 0.515769i \(-0.827506\pi\)
−0.856728 + 0.515769i \(0.827506\pi\)
\(570\) 5.98261 0.250584
\(571\) −1.26770 −0.0530516 −0.0265258 0.999648i \(-0.508444\pi\)
−0.0265258 + 0.999648i \(0.508444\pi\)
\(572\) 0 0
\(573\) −16.2678 −0.679596
\(574\) 31.5813 1.31818
\(575\) 22.8309 0.952114
\(576\) −15.0429 −0.626788
\(577\) 30.6866 1.27750 0.638749 0.769415i \(-0.279452\pi\)
0.638749 + 0.769415i \(0.279452\pi\)
\(578\) 13.0851 0.544268
\(579\) 18.2425 0.758133
\(580\) 7.80623 0.324136
\(581\) −52.1615 −2.16402
\(582\) 20.3346 0.842897
\(583\) 0 0
\(584\) 31.6965 1.31161
\(585\) −13.6301 −0.563536
\(586\) 32.2411 1.33187
\(587\) 6.46235 0.266730 0.133365 0.991067i \(-0.457422\pi\)
0.133365 + 0.991067i \(0.457422\pi\)
\(588\) 4.33653 0.178835
\(589\) 3.43054 0.141353
\(590\) −0.878908 −0.0361841
\(591\) 16.6686 0.685656
\(592\) 0.858468 0.0352828
\(593\) −26.3139 −1.08058 −0.540290 0.841479i \(-0.681686\pi\)
−0.540290 + 0.841479i \(0.681686\pi\)
\(594\) 0 0
\(595\) −11.6400 −0.477195
\(596\) −6.55409 −0.268466
\(597\) −8.58623 −0.351411
\(598\) 49.9693 2.04340
\(599\) −22.6761 −0.926519 −0.463260 0.886223i \(-0.653320\pi\)
−0.463260 + 0.886223i \(0.653320\pi\)
\(600\) 11.5510 0.471568
\(601\) −32.8414 −1.33963 −0.669815 0.742528i \(-0.733627\pi\)
−0.669815 + 0.742528i \(0.733627\pi\)
\(602\) 31.0444 1.26528
\(603\) 10.2524 0.417510
\(604\) −12.5746 −0.511651
\(605\) 0 0
\(606\) 7.72982 0.314002
\(607\) 33.1530 1.34564 0.672819 0.739807i \(-0.265083\pi\)
0.672819 + 0.739807i \(0.265083\pi\)
\(608\) −11.0617 −0.448612
\(609\) 42.2566 1.71232
\(610\) 11.0426 0.447103
\(611\) −33.4801 −1.35446
\(612\) −2.48387 −0.100405
\(613\) −26.4390 −1.06786 −0.533931 0.845528i \(-0.679286\pi\)
−0.533931 + 0.845528i \(0.679286\pi\)
\(614\) 36.6535 1.47921
\(615\) 10.6558 0.429683
\(616\) 0 0
\(617\) −3.96590 −0.159661 −0.0798305 0.996808i \(-0.525438\pi\)
−0.0798305 + 0.996808i \(0.525438\pi\)
\(618\) −13.3034 −0.535142
\(619\) 27.9867 1.12488 0.562439 0.826838i \(-0.309863\pi\)
0.562439 + 0.826838i \(0.309863\pi\)
\(620\) −0.767870 −0.0308384
\(621\) −36.7815 −1.47599
\(622\) −9.44345 −0.378648
\(623\) 0.276429 0.0110749
\(624\) 17.0835 0.683886
\(625\) 2.57823 0.103129
\(626\) 28.3419 1.13277
\(627\) 0 0
\(628\) −0.371585 −0.0148279
\(629\) 0.850728 0.0339207
\(630\) 9.70625 0.386706
\(631\) −6.01910 −0.239617 −0.119808 0.992797i \(-0.538228\pi\)
−0.119808 + 0.992797i \(0.538228\pi\)
\(632\) 23.9913 0.954321
\(633\) 21.2854 0.846019
\(634\) −0.602666 −0.0239349
\(635\) −1.66442 −0.0660505
\(636\) 2.96838 0.117704
\(637\) 39.5764 1.56808
\(638\) 0 0
\(639\) 20.2968 0.802928
\(640\) −5.11960 −0.202370
\(641\) −15.1573 −0.598678 −0.299339 0.954147i \(-0.596766\pi\)
−0.299339 + 0.954147i \(0.596766\pi\)
\(642\) −16.9089 −0.667340
\(643\) 8.46032 0.333642 0.166821 0.985987i \(-0.446650\pi\)
0.166821 + 0.985987i \(0.446650\pi\)
\(644\) 14.9527 0.589220
\(645\) 10.4746 0.412438
\(646\) 9.94982 0.391470
\(647\) 5.71391 0.224637 0.112319 0.993672i \(-0.464172\pi\)
0.112319 + 0.993672i \(0.464172\pi\)
\(648\) −2.76290 −0.108537
\(649\) 0 0
\(650\) 24.0693 0.944075
\(651\) −4.15663 −0.162911
\(652\) 2.70517 0.105943
\(653\) −10.2965 −0.402933 −0.201466 0.979495i \(-0.564571\pi\)
−0.201466 + 0.979495i \(0.564571\pi\)
\(654\) −3.49192 −0.136545
\(655\) 3.89449 0.152170
\(656\) 17.8831 0.698219
\(657\) −17.6991 −0.690506
\(658\) 23.8418 0.929450
\(659\) −40.3482 −1.57174 −0.785872 0.618390i \(-0.787785\pi\)
−0.785872 + 0.618390i \(0.787785\pi\)
\(660\) 0 0
\(661\) 14.1287 0.549544 0.274772 0.961509i \(-0.411398\pi\)
0.274772 + 0.961509i \(0.411398\pi\)
\(662\) −25.8916 −1.00631
\(663\) 16.9294 0.657485
\(664\) −43.7107 −1.69630
\(665\) 16.3381 0.633566
\(666\) −0.709393 −0.0274884
\(667\) 69.9899 2.71002
\(668\) −9.50726 −0.367847
\(669\) 20.9862 0.811374
\(670\) 9.19257 0.355140
\(671\) 0 0
\(672\) 13.4030 0.517032
\(673\) 22.9673 0.885326 0.442663 0.896688i \(-0.354034\pi\)
0.442663 + 0.896688i \(0.354034\pi\)
\(674\) −15.0258 −0.578774
\(675\) −17.7170 −0.681926
\(676\) −14.4437 −0.555525
\(677\) −32.3905 −1.24487 −0.622434 0.782672i \(-0.713856\pi\)
−0.622434 + 0.782672i \(0.713856\pi\)
\(678\) −19.9991 −0.768062
\(679\) 55.5325 2.13114
\(680\) −9.75421 −0.374057
\(681\) −17.6312 −0.675628
\(682\) 0 0
\(683\) −28.8520 −1.10399 −0.551996 0.833847i \(-0.686134\pi\)
−0.551996 + 0.833847i \(0.686134\pi\)
\(684\) 3.48640 0.133306
\(685\) 4.64694 0.177550
\(686\) 2.30517 0.0880119
\(687\) −3.99908 −0.152574
\(688\) 17.5791 0.670197
\(689\) 27.0903 1.03206
\(690\) −12.0063 −0.457073
\(691\) −8.64368 −0.328821 −0.164411 0.986392i \(-0.552572\pi\)
−0.164411 + 0.986392i \(0.552572\pi\)
\(692\) −5.70231 −0.216769
\(693\) 0 0
\(694\) −26.0540 −0.988997
\(695\) −27.6430 −1.04856
\(696\) 35.4105 1.34223
\(697\) 17.7219 0.671264
\(698\) 15.8738 0.600833
\(699\) 6.44446 0.243752
\(700\) 7.20245 0.272227
\(701\) 40.3484 1.52394 0.761970 0.647613i \(-0.224233\pi\)
0.761970 + 0.647613i \(0.224233\pi\)
\(702\) −38.7766 −1.46353
\(703\) −1.19409 −0.0450361
\(704\) 0 0
\(705\) 8.04441 0.302970
\(706\) −3.33550 −0.125533
\(707\) 21.1096 0.793910
\(708\) 0.382515 0.0143758
\(709\) 20.0297 0.752229 0.376115 0.926573i \(-0.377260\pi\)
0.376115 + 0.926573i \(0.377260\pi\)
\(710\) 18.1986 0.682982
\(711\) −13.3965 −0.502409
\(712\) 0.231644 0.00868123
\(713\) −6.88465 −0.257832
\(714\) −12.0557 −0.451175
\(715\) 0 0
\(716\) −8.24744 −0.308221
\(717\) 10.1276 0.378223
\(718\) 16.5790 0.618721
\(719\) −35.1647 −1.31142 −0.655710 0.755013i \(-0.727631\pi\)
−0.655710 + 0.755013i \(0.727631\pi\)
\(720\) 5.49623 0.204832
\(721\) −36.3308 −1.35303
\(722\) 8.58148 0.319370
\(723\) 24.9681 0.928573
\(724\) 0.607046 0.0225607
\(725\) 33.7128 1.25206
\(726\) 0 0
\(727\) −15.1753 −0.562820 −0.281410 0.959588i \(-0.590802\pi\)
−0.281410 + 0.959588i \(0.590802\pi\)
\(728\) 69.0417 2.55886
\(729\) 19.6944 0.729421
\(730\) −15.8695 −0.587355
\(731\) 17.4206 0.644324
\(732\) −4.80593 −0.177632
\(733\) −13.7050 −0.506206 −0.253103 0.967439i \(-0.581451\pi\)
−0.253103 + 0.967439i \(0.581451\pi\)
\(734\) −30.9780 −1.14342
\(735\) −9.50920 −0.350752
\(736\) 22.1995 0.818283
\(737\) 0 0
\(738\) −14.7777 −0.543974
\(739\) 34.8712 1.28276 0.641379 0.767225i \(-0.278363\pi\)
0.641379 + 0.767225i \(0.278363\pi\)
\(740\) 0.267279 0.00982536
\(741\) −23.7624 −0.872933
\(742\) −19.2915 −0.708213
\(743\) 27.1718 0.996837 0.498419 0.866936i \(-0.333914\pi\)
0.498419 + 0.866936i \(0.333914\pi\)
\(744\) −3.48320 −0.127700
\(745\) 14.3719 0.526545
\(746\) 28.2670 1.03493
\(747\) 24.4077 0.893030
\(748\) 0 0
\(749\) −46.1771 −1.68727
\(750\) −14.5029 −0.529570
\(751\) −4.23379 −0.154493 −0.0772466 0.997012i \(-0.524613\pi\)
−0.0772466 + 0.997012i \(0.524613\pi\)
\(752\) 13.5006 0.492315
\(753\) −5.80070 −0.211389
\(754\) 73.7862 2.68714
\(755\) 27.5737 1.00351
\(756\) −11.6034 −0.422013
\(757\) −4.63065 −0.168304 −0.0841519 0.996453i \(-0.526818\pi\)
−0.0841519 + 0.996453i \(0.526818\pi\)
\(758\) 23.8208 0.865210
\(759\) 0 0
\(760\) 13.6911 0.496630
\(761\) 12.0204 0.435741 0.217870 0.975978i \(-0.430089\pi\)
0.217870 + 0.975978i \(0.430089\pi\)
\(762\) −1.72386 −0.0624489
\(763\) −9.53621 −0.345234
\(764\) −8.50014 −0.307524
\(765\) 5.44667 0.196925
\(766\) 14.4310 0.521412
\(767\) 3.49094 0.126051
\(768\) 14.5373 0.524568
\(769\) −2.92278 −0.105398 −0.0526991 0.998610i \(-0.516782\pi\)
−0.0526991 + 0.998610i \(0.516782\pi\)
\(770\) 0 0
\(771\) 20.8503 0.750904
\(772\) 9.53196 0.343063
\(773\) −14.7636 −0.531009 −0.265505 0.964110i \(-0.585539\pi\)
−0.265505 + 0.964110i \(0.585539\pi\)
\(774\) −14.5265 −0.522143
\(775\) −3.31620 −0.119122
\(776\) 46.5355 1.67053
\(777\) 1.44683 0.0519047
\(778\) −23.2692 −0.834243
\(779\) −24.8747 −0.891228
\(780\) 5.31883 0.190445
\(781\) 0 0
\(782\) −19.9680 −0.714054
\(783\) −54.3127 −1.94098
\(784\) −15.9589 −0.569959
\(785\) 0.814817 0.0290821
\(786\) 4.03357 0.143873
\(787\) 15.0364 0.535989 0.267994 0.963420i \(-0.413639\pi\)
0.267994 + 0.963420i \(0.413639\pi\)
\(788\) 8.70959 0.310266
\(789\) −15.9944 −0.569415
\(790\) −12.0117 −0.427356
\(791\) −54.6164 −1.94194
\(792\) 0 0
\(793\) −43.8603 −1.55753
\(794\) 6.74893 0.239511
\(795\) −6.50910 −0.230854
\(796\) −4.48642 −0.159017
\(797\) −23.7690 −0.841942 −0.420971 0.907074i \(-0.638311\pi\)
−0.420971 + 0.907074i \(0.638311\pi\)
\(798\) 16.9216 0.599019
\(799\) 13.3788 0.473309
\(800\) 10.6931 0.378057
\(801\) −0.129348 −0.00457029
\(802\) 28.9980 1.02396
\(803\) 0 0
\(804\) −4.00075 −0.141096
\(805\) −32.7885 −1.15564
\(806\) −7.25808 −0.255655
\(807\) −10.1985 −0.359003
\(808\) 17.6896 0.622318
\(809\) 2.70697 0.0951719 0.0475859 0.998867i \(-0.484847\pi\)
0.0475859 + 0.998867i \(0.484847\pi\)
\(810\) 1.38330 0.0486042
\(811\) −20.9352 −0.735135 −0.367567 0.929997i \(-0.619809\pi\)
−0.367567 + 0.929997i \(0.619809\pi\)
\(812\) 22.0797 0.774844
\(813\) −0.799748 −0.0280484
\(814\) 0 0
\(815\) −5.93194 −0.207787
\(816\) −6.82664 −0.238980
\(817\) −24.4518 −0.855461
\(818\) 14.8516 0.519274
\(819\) −38.5523 −1.34713
\(820\) 5.56780 0.194436
\(821\) −4.32663 −0.151000 −0.0755002 0.997146i \(-0.524055\pi\)
−0.0755002 + 0.997146i \(0.524055\pi\)
\(822\) 4.81289 0.167869
\(823\) −33.9974 −1.18507 −0.592537 0.805543i \(-0.701874\pi\)
−0.592537 + 0.805543i \(0.701874\pi\)
\(824\) −30.4447 −1.06059
\(825\) 0 0
\(826\) −2.48596 −0.0864976
\(827\) 46.2735 1.60909 0.804544 0.593893i \(-0.202410\pi\)
0.804544 + 0.593893i \(0.202410\pi\)
\(828\) −6.99676 −0.243154
\(829\) 8.83594 0.306885 0.153442 0.988158i \(-0.450964\pi\)
0.153442 + 0.988158i \(0.450964\pi\)
\(830\) 21.8846 0.759624
\(831\) 20.5298 0.712172
\(832\) 53.5726 1.85729
\(833\) −15.8150 −0.547956
\(834\) −28.6303 −0.991385
\(835\) 20.8476 0.721462
\(836\) 0 0
\(837\) 5.34254 0.184665
\(838\) 6.17929 0.213460
\(839\) −10.0551 −0.347142 −0.173571 0.984821i \(-0.555531\pi\)
−0.173571 + 0.984821i \(0.555531\pi\)
\(840\) −16.5889 −0.572373
\(841\) 74.3492 2.56377
\(842\) 9.28056 0.319829
\(843\) −21.3096 −0.733940
\(844\) 11.1219 0.382832
\(845\) 31.6722 1.08956
\(846\) −11.1562 −0.383557
\(847\) 0 0
\(848\) −10.9239 −0.375129
\(849\) −8.33937 −0.286207
\(850\) −9.61821 −0.329902
\(851\) 2.39639 0.0821473
\(852\) −7.92033 −0.271346
\(853\) 12.6313 0.432487 0.216244 0.976339i \(-0.430619\pi\)
0.216244 + 0.976339i \(0.430619\pi\)
\(854\) 31.2337 1.06880
\(855\) −7.64502 −0.261454
\(856\) −38.6958 −1.32259
\(857\) 7.29551 0.249210 0.124605 0.992206i \(-0.460234\pi\)
0.124605 + 0.992206i \(0.460234\pi\)
\(858\) 0 0
\(859\) −45.0890 −1.53842 −0.769208 0.638999i \(-0.779349\pi\)
−0.769208 + 0.638999i \(0.779349\pi\)
\(860\) 5.47314 0.186633
\(861\) 30.1395 1.02715
\(862\) 3.71480 0.126526
\(863\) 18.7496 0.638245 0.319122 0.947714i \(-0.396612\pi\)
0.319122 + 0.947714i \(0.396612\pi\)
\(864\) −17.2270 −0.586074
\(865\) 12.5041 0.425152
\(866\) −22.2555 −0.756271
\(867\) 12.4877 0.424105
\(868\) −2.17190 −0.0737189
\(869\) 0 0
\(870\) −17.7289 −0.601067
\(871\) −36.5121 −1.23716
\(872\) −7.99122 −0.270617
\(873\) −25.9851 −0.879461
\(874\) 28.0274 0.948040
\(875\) −39.6064 −1.33894
\(876\) 6.90664 0.233354
\(877\) −17.4129 −0.587993 −0.293996 0.955807i \(-0.594985\pi\)
−0.293996 + 0.955807i \(0.594985\pi\)
\(878\) −35.2131 −1.18839
\(879\) 30.7692 1.03782
\(880\) 0 0
\(881\) −24.5842 −0.828262 −0.414131 0.910217i \(-0.635915\pi\)
−0.414131 + 0.910217i \(0.635915\pi\)
\(882\) 13.1876 0.444049
\(883\) 21.0545 0.708541 0.354271 0.935143i \(-0.384729\pi\)
0.354271 + 0.935143i \(0.384729\pi\)
\(884\) 8.84586 0.297519
\(885\) −0.838783 −0.0281954
\(886\) −10.1674 −0.341581
\(887\) −33.5138 −1.12528 −0.562641 0.826701i \(-0.690215\pi\)
−0.562641 + 0.826701i \(0.690215\pi\)
\(888\) 1.21242 0.0406863
\(889\) −4.70775 −0.157893
\(890\) −0.115977 −0.00388756
\(891\) 0 0
\(892\) 10.9656 0.367155
\(893\) −18.7787 −0.628406
\(894\) 14.8852 0.497834
\(895\) 18.0851 0.604518
\(896\) −14.4806 −0.483763
\(897\) 47.6881 1.59226
\(898\) −32.8338 −1.09568
\(899\) −10.1661 −0.339058
\(900\) −3.37021 −0.112340
\(901\) −10.8254 −0.360647
\(902\) 0 0
\(903\) 29.6272 0.985930
\(904\) −45.7678 −1.52222
\(905\) −1.33114 −0.0442486
\(906\) 28.5584 0.948789
\(907\) −39.5520 −1.31330 −0.656651 0.754194i \(-0.728028\pi\)
−0.656651 + 0.754194i \(0.728028\pi\)
\(908\) −9.21253 −0.305729
\(909\) −9.87773 −0.327624
\(910\) −34.5670 −1.14589
\(911\) −0.714896 −0.0236856 −0.0118428 0.999930i \(-0.503770\pi\)
−0.0118428 + 0.999930i \(0.503770\pi\)
\(912\) 9.58198 0.317291
\(913\) 0 0
\(914\) −13.9844 −0.462562
\(915\) 10.5385 0.348392
\(916\) −2.08957 −0.0690415
\(917\) 11.0154 0.363761
\(918\) 15.4953 0.511423
\(919\) −14.6434 −0.483041 −0.241520 0.970396i \(-0.577646\pi\)
−0.241520 + 0.970396i \(0.577646\pi\)
\(920\) −27.4764 −0.905869
\(921\) 34.9801 1.15263
\(922\) 14.4816 0.476925
\(923\) −72.2833 −2.37923
\(924\) 0 0
\(925\) 1.15430 0.0379530
\(926\) −2.88267 −0.0947304
\(927\) 17.0001 0.558356
\(928\) 32.7804 1.07607
\(929\) 46.2664 1.51795 0.758976 0.651118i \(-0.225700\pi\)
0.758976 + 0.651118i \(0.225700\pi\)
\(930\) 1.74393 0.0571857
\(931\) 22.1981 0.727514
\(932\) 3.36732 0.110300
\(933\) −9.01233 −0.295050
\(934\) −33.4171 −1.09344
\(935\) 0 0
\(936\) −32.3064 −1.05597
\(937\) 10.8711 0.355142 0.177571 0.984108i \(-0.443176\pi\)
0.177571 + 0.984108i \(0.443176\pi\)
\(938\) 26.0009 0.848959
\(939\) 27.0480 0.882678
\(940\) 4.20332 0.137097
\(941\) −35.8378 −1.16828 −0.584139 0.811654i \(-0.698568\pi\)
−0.584139 + 0.811654i \(0.698568\pi\)
\(942\) 0.843917 0.0274963
\(943\) 49.9203 1.62563
\(944\) −1.40769 −0.0458165
\(945\) 25.4442 0.827700
\(946\) 0 0
\(947\) 20.0843 0.652651 0.326326 0.945257i \(-0.394189\pi\)
0.326326 + 0.945257i \(0.394189\pi\)
\(948\) 5.22767 0.169787
\(949\) 63.0320 2.04611
\(950\) 13.5003 0.438006
\(951\) −0.575153 −0.0186506
\(952\) −27.5895 −0.894179
\(953\) −12.6965 −0.411280 −0.205640 0.978628i \(-0.565928\pi\)
−0.205640 + 0.978628i \(0.565928\pi\)
\(954\) 9.02697 0.292259
\(955\) 18.6392 0.603151
\(956\) 5.29182 0.171150
\(957\) 0 0
\(958\) 1.87975 0.0607319
\(959\) 13.1437 0.424432
\(960\) −12.8721 −0.415446
\(961\) 1.00000 0.0322581
\(962\) 2.52638 0.0814536
\(963\) 21.6074 0.696289
\(964\) 13.0462 0.420189
\(965\) −20.9018 −0.672853
\(966\) −33.9595 −1.09263
\(967\) 2.29916 0.0739359 0.0369679 0.999316i \(-0.488230\pi\)
0.0369679 + 0.999316i \(0.488230\pi\)
\(968\) 0 0
\(969\) 9.49558 0.305042
\(970\) −23.2989 −0.748082
\(971\) 3.28171 0.105315 0.0526575 0.998613i \(-0.483231\pi\)
0.0526575 + 0.998613i \(0.483231\pi\)
\(972\) 8.88242 0.284904
\(973\) −78.1874 −2.50657
\(974\) −23.3993 −0.749761
\(975\) 22.9704 0.735643
\(976\) 17.6863 0.566124
\(977\) 56.5807 1.81018 0.905088 0.425224i \(-0.139805\pi\)
0.905088 + 0.425224i \(0.139805\pi\)
\(978\) −6.14378 −0.196457
\(979\) 0 0
\(980\) −4.96869 −0.158719
\(981\) 4.46223 0.142468
\(982\) −22.5616 −0.719971
\(983\) −13.2851 −0.423727 −0.211864 0.977299i \(-0.567953\pi\)
−0.211864 + 0.977299i \(0.567953\pi\)
\(984\) 25.2565 0.805149
\(985\) −19.0985 −0.608529
\(986\) −29.4854 −0.939006
\(987\) 22.7533 0.724247
\(988\) −12.4162 −0.395011
\(989\) 49.0717 1.56039
\(990\) 0 0
\(991\) 4.55607 0.144728 0.0723642 0.997378i \(-0.476946\pi\)
0.0723642 + 0.997378i \(0.476946\pi\)
\(992\) −3.22449 −0.102378
\(993\) −24.7096 −0.784135
\(994\) 51.4742 1.63266
\(995\) 9.83789 0.311882
\(996\) −9.52451 −0.301796
\(997\) −50.8238 −1.60961 −0.804804 0.593541i \(-0.797729\pi\)
−0.804804 + 0.593541i \(0.797729\pi\)
\(998\) −39.9688 −1.26519
\(999\) −1.85962 −0.0588358
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3751.2.a.p.1.12 30
11.2 odd 10 341.2.h.a.125.7 60
11.6 odd 10 341.2.h.a.311.7 yes 60
11.10 odd 2 3751.2.a.s.1.19 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
341.2.h.a.125.7 60 11.2 odd 10
341.2.h.a.311.7 yes 60 11.6 odd 10
3751.2.a.p.1.12 30 1.1 even 1 trivial
3751.2.a.s.1.19 30 11.10 odd 2