gp: [N,k,chi] = [3751,2,Mod(1,3751)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3751.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [30,-9,-1,29,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(11\)
\( -1 \)
\(31\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3751))\):
\( T_{2}^{30} + 9 T_{2}^{29} - 4 T_{2}^{28} - 258 T_{2}^{27} - 462 T_{2}^{26} + 2995 T_{2}^{25} + 9193 T_{2}^{24} + \cdots + 16 \)
T2^30 + 9*T2^29 - 4*T2^28 - 258*T2^27 - 462*T2^26 + 2995*T2^25 + 9193*T2^24 - 17033*T2^23 - 83800*T2^22 + 35985*T2^21 + 449214*T2^20 + 126308*T2^19 - 1526221*T2^18 - 1126767*T2^17 + 3344251*T2^16 + 3712132*T2^15 - 4608459*T2^14 - 7013445*T2^13 + 3615776*T2^12 + 8125137*T2^11 - 1016627*T2^10 - 5695636*T2^9 - 620337*T2^8 + 2248920*T2^7 + 571105*T2^6 - 422096*T2^5 - 140832*T2^4 + 24028*T2^3 + 6448*T2^2 - 992*T2 + 16
\( T_{3}^{30} + T_{3}^{29} - 57 T_{3}^{28} - 57 T_{3}^{27} + 1444 T_{3}^{26} + 1436 T_{3}^{25} + \cdots - 10709 \)
T3^30 + T3^29 - 57*T3^28 - 57*T3^27 + 1444*T3^26 + 1436*T3^25 - 21502*T3^24 - 21209*T3^23 + 209604*T3^22 + 205055*T3^21 - 1409164*T3^20 - 1370239*T3^19 + 6701055*T3^18 + 6501757*T3^17 - 22729010*T3^16 - 22112563*T3^15 + 54702136*T3^14 + 53612183*T3^13 - 91658152*T3^12 - 90718841*T3^11 + 103194001*T3^10 + 102744366*T3^9 - 73790430*T3^8 - 72332429*T3^7 + 31129608*T3^6 + 27766056*T3^5 - 7453231*T3^4 - 4545031*T3^3 + 1000819*T3^2 + 136053*T3 - 10709