Properties

Label 3751.2
Level 3751
Weight 2
Dimension 565977
Nonzero newspaces 56
Sturm bound 2323200
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 56 \)
Sturm bound: \(2323200\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3751))\).

Total New Old
Modular forms 585600 574125 11475
Cusp forms 576001 565977 10024
Eisenstein series 9599 8148 1451

Trace form

\( 565977 q - 1269 q^{2} - 1267 q^{3} - 1261 q^{4} - 1263 q^{5} - 1271 q^{6} - 1279 q^{7} - 1285 q^{8} - 1289 q^{9} - 1299 q^{10} - 1410 q^{11} - 2419 q^{12} - 1267 q^{13} - 1287 q^{14} - 1307 q^{15} - 1333 q^{16}+ \cdots - 1680 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3751))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3751.2.a \(\chi_{3751}(1, \cdot)\) 3751.2.a.a 2 1
3751.2.a.b 2
3751.2.a.c 3
3751.2.a.d 3
3751.2.a.e 4
3751.2.a.f 4
3751.2.a.g 4
3751.2.a.h 8
3751.2.a.i 9
3751.2.a.j 9
3751.2.a.k 11
3751.2.a.l 15
3751.2.a.m 15
3751.2.a.n 16
3751.2.a.o 16
3751.2.a.p 30
3751.2.a.q 30
3751.2.a.r 30
3751.2.a.s 30
3751.2.a.t 32
3751.2.b \(\chi_{3751}(3750, \cdot)\) n/a 280 1
3751.2.e \(\chi_{3751}(1090, \cdot)\) n/a 564 2
3751.2.f \(\chi_{3751}(686, \cdot)\) n/a 1120 4
3751.2.g \(\chi_{3751}(729, \cdot)\) n/a 1120 4
3751.2.h \(\chi_{3751}(807, \cdot)\) n/a 1080 4
3751.2.i \(\chi_{3751}(969, \cdot)\) n/a 1124 4
3751.2.j \(\chi_{3751}(977, \cdot)\) n/a 1120 4
3751.2.k \(\chi_{3751}(202, \cdot)\) n/a 1120 4
3751.2.m \(\chi_{3751}(967, \cdot)\) n/a 560 2
3751.2.p \(\chi_{3751}(457, \cdot)\) n/a 1120 4
3751.2.v \(\chi_{3751}(215, \cdot)\) n/a 1120 4
3751.2.ba \(\chi_{3751}(1425, \cdot)\) n/a 1120 4
3751.2.bb \(\chi_{3751}(959, \cdot)\) n/a 1120 4
3751.2.bc \(\chi_{3751}(1201, \cdot)\) n/a 1120 4
3751.2.bd \(\chi_{3751}(120, \cdot)\) n/a 1120 4
3751.2.bg \(\chi_{3751}(342, \cdot)\) n/a 3300 10
3751.2.bh \(\chi_{3751}(493, \cdot)\) n/a 2240 8
3751.2.bi \(\chi_{3751}(485, \cdot)\) n/a 2256 8
3751.2.bj \(\chi_{3751}(366, \cdot)\) n/a 2240 8
3751.2.bk \(\chi_{3751}(9, \cdot)\) n/a 2240 8
3751.2.bl \(\chi_{3751}(390, \cdot)\) n/a 2240 8
3751.2.bm \(\chi_{3751}(608, \cdot)\) n/a 2240 8
3751.2.bo \(\chi_{3751}(340, \cdot)\) n/a 3500 10
3751.2.bq \(\chi_{3751}(282, \cdot)\) n/a 2240 8
3751.2.by \(\chi_{3751}(241, \cdot)\) n/a 2240 8
3751.2.bz \(\chi_{3751}(602, \cdot)\) n/a 2240 8
3751.2.ca \(\chi_{3751}(239, \cdot)\) n/a 2240 8
3751.2.cb \(\chi_{3751}(161, \cdot)\) n/a 2240 8
3751.2.cg \(\chi_{3751}(354, \cdot)\) n/a 2240 8
3751.2.ci \(\chi_{3751}(56, \cdot)\) n/a 7000 20
3751.2.cj \(\chi_{3751}(97, \cdot)\) n/a 14000 40
3751.2.ck \(\chi_{3751}(78, \cdot)\) n/a 14000 40
3751.2.cl \(\chi_{3751}(125, \cdot)\) n/a 13200 40
3751.2.cm \(\chi_{3751}(47, \cdot)\) n/a 14000 40
3751.2.cn \(\chi_{3751}(4, \cdot)\) n/a 14000 40
3751.2.co \(\chi_{3751}(70, \cdot)\) n/a 14000 40
3751.2.cr \(\chi_{3751}(274, \cdot)\) n/a 7000 20
3751.2.ct \(\chi_{3751}(46, \cdot)\) n/a 14000 40
3751.2.cy \(\chi_{3751}(54, \cdot)\) n/a 14000 40
3751.2.cz \(\chi_{3751}(29, \cdot)\) n/a 14000 40
3751.2.da \(\chi_{3751}(85, \cdot)\) n/a 14000 40
3751.2.db \(\chi_{3751}(30, \cdot)\) n/a 14000 40
3751.2.dj \(\chi_{3751}(116, \cdot)\) n/a 14000 40
3751.2.dk \(\chi_{3751}(20, \cdot)\) n/a 28000 80
3751.2.dl \(\chi_{3751}(69, \cdot)\) n/a 28000 80
3751.2.dm \(\chi_{3751}(14, \cdot)\) n/a 28000 80
3751.2.dn \(\chi_{3751}(38, \cdot)\) n/a 28000 80
3751.2.do \(\chi_{3751}(5, \cdot)\) n/a 28000 80
3751.2.dp \(\chi_{3751}(45, \cdot)\) n/a 28000 80
3751.2.ds \(\chi_{3751}(6, \cdot)\) n/a 28000 80
3751.2.dt \(\chi_{3751}(73, \cdot)\) n/a 28000 80
3751.2.du \(\chi_{3751}(79, \cdot)\) n/a 28000 80
3751.2.dv \(\chi_{3751}(21, \cdot)\) n/a 28000 80
3751.2.ea \(\chi_{3751}(13, \cdot)\) n/a 28000 80
3751.2.eg \(\chi_{3751}(17, \cdot)\) n/a 28000 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3751))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3751)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(341))\)\(^{\oplus 2}\)