Properties

Label 3751.2.a.p.1.3
Level $3751$
Weight $2$
Character 3751.1
Self dual yes
Analytic conductor $29.952$
Analytic rank $1$
Dimension $30$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3751,2,Mod(1,3751)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3751, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3751.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3751.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,-9,-1,29,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9518857982\)
Analytic rank: \(1\)
Dimension: \(30\)
Twist minimal: no (minimal twist has level 341)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 3751.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.59478 q^{2} -1.09142 q^{3} +4.73286 q^{4} +3.97879 q^{5} +2.83200 q^{6} +0.943415 q^{7} -7.09117 q^{8} -1.80879 q^{9} -10.3241 q^{10} -5.16556 q^{12} -2.80038 q^{13} -2.44795 q^{14} -4.34255 q^{15} +8.93427 q^{16} -2.11107 q^{17} +4.69341 q^{18} -4.72413 q^{19} +18.8311 q^{20} -1.02967 q^{21} -7.83891 q^{23} +7.73948 q^{24} +10.8308 q^{25} +7.26637 q^{26} +5.24843 q^{27} +4.46505 q^{28} +4.01133 q^{29} +11.2680 q^{30} +1.00000 q^{31} -9.00010 q^{32} +5.47775 q^{34} +3.75365 q^{35} -8.56077 q^{36} +5.69890 q^{37} +12.2581 q^{38} +3.05641 q^{39} -28.2143 q^{40} -1.83466 q^{41} +2.67175 q^{42} +7.78390 q^{43} -7.19681 q^{45} +20.3402 q^{46} +12.9036 q^{47} -9.75109 q^{48} -6.10997 q^{49} -28.1035 q^{50} +2.30407 q^{51} -13.2538 q^{52} -3.11074 q^{53} -13.6185 q^{54} -6.68991 q^{56} +5.15603 q^{57} -10.4085 q^{58} -2.78768 q^{59} -20.5527 q^{60} -12.8934 q^{61} -2.59478 q^{62} -1.70644 q^{63} +5.48470 q^{64} -11.1422 q^{65} +2.15735 q^{67} -9.99139 q^{68} +8.55558 q^{69} -9.73989 q^{70} -1.74810 q^{71} +12.8265 q^{72} +4.23766 q^{73} -14.7874 q^{74} -11.8210 q^{75} -22.3587 q^{76} -7.93069 q^{78} +2.12274 q^{79} +35.5476 q^{80} -0.301892 q^{81} +4.76053 q^{82} +7.51015 q^{83} -4.87327 q^{84} -8.39950 q^{85} -20.1975 q^{86} -4.37806 q^{87} -10.6723 q^{89} +18.6741 q^{90} -2.64192 q^{91} -37.1005 q^{92} -1.09142 q^{93} -33.4821 q^{94} -18.7963 q^{95} +9.82293 q^{96} -0.345394 q^{97} +15.8540 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 9 q^{2} - q^{3} + 29 q^{4} - q^{5} - 11 q^{6} - 11 q^{7} - 27 q^{8} + 25 q^{9} - 8 q^{10} - 16 q^{12} - 2 q^{13} - 3 q^{14} - 11 q^{15} + 35 q^{16} - 32 q^{17} - 4 q^{18} - 17 q^{19} - 4 q^{20}+ \cdots - 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.59478 −1.83478 −0.917392 0.397985i \(-0.869710\pi\)
−0.917392 + 0.397985i \(0.869710\pi\)
\(3\) −1.09142 −0.630134 −0.315067 0.949069i \(-0.602027\pi\)
−0.315067 + 0.949069i \(0.602027\pi\)
\(4\) 4.73286 2.36643
\(5\) 3.97879 1.77937 0.889685 0.456574i \(-0.150924\pi\)
0.889685 + 0.456574i \(0.150924\pi\)
\(6\) 2.83200 1.15616
\(7\) 0.943415 0.356577 0.178289 0.983978i \(-0.442944\pi\)
0.178289 + 0.983978i \(0.442944\pi\)
\(8\) −7.09117 −2.50711
\(9\) −1.80879 −0.602931
\(10\) −10.3241 −3.26476
\(11\) 0 0
\(12\) −5.16556 −1.49117
\(13\) −2.80038 −0.776687 −0.388343 0.921515i \(-0.626953\pi\)
−0.388343 + 0.921515i \(0.626953\pi\)
\(14\) −2.44795 −0.654242
\(15\) −4.34255 −1.12124
\(16\) 8.93427 2.23357
\(17\) −2.11107 −0.512009 −0.256004 0.966676i \(-0.582406\pi\)
−0.256004 + 0.966676i \(0.582406\pi\)
\(18\) 4.69341 1.10625
\(19\) −4.72413 −1.08379 −0.541895 0.840446i \(-0.682293\pi\)
−0.541895 + 0.840446i \(0.682293\pi\)
\(20\) 18.8311 4.21076
\(21\) −1.02967 −0.224692
\(22\) 0 0
\(23\) −7.83891 −1.63453 −0.817263 0.576265i \(-0.804510\pi\)
−0.817263 + 0.576265i \(0.804510\pi\)
\(24\) 7.73948 1.57981
\(25\) 10.8308 2.16616
\(26\) 7.26637 1.42505
\(27\) 5.24843 1.01006
\(28\) 4.46505 0.843816
\(29\) 4.01133 0.744885 0.372442 0.928055i \(-0.378520\pi\)
0.372442 + 0.928055i \(0.378520\pi\)
\(30\) 11.2680 2.05724
\(31\) 1.00000 0.179605
\(32\) −9.00010 −1.59101
\(33\) 0 0
\(34\) 5.47775 0.939426
\(35\) 3.75365 0.634483
\(36\) −8.56077 −1.42679
\(37\) 5.69890 0.936893 0.468446 0.883492i \(-0.344814\pi\)
0.468446 + 0.883492i \(0.344814\pi\)
\(38\) 12.2581 1.98852
\(39\) 3.05641 0.489417
\(40\) −28.2143 −4.46107
\(41\) −1.83466 −0.286526 −0.143263 0.989685i \(-0.545759\pi\)
−0.143263 + 0.989685i \(0.545759\pi\)
\(42\) 2.67175 0.412260
\(43\) 7.78390 1.18703 0.593516 0.804822i \(-0.297739\pi\)
0.593516 + 0.804822i \(0.297739\pi\)
\(44\) 0 0
\(45\) −7.19681 −1.07284
\(46\) 20.3402 2.99900
\(47\) 12.9036 1.88219 0.941094 0.338144i \(-0.109799\pi\)
0.941094 + 0.338144i \(0.109799\pi\)
\(48\) −9.75109 −1.40745
\(49\) −6.10997 −0.872853
\(50\) −28.1035 −3.97444
\(51\) 2.30407 0.322634
\(52\) −13.2538 −1.83798
\(53\) −3.11074 −0.427293 −0.213646 0.976911i \(-0.568534\pi\)
−0.213646 + 0.976911i \(0.568534\pi\)
\(54\) −13.6185 −1.85324
\(55\) 0 0
\(56\) −6.68991 −0.893977
\(57\) 5.15603 0.682933
\(58\) −10.4085 −1.36670
\(59\) −2.78768 −0.362925 −0.181462 0.983398i \(-0.558083\pi\)
−0.181462 + 0.983398i \(0.558083\pi\)
\(60\) −20.5527 −2.65334
\(61\) −12.8934 −1.65082 −0.825412 0.564530i \(-0.809057\pi\)
−0.825412 + 0.564530i \(0.809057\pi\)
\(62\) −2.59478 −0.329537
\(63\) −1.70644 −0.214991
\(64\) 5.48470 0.685587
\(65\) −11.1422 −1.38201
\(66\) 0 0
\(67\) 2.15735 0.263562 0.131781 0.991279i \(-0.457930\pi\)
0.131781 + 0.991279i \(0.457930\pi\)
\(68\) −9.99139 −1.21163
\(69\) 8.55558 1.02997
\(70\) −9.73989 −1.16414
\(71\) −1.74810 −0.207462 −0.103731 0.994605i \(-0.533078\pi\)
−0.103731 + 0.994605i \(0.533078\pi\)
\(72\) 12.8265 1.51161
\(73\) 4.23766 0.495980 0.247990 0.968763i \(-0.420230\pi\)
0.247990 + 0.968763i \(0.420230\pi\)
\(74\) −14.7874 −1.71900
\(75\) −11.8210 −1.36497
\(76\) −22.3587 −2.56472
\(77\) 0 0
\(78\) −7.93069 −0.897974
\(79\) 2.12274 0.238827 0.119414 0.992845i \(-0.461899\pi\)
0.119414 + 0.992845i \(0.461899\pi\)
\(80\) 35.5476 3.97435
\(81\) −0.301892 −0.0335436
\(82\) 4.76053 0.525713
\(83\) 7.51015 0.824346 0.412173 0.911106i \(-0.364770\pi\)
0.412173 + 0.911106i \(0.364770\pi\)
\(84\) −4.87327 −0.531717
\(85\) −8.39950 −0.911054
\(86\) −20.1975 −2.17795
\(87\) −4.37806 −0.469377
\(88\) 0 0
\(89\) −10.6723 −1.13126 −0.565628 0.824660i \(-0.691366\pi\)
−0.565628 + 0.824660i \(0.691366\pi\)
\(90\) 18.6741 1.96843
\(91\) −2.64192 −0.276949
\(92\) −37.1005 −3.86800
\(93\) −1.09142 −0.113175
\(94\) −33.4821 −3.45341
\(95\) −18.7963 −1.92846
\(96\) 9.82293 1.00255
\(97\) −0.345394 −0.0350694 −0.0175347 0.999846i \(-0.505582\pi\)
−0.0175347 + 0.999846i \(0.505582\pi\)
\(98\) 15.8540 1.60150
\(99\) 0 0
\(100\) 51.2607 5.12607
\(101\) −18.7992 −1.87059 −0.935296 0.353868i \(-0.884866\pi\)
−0.935296 + 0.353868i \(0.884866\pi\)
\(102\) −5.97855 −0.591964
\(103\) −5.80601 −0.572083 −0.286041 0.958217i \(-0.592339\pi\)
−0.286041 + 0.958217i \(0.592339\pi\)
\(104\) 19.8580 1.94724
\(105\) −4.09683 −0.399810
\(106\) 8.07167 0.783990
\(107\) 10.2364 0.989588 0.494794 0.869010i \(-0.335243\pi\)
0.494794 + 0.869010i \(0.335243\pi\)
\(108\) 24.8401 2.39024
\(109\) 6.48908 0.621541 0.310771 0.950485i \(-0.399413\pi\)
0.310771 + 0.950485i \(0.399413\pi\)
\(110\) 0 0
\(111\) −6.21992 −0.590368
\(112\) 8.42873 0.796440
\(113\) −10.0149 −0.942119 −0.471060 0.882101i \(-0.656128\pi\)
−0.471060 + 0.882101i \(0.656128\pi\)
\(114\) −13.3788 −1.25303
\(115\) −31.1894 −2.90843
\(116\) 18.9851 1.76272
\(117\) 5.06531 0.468288
\(118\) 7.23340 0.665888
\(119\) −1.99161 −0.182571
\(120\) 30.7938 2.81108
\(121\) 0 0
\(122\) 33.4554 3.02891
\(123\) 2.00239 0.180550
\(124\) 4.73286 0.425024
\(125\) 23.1996 2.07503
\(126\) 4.42783 0.394463
\(127\) −7.68397 −0.681842 −0.340921 0.940092i \(-0.610739\pi\)
−0.340921 + 0.940092i \(0.610739\pi\)
\(128\) 3.76863 0.333103
\(129\) −8.49553 −0.747990
\(130\) 28.9114 2.53570
\(131\) −17.9971 −1.57241 −0.786207 0.617963i \(-0.787958\pi\)
−0.786207 + 0.617963i \(0.787958\pi\)
\(132\) 0 0
\(133\) −4.45682 −0.386455
\(134\) −5.59783 −0.483579
\(135\) 20.8824 1.79727
\(136\) 14.9699 1.28366
\(137\) −6.61758 −0.565378 −0.282689 0.959212i \(-0.591226\pi\)
−0.282689 + 0.959212i \(0.591226\pi\)
\(138\) −22.1998 −1.88977
\(139\) 4.16620 0.353373 0.176686 0.984267i \(-0.443462\pi\)
0.176686 + 0.984267i \(0.443462\pi\)
\(140\) 17.7655 1.50146
\(141\) −14.0833 −1.18603
\(142\) 4.53594 0.380648
\(143\) 0 0
\(144\) −16.1602 −1.34669
\(145\) 15.9602 1.32543
\(146\) −10.9958 −0.910017
\(147\) 6.66857 0.550014
\(148\) 26.9721 2.21709
\(149\) −19.0217 −1.55832 −0.779159 0.626826i \(-0.784354\pi\)
−0.779159 + 0.626826i \(0.784354\pi\)
\(150\) 30.6729 2.50443
\(151\) 14.4260 1.17397 0.586984 0.809598i \(-0.300315\pi\)
0.586984 + 0.809598i \(0.300315\pi\)
\(152\) 33.4996 2.71718
\(153\) 3.81848 0.308706
\(154\) 0 0
\(155\) 3.97879 0.319584
\(156\) 14.4656 1.15817
\(157\) −19.8622 −1.58517 −0.792586 0.609760i \(-0.791266\pi\)
−0.792586 + 0.609760i \(0.791266\pi\)
\(158\) −5.50804 −0.438196
\(159\) 3.39514 0.269252
\(160\) −35.8095 −2.83099
\(161\) −7.39535 −0.582835
\(162\) 0.783343 0.0615452
\(163\) −16.6976 −1.30785 −0.653927 0.756557i \(-0.726880\pi\)
−0.653927 + 0.756557i \(0.726880\pi\)
\(164\) −8.68320 −0.678044
\(165\) 0 0
\(166\) −19.4872 −1.51250
\(167\) 10.0361 0.776614 0.388307 0.921530i \(-0.373060\pi\)
0.388307 + 0.921530i \(0.373060\pi\)
\(168\) 7.30154 0.563326
\(169\) −5.15785 −0.396758
\(170\) 21.7948 1.67159
\(171\) 8.54497 0.653450
\(172\) 36.8401 2.80903
\(173\) 1.89812 0.144311 0.0721557 0.997393i \(-0.477012\pi\)
0.0721557 + 0.997393i \(0.477012\pi\)
\(174\) 11.3601 0.861206
\(175\) 10.2179 0.772404
\(176\) 0 0
\(177\) 3.04254 0.228691
\(178\) 27.6921 2.07561
\(179\) −15.2085 −1.13674 −0.568369 0.822774i \(-0.692425\pi\)
−0.568369 + 0.822774i \(0.692425\pi\)
\(180\) −34.0615 −2.53880
\(181\) 15.6361 1.16223 0.581113 0.813823i \(-0.302618\pi\)
0.581113 + 0.813823i \(0.302618\pi\)
\(182\) 6.85520 0.508141
\(183\) 14.0721 1.04024
\(184\) 55.5871 4.09793
\(185\) 22.6747 1.66708
\(186\) 2.83200 0.207652
\(187\) 0 0
\(188\) 61.0712 4.45407
\(189\) 4.95145 0.360165
\(190\) 48.7723 3.53832
\(191\) −12.4822 −0.903179 −0.451589 0.892226i \(-0.649143\pi\)
−0.451589 + 0.892226i \(0.649143\pi\)
\(192\) −5.98613 −0.432012
\(193\) −5.06516 −0.364598 −0.182299 0.983243i \(-0.558354\pi\)
−0.182299 + 0.983243i \(0.558354\pi\)
\(194\) 0.896220 0.0643448
\(195\) 12.1608 0.870854
\(196\) −28.9177 −2.06555
\(197\) −4.08140 −0.290788 −0.145394 0.989374i \(-0.546445\pi\)
−0.145394 + 0.989374i \(0.546445\pi\)
\(198\) 0 0
\(199\) −12.3299 −0.874046 −0.437023 0.899450i \(-0.643967\pi\)
−0.437023 + 0.899450i \(0.643967\pi\)
\(200\) −76.8031 −5.43080
\(201\) −2.35458 −0.166079
\(202\) 48.7797 3.43213
\(203\) 3.78435 0.265609
\(204\) 10.9048 0.763492
\(205\) −7.29974 −0.509836
\(206\) 15.0653 1.04965
\(207\) 14.1790 0.985506
\(208\) −25.0194 −1.73478
\(209\) 0 0
\(210\) 10.6304 0.733564
\(211\) 17.7867 1.22449 0.612244 0.790669i \(-0.290267\pi\)
0.612244 + 0.790669i \(0.290267\pi\)
\(212\) −14.7227 −1.01116
\(213\) 1.90792 0.130729
\(214\) −26.5611 −1.81568
\(215\) 30.9705 2.11217
\(216\) −37.2175 −2.53233
\(217\) 0.943415 0.0640432
\(218\) −16.8377 −1.14039
\(219\) −4.62508 −0.312534
\(220\) 0 0
\(221\) 5.91180 0.397670
\(222\) 16.1393 1.08320
\(223\) 5.82635 0.390161 0.195081 0.980787i \(-0.437503\pi\)
0.195081 + 0.980787i \(0.437503\pi\)
\(224\) −8.49083 −0.567317
\(225\) −19.5907 −1.30605
\(226\) 25.9863 1.72858
\(227\) −4.32502 −0.287062 −0.143531 0.989646i \(-0.545846\pi\)
−0.143531 + 0.989646i \(0.545846\pi\)
\(228\) 24.4028 1.61612
\(229\) 7.46753 0.493468 0.246734 0.969083i \(-0.420643\pi\)
0.246734 + 0.969083i \(0.420643\pi\)
\(230\) 80.9296 5.33634
\(231\) 0 0
\(232\) −28.4450 −1.86751
\(233\) −23.4363 −1.53536 −0.767681 0.640832i \(-0.778590\pi\)
−0.767681 + 0.640832i \(0.778590\pi\)
\(234\) −13.1434 −0.859208
\(235\) 51.3409 3.34911
\(236\) −13.1937 −0.858836
\(237\) −2.31681 −0.150493
\(238\) 5.16779 0.334978
\(239\) −12.7093 −0.822096 −0.411048 0.911614i \(-0.634837\pi\)
−0.411048 + 0.911614i \(0.634837\pi\)
\(240\) −38.7976 −2.50437
\(241\) 0.104023 0.00670070 0.00335035 0.999994i \(-0.498934\pi\)
0.00335035 + 0.999994i \(0.498934\pi\)
\(242\) 0 0
\(243\) −15.4158 −0.988925
\(244\) −61.0225 −3.90656
\(245\) −24.3103 −1.55313
\(246\) −5.19576 −0.331270
\(247\) 13.2294 0.841765
\(248\) −7.09117 −0.450290
\(249\) −8.19676 −0.519449
\(250\) −60.1977 −3.80724
\(251\) 4.07418 0.257160 0.128580 0.991699i \(-0.458958\pi\)
0.128580 + 0.991699i \(0.458958\pi\)
\(252\) −8.07636 −0.508763
\(253\) 0 0
\(254\) 19.9382 1.25103
\(255\) 9.16742 0.574086
\(256\) −20.7482 −1.29676
\(257\) −12.1047 −0.755072 −0.377536 0.925995i \(-0.623228\pi\)
−0.377536 + 0.925995i \(0.623228\pi\)
\(258\) 22.0440 1.37240
\(259\) 5.37642 0.334075
\(260\) −52.7343 −3.27044
\(261\) −7.25566 −0.449114
\(262\) 46.6985 2.88504
\(263\) −7.76333 −0.478708 −0.239354 0.970932i \(-0.576936\pi\)
−0.239354 + 0.970932i \(0.576936\pi\)
\(264\) 0 0
\(265\) −12.3770 −0.760312
\(266\) 11.5644 0.709061
\(267\) 11.6480 0.712844
\(268\) 10.2104 0.623701
\(269\) −8.13513 −0.496008 −0.248004 0.968759i \(-0.579775\pi\)
−0.248004 + 0.968759i \(0.579775\pi\)
\(270\) −54.1853 −3.29761
\(271\) 11.5528 0.701782 0.350891 0.936416i \(-0.385879\pi\)
0.350891 + 0.936416i \(0.385879\pi\)
\(272\) −18.8608 −1.14361
\(273\) 2.88346 0.174515
\(274\) 17.1711 1.03735
\(275\) 0 0
\(276\) 40.4924 2.43736
\(277\) 2.27333 0.136591 0.0682956 0.997665i \(-0.478244\pi\)
0.0682956 + 0.997665i \(0.478244\pi\)
\(278\) −10.8104 −0.648362
\(279\) −1.80879 −0.108290
\(280\) −26.6178 −1.59072
\(281\) −21.4312 −1.27848 −0.639238 0.769009i \(-0.720750\pi\)
−0.639238 + 0.769009i \(0.720750\pi\)
\(282\) 36.5431 2.17611
\(283\) −26.4702 −1.57349 −0.786745 0.617278i \(-0.788235\pi\)
−0.786745 + 0.617278i \(0.788235\pi\)
\(284\) −8.27354 −0.490944
\(285\) 20.5148 1.21519
\(286\) 0 0
\(287\) −1.73085 −0.102169
\(288\) 16.2793 0.959268
\(289\) −12.5434 −0.737847
\(290\) −41.4133 −2.43187
\(291\) 0.376971 0.0220984
\(292\) 20.0563 1.17370
\(293\) −27.0896 −1.58259 −0.791294 0.611436i \(-0.790592\pi\)
−0.791294 + 0.611436i \(0.790592\pi\)
\(294\) −17.3034 −1.00916
\(295\) −11.0916 −0.645777
\(296\) −40.4118 −2.34889
\(297\) 0 0
\(298\) 49.3571 2.85918
\(299\) 21.9520 1.26951
\(300\) −55.9472 −3.23011
\(301\) 7.34344 0.423269
\(302\) −37.4322 −2.15398
\(303\) 20.5179 1.17872
\(304\) −42.2067 −2.42072
\(305\) −51.3000 −2.93743
\(306\) −9.90810 −0.566409
\(307\) 9.15990 0.522783 0.261392 0.965233i \(-0.415819\pi\)
0.261392 + 0.965233i \(0.415819\pi\)
\(308\) 0 0
\(309\) 6.33682 0.360489
\(310\) −10.3241 −0.586368
\(311\) 2.85040 0.161632 0.0808158 0.996729i \(-0.474247\pi\)
0.0808158 + 0.996729i \(0.474247\pi\)
\(312\) −21.6735 −1.22702
\(313\) 20.8258 1.17714 0.588571 0.808446i \(-0.299691\pi\)
0.588571 + 0.808446i \(0.299691\pi\)
\(314\) 51.5379 2.90845
\(315\) −6.78958 −0.382549
\(316\) 10.0467 0.565168
\(317\) 17.8779 1.00413 0.502063 0.864831i \(-0.332575\pi\)
0.502063 + 0.864831i \(0.332575\pi\)
\(318\) −8.80962 −0.494019
\(319\) 0 0
\(320\) 21.8225 1.21991
\(321\) −11.1722 −0.623573
\(322\) 19.1893 1.06938
\(323\) 9.97296 0.554910
\(324\) −1.42881 −0.0793786
\(325\) −30.3304 −1.68243
\(326\) 43.3265 2.39963
\(327\) −7.08234 −0.391654
\(328\) 13.0099 0.718351
\(329\) 12.1735 0.671146
\(330\) 0 0
\(331\) −27.8924 −1.53310 −0.766552 0.642182i \(-0.778029\pi\)
−0.766552 + 0.642182i \(0.778029\pi\)
\(332\) 35.5445 1.95076
\(333\) −10.3081 −0.564882
\(334\) −26.0413 −1.42492
\(335\) 8.58364 0.468974
\(336\) −9.19932 −0.501864
\(337\) 11.8451 0.645244 0.322622 0.946528i \(-0.395436\pi\)
0.322622 + 0.946528i \(0.395436\pi\)
\(338\) 13.3835 0.727965
\(339\) 10.9305 0.593661
\(340\) −39.7537 −2.15595
\(341\) 0 0
\(342\) −22.1723 −1.19894
\(343\) −12.3681 −0.667817
\(344\) −55.1969 −2.97602
\(345\) 34.0409 1.83270
\(346\) −4.92519 −0.264780
\(347\) −3.15873 −0.169570 −0.0847848 0.996399i \(-0.527020\pi\)
−0.0847848 + 0.996399i \(0.527020\pi\)
\(348\) −20.7208 −1.11075
\(349\) −0.910133 −0.0487183 −0.0243592 0.999703i \(-0.507755\pi\)
−0.0243592 + 0.999703i \(0.507755\pi\)
\(350\) −26.5133 −1.41719
\(351\) −14.6976 −0.784501
\(352\) 0 0
\(353\) −29.5861 −1.57471 −0.787354 0.616502i \(-0.788549\pi\)
−0.787354 + 0.616502i \(0.788549\pi\)
\(354\) −7.89471 −0.419599
\(355\) −6.95535 −0.369152
\(356\) −50.5103 −2.67704
\(357\) 2.17369 0.115044
\(358\) 39.4627 2.08567
\(359\) 1.47815 0.0780137 0.0390069 0.999239i \(-0.487581\pi\)
0.0390069 + 0.999239i \(0.487581\pi\)
\(360\) 51.0338 2.68972
\(361\) 3.31742 0.174601
\(362\) −40.5723 −2.13243
\(363\) 0 0
\(364\) −12.5039 −0.655381
\(365\) 16.8608 0.882533
\(366\) −36.5140 −1.90862
\(367\) −0.221728 −0.0115741 −0.00578706 0.999983i \(-0.501842\pi\)
−0.00578706 + 0.999983i \(0.501842\pi\)
\(368\) −70.0350 −3.65083
\(369\) 3.31852 0.172755
\(370\) −58.8359 −3.05873
\(371\) −2.93472 −0.152363
\(372\) −5.16556 −0.267822
\(373\) −13.8927 −0.719338 −0.359669 0.933080i \(-0.617110\pi\)
−0.359669 + 0.933080i \(0.617110\pi\)
\(374\) 0 0
\(375\) −25.3206 −1.30755
\(376\) −91.5019 −4.71885
\(377\) −11.2333 −0.578542
\(378\) −12.8479 −0.660825
\(379\) −15.7486 −0.808950 −0.404475 0.914549i \(-0.632546\pi\)
−0.404475 + 0.914549i \(0.632546\pi\)
\(380\) −88.9606 −4.56358
\(381\) 8.38648 0.429652
\(382\) 32.3885 1.65714
\(383\) −27.8268 −1.42188 −0.710941 0.703251i \(-0.751731\pi\)
−0.710941 + 0.703251i \(0.751731\pi\)
\(384\) −4.11318 −0.209900
\(385\) 0 0
\(386\) 13.1430 0.668959
\(387\) −14.0795 −0.715699
\(388\) −1.63470 −0.0829894
\(389\) −18.8336 −0.954901 −0.477451 0.878659i \(-0.658439\pi\)
−0.477451 + 0.878659i \(0.658439\pi\)
\(390\) −31.5546 −1.59783
\(391\) 16.5485 0.836892
\(392\) 43.3268 2.18834
\(393\) 19.6425 0.990832
\(394\) 10.5903 0.533533
\(395\) 8.44595 0.424962
\(396\) 0 0
\(397\) 9.19514 0.461491 0.230745 0.973014i \(-0.425884\pi\)
0.230745 + 0.973014i \(0.425884\pi\)
\(398\) 31.9934 1.60369
\(399\) 4.86428 0.243518
\(400\) 96.7654 4.83827
\(401\) 34.9864 1.74714 0.873569 0.486700i \(-0.161800\pi\)
0.873569 + 0.486700i \(0.161800\pi\)
\(402\) 6.10961 0.304720
\(403\) −2.80038 −0.139497
\(404\) −88.9741 −4.42663
\(405\) −1.20117 −0.0596865
\(406\) −9.81953 −0.487335
\(407\) 0 0
\(408\) −16.3386 −0.808879
\(409\) 26.7715 1.32377 0.661883 0.749607i \(-0.269758\pi\)
0.661883 + 0.749607i \(0.269758\pi\)
\(410\) 18.9412 0.935438
\(411\) 7.22259 0.356264
\(412\) −27.4790 −1.35379
\(413\) −2.62994 −0.129411
\(414\) −36.7912 −1.80819
\(415\) 29.8813 1.46682
\(416\) 25.2037 1.23571
\(417\) −4.54709 −0.222672
\(418\) 0 0
\(419\) −11.7485 −0.573951 −0.286975 0.957938i \(-0.592650\pi\)
−0.286975 + 0.957938i \(0.592650\pi\)
\(420\) −19.3897 −0.946122
\(421\) −16.5030 −0.804309 −0.402155 0.915572i \(-0.631739\pi\)
−0.402155 + 0.915572i \(0.631739\pi\)
\(422\) −46.1526 −2.24667
\(423\) −23.3400 −1.13483
\(424\) 22.0588 1.07127
\(425\) −22.8645 −1.10909
\(426\) −4.95064 −0.239859
\(427\) −12.1638 −0.588646
\(428\) 48.4474 2.34179
\(429\) 0 0
\(430\) −80.3616 −3.87538
\(431\) −27.7178 −1.33512 −0.667559 0.744556i \(-0.732661\pi\)
−0.667559 + 0.744556i \(0.732661\pi\)
\(432\) 46.8909 2.25604
\(433\) 7.81740 0.375680 0.187840 0.982200i \(-0.439851\pi\)
0.187840 + 0.982200i \(0.439851\pi\)
\(434\) −2.44795 −0.117505
\(435\) −17.4194 −0.835197
\(436\) 30.7119 1.47083
\(437\) 37.0321 1.77148
\(438\) 12.0011 0.573433
\(439\) 39.7818 1.89868 0.949340 0.314251i \(-0.101754\pi\)
0.949340 + 0.314251i \(0.101754\pi\)
\(440\) 0 0
\(441\) 11.0517 0.526270
\(442\) −15.3398 −0.729639
\(443\) −8.71872 −0.414239 −0.207119 0.978316i \(-0.566409\pi\)
−0.207119 + 0.978316i \(0.566409\pi\)
\(444\) −29.4380 −1.39707
\(445\) −42.4627 −2.01293
\(446\) −15.1181 −0.715862
\(447\) 20.7607 0.981950
\(448\) 5.17434 0.244465
\(449\) −34.0178 −1.60540 −0.802700 0.596383i \(-0.796604\pi\)
−0.802700 + 0.596383i \(0.796604\pi\)
\(450\) 50.8334 2.39631
\(451\) 0 0
\(452\) −47.3990 −2.22946
\(453\) −15.7449 −0.739758
\(454\) 11.2225 0.526696
\(455\) −10.5117 −0.492795
\(456\) −36.5623 −1.71219
\(457\) 23.4481 1.09686 0.548428 0.836198i \(-0.315227\pi\)
0.548428 + 0.836198i \(0.315227\pi\)
\(458\) −19.3766 −0.905407
\(459\) −11.0798 −0.517160
\(460\) −147.615 −6.88260
\(461\) −34.1914 −1.59245 −0.796227 0.604998i \(-0.793174\pi\)
−0.796227 + 0.604998i \(0.793174\pi\)
\(462\) 0 0
\(463\) 8.34781 0.387956 0.193978 0.981006i \(-0.437861\pi\)
0.193978 + 0.981006i \(0.437861\pi\)
\(464\) 35.8383 1.66375
\(465\) −4.34255 −0.201381
\(466\) 60.8120 2.81706
\(467\) 9.68806 0.448310 0.224155 0.974554i \(-0.428038\pi\)
0.224155 + 0.974554i \(0.428038\pi\)
\(468\) 23.9734 1.10817
\(469\) 2.03527 0.0939801
\(470\) −133.218 −6.14490
\(471\) 21.6780 0.998872
\(472\) 19.7679 0.909891
\(473\) 0 0
\(474\) 6.01161 0.276122
\(475\) −51.1661 −2.34766
\(476\) −9.42603 −0.432041
\(477\) 5.62668 0.257628
\(478\) 32.9778 1.50837
\(479\) 35.1006 1.60379 0.801895 0.597466i \(-0.203826\pi\)
0.801895 + 0.597466i \(0.203826\pi\)
\(480\) 39.0834 1.78391
\(481\) −15.9591 −0.727672
\(482\) −0.269916 −0.0122943
\(483\) 8.07146 0.367264
\(484\) 0 0
\(485\) −1.37425 −0.0624015
\(486\) 40.0006 1.81446
\(487\) 38.6855 1.75301 0.876505 0.481393i \(-0.159869\pi\)
0.876505 + 0.481393i \(0.159869\pi\)
\(488\) 91.4290 4.13879
\(489\) 18.2241 0.824124
\(490\) 63.0798 2.84966
\(491\) 12.4288 0.560905 0.280452 0.959868i \(-0.409516\pi\)
0.280452 + 0.959868i \(0.409516\pi\)
\(492\) 9.47706 0.427259
\(493\) −8.46818 −0.381388
\(494\) −34.3273 −1.54446
\(495\) 0 0
\(496\) 8.93427 0.401161
\(497\) −1.64919 −0.0739762
\(498\) 21.2688 0.953076
\(499\) 0.696612 0.0311846 0.0155923 0.999878i \(-0.495037\pi\)
0.0155923 + 0.999878i \(0.495037\pi\)
\(500\) 109.800 4.91042
\(501\) −10.9536 −0.489371
\(502\) −10.5716 −0.471833
\(503\) 17.5725 0.783521 0.391761 0.920067i \(-0.371866\pi\)
0.391761 + 0.920067i \(0.371866\pi\)
\(504\) 12.1007 0.539007
\(505\) −74.7982 −3.32848
\(506\) 0 0
\(507\) 5.62941 0.250011
\(508\) −36.3672 −1.61353
\(509\) 26.6855 1.18281 0.591407 0.806373i \(-0.298573\pi\)
0.591407 + 0.806373i \(0.298573\pi\)
\(510\) −23.7874 −1.05332
\(511\) 3.99787 0.176855
\(512\) 46.2996 2.04617
\(513\) −24.7943 −1.09469
\(514\) 31.4090 1.38539
\(515\) −23.1009 −1.01795
\(516\) −40.2082 −1.77007
\(517\) 0 0
\(518\) −13.9506 −0.612955
\(519\) −2.07165 −0.0909355
\(520\) 79.0109 3.46486
\(521\) −15.6986 −0.687767 −0.343884 0.939012i \(-0.611743\pi\)
−0.343884 + 0.939012i \(0.611743\pi\)
\(522\) 18.8268 0.824027
\(523\) −22.1730 −0.969557 −0.484778 0.874637i \(-0.661100\pi\)
−0.484778 + 0.874637i \(0.661100\pi\)
\(524\) −85.1779 −3.72101
\(525\) −11.1521 −0.486718
\(526\) 20.1441 0.878325
\(527\) −2.11107 −0.0919595
\(528\) 0 0
\(529\) 38.4486 1.67168
\(530\) 32.1155 1.39501
\(531\) 5.04233 0.218818
\(532\) −21.0935 −0.914519
\(533\) 5.13775 0.222541
\(534\) −30.2239 −1.30791
\(535\) 40.7285 1.76084
\(536\) −15.2981 −0.660778
\(537\) 16.5989 0.716297
\(538\) 21.1088 0.910067
\(539\) 0 0
\(540\) 98.8337 4.25313
\(541\) −26.4427 −1.13686 −0.568431 0.822731i \(-0.692449\pi\)
−0.568431 + 0.822731i \(0.692449\pi\)
\(542\) −29.9769 −1.28762
\(543\) −17.0657 −0.732358
\(544\) 18.9998 0.814610
\(545\) 25.8187 1.10595
\(546\) −7.48193 −0.320197
\(547\) −2.98712 −0.127720 −0.0638599 0.997959i \(-0.520341\pi\)
−0.0638599 + 0.997959i \(0.520341\pi\)
\(548\) −31.3201 −1.33793
\(549\) 23.3214 0.995333
\(550\) 0 0
\(551\) −18.9500 −0.807299
\(552\) −60.6691 −2.58225
\(553\) 2.00263 0.0851603
\(554\) −5.89879 −0.250615
\(555\) −24.7478 −1.05048
\(556\) 19.7181 0.836232
\(557\) 20.7439 0.878949 0.439475 0.898255i \(-0.355165\pi\)
0.439475 + 0.898255i \(0.355165\pi\)
\(558\) 4.69341 0.198688
\(559\) −21.7979 −0.921953
\(560\) 33.5362 1.41716
\(561\) 0 0
\(562\) 55.6091 2.34573
\(563\) 17.2469 0.726868 0.363434 0.931620i \(-0.381604\pi\)
0.363434 + 0.931620i \(0.381604\pi\)
\(564\) −66.6546 −2.80666
\(565\) −39.8471 −1.67638
\(566\) 68.6843 2.88701
\(567\) −0.284809 −0.0119609
\(568\) 12.3961 0.520129
\(569\) 28.1306 1.17930 0.589648 0.807660i \(-0.299267\pi\)
0.589648 + 0.807660i \(0.299267\pi\)
\(570\) −53.2313 −2.22961
\(571\) −8.79886 −0.368221 −0.184110 0.982906i \(-0.558940\pi\)
−0.184110 + 0.982906i \(0.558940\pi\)
\(572\) 0 0
\(573\) 13.6234 0.569124
\(574\) 4.49116 0.187457
\(575\) −84.9017 −3.54065
\(576\) −9.92068 −0.413362
\(577\) 10.6156 0.441934 0.220967 0.975281i \(-0.429079\pi\)
0.220967 + 0.975281i \(0.429079\pi\)
\(578\) 32.5473 1.35379
\(579\) 5.52824 0.229746
\(580\) 75.5377 3.13653
\(581\) 7.08519 0.293943
\(582\) −0.978156 −0.0405459
\(583\) 0 0
\(584\) −30.0499 −1.24348
\(585\) 20.1538 0.833259
\(586\) 70.2913 2.90371
\(587\) 18.7969 0.775831 0.387916 0.921695i \(-0.373195\pi\)
0.387916 + 0.921695i \(0.373195\pi\)
\(588\) 31.5614 1.30157
\(589\) −4.72413 −0.194654
\(590\) 28.7802 1.18486
\(591\) 4.45454 0.183235
\(592\) 50.9155 2.09261
\(593\) 24.9434 1.02430 0.512151 0.858895i \(-0.328849\pi\)
0.512151 + 0.858895i \(0.328849\pi\)
\(594\) 0 0
\(595\) −7.92421 −0.324861
\(596\) −90.0271 −3.68765
\(597\) 13.4572 0.550766
\(598\) −56.9604 −2.32929
\(599\) −35.2146 −1.43883 −0.719415 0.694580i \(-0.755590\pi\)
−0.719415 + 0.694580i \(0.755590\pi\)
\(600\) 83.8248 3.42213
\(601\) 11.4452 0.466857 0.233429 0.972374i \(-0.425005\pi\)
0.233429 + 0.972374i \(0.425005\pi\)
\(602\) −19.0546 −0.776607
\(603\) −3.90219 −0.158910
\(604\) 68.2761 2.77812
\(605\) 0 0
\(606\) −53.2394 −2.16270
\(607\) −12.5735 −0.510341 −0.255170 0.966896i \(-0.582132\pi\)
−0.255170 + 0.966896i \(0.582132\pi\)
\(608\) 42.5177 1.72432
\(609\) −4.13033 −0.167369
\(610\) 133.112 5.38955
\(611\) −36.1351 −1.46187
\(612\) 18.0724 0.730532
\(613\) 39.4093 1.59173 0.795863 0.605476i \(-0.207017\pi\)
0.795863 + 0.605476i \(0.207017\pi\)
\(614\) −23.7679 −0.959194
\(615\) 7.96711 0.321265
\(616\) 0 0
\(617\) −10.4788 −0.421862 −0.210931 0.977501i \(-0.567650\pi\)
−0.210931 + 0.977501i \(0.567650\pi\)
\(618\) −16.4426 −0.661419
\(619\) 41.3087 1.66034 0.830168 0.557513i \(-0.188244\pi\)
0.830168 + 0.557513i \(0.188244\pi\)
\(620\) 18.8311 0.756275
\(621\) −41.1420 −1.65097
\(622\) −7.39616 −0.296559
\(623\) −10.0684 −0.403380
\(624\) 27.3068 1.09315
\(625\) 38.1523 1.52609
\(626\) −54.0382 −2.15980
\(627\) 0 0
\(628\) −94.0049 −3.75120
\(629\) −12.0308 −0.479697
\(630\) 17.6174 0.701896
\(631\) 28.2903 1.12622 0.563109 0.826383i \(-0.309605\pi\)
0.563109 + 0.826383i \(0.309605\pi\)
\(632\) −15.0527 −0.598765
\(633\) −19.4129 −0.771592
\(634\) −46.3893 −1.84235
\(635\) −30.5730 −1.21325
\(636\) 16.0687 0.637166
\(637\) 17.1103 0.677933
\(638\) 0 0
\(639\) 3.16196 0.125085
\(640\) 14.9946 0.592715
\(641\) −10.4828 −0.414047 −0.207024 0.978336i \(-0.566378\pi\)
−0.207024 + 0.978336i \(0.566378\pi\)
\(642\) 28.9895 1.14412
\(643\) 9.87595 0.389469 0.194735 0.980856i \(-0.437615\pi\)
0.194735 + 0.980856i \(0.437615\pi\)
\(644\) −35.0012 −1.37924
\(645\) −33.8020 −1.33095
\(646\) −25.8776 −1.01814
\(647\) −23.0701 −0.906979 −0.453490 0.891262i \(-0.649821\pi\)
−0.453490 + 0.891262i \(0.649821\pi\)
\(648\) 2.14077 0.0840973
\(649\) 0 0
\(650\) 78.7006 3.08689
\(651\) −1.02967 −0.0403558
\(652\) −79.0273 −3.09495
\(653\) 23.4917 0.919302 0.459651 0.888100i \(-0.347974\pi\)
0.459651 + 0.888100i \(0.347974\pi\)
\(654\) 18.3771 0.718601
\(655\) −71.6068 −2.79791
\(656\) −16.3914 −0.639975
\(657\) −7.66504 −0.299042
\(658\) −31.5875 −1.23141
\(659\) −22.9063 −0.892303 −0.446152 0.894957i \(-0.647206\pi\)
−0.446152 + 0.894957i \(0.647206\pi\)
\(660\) 0 0
\(661\) 41.9465 1.63153 0.815764 0.578385i \(-0.196317\pi\)
0.815764 + 0.578385i \(0.196317\pi\)
\(662\) 72.3745 2.81291
\(663\) −6.45228 −0.250586
\(664\) −53.2557 −2.06672
\(665\) −17.7328 −0.687647
\(666\) 26.7473 1.03644
\(667\) −31.4445 −1.21753
\(668\) 47.4993 1.83780
\(669\) −6.35902 −0.245854
\(670\) −22.2726 −0.860466
\(671\) 0 0
\(672\) 9.26710 0.357486
\(673\) 37.2341 1.43527 0.717635 0.696419i \(-0.245225\pi\)
0.717635 + 0.696419i \(0.245225\pi\)
\(674\) −30.7354 −1.18388
\(675\) 56.8448 2.18796
\(676\) −24.4114 −0.938900
\(677\) −30.4392 −1.16987 −0.584937 0.811079i \(-0.698881\pi\)
−0.584937 + 0.811079i \(0.698881\pi\)
\(678\) −28.3621 −1.08924
\(679\) −0.325850 −0.0125050
\(680\) 59.5623 2.28411
\(681\) 4.72043 0.180887
\(682\) 0 0
\(683\) 22.5409 0.862505 0.431252 0.902231i \(-0.358072\pi\)
0.431252 + 0.902231i \(0.358072\pi\)
\(684\) 40.4422 1.54635
\(685\) −26.3300 −1.00602
\(686\) 32.0926 1.22530
\(687\) −8.15024 −0.310951
\(688\) 69.5434 2.65132
\(689\) 8.71126 0.331873
\(690\) −88.3285 −3.36261
\(691\) 24.7842 0.942834 0.471417 0.881910i \(-0.343743\pi\)
0.471417 + 0.881910i \(0.343743\pi\)
\(692\) 8.98354 0.341503
\(693\) 0 0
\(694\) 8.19620 0.311123
\(695\) 16.5765 0.628781
\(696\) 31.0456 1.17678
\(697\) 3.87309 0.146704
\(698\) 2.36159 0.0893876
\(699\) 25.5790 0.967485
\(700\) 48.3601 1.82784
\(701\) 23.4281 0.884868 0.442434 0.896801i \(-0.354115\pi\)
0.442434 + 0.896801i \(0.354115\pi\)
\(702\) 38.1371 1.43939
\(703\) −26.9223 −1.01540
\(704\) 0 0
\(705\) −56.0347 −2.11039
\(706\) 76.7692 2.88925
\(707\) −17.7354 −0.667010
\(708\) 14.3999 0.541182
\(709\) −0.631329 −0.0237101 −0.0118550 0.999930i \(-0.503774\pi\)
−0.0118550 + 0.999930i \(0.503774\pi\)
\(710\) 18.0476 0.677313
\(711\) −3.83960 −0.143996
\(712\) 75.6788 2.83618
\(713\) −7.83891 −0.293570
\(714\) −5.64025 −0.211081
\(715\) 0 0
\(716\) −71.9798 −2.69001
\(717\) 13.8712 0.518031
\(718\) −3.83547 −0.143138
\(719\) 13.8351 0.515961 0.257981 0.966150i \(-0.416943\pi\)
0.257981 + 0.966150i \(0.416943\pi\)
\(720\) −64.2983 −2.39626
\(721\) −5.47747 −0.203992
\(722\) −8.60796 −0.320355
\(723\) −0.113533 −0.00422234
\(724\) 74.0037 2.75033
\(725\) 43.4459 1.61354
\(726\) 0 0
\(727\) −42.5296 −1.57734 −0.788669 0.614819i \(-0.789229\pi\)
−0.788669 + 0.614819i \(0.789229\pi\)
\(728\) 18.7343 0.694340
\(729\) 17.7309 0.656699
\(730\) −43.7499 −1.61926
\(731\) −16.4323 −0.607771
\(732\) 66.6014 2.46166
\(733\) 20.8343 0.769531 0.384766 0.923014i \(-0.374282\pi\)
0.384766 + 0.923014i \(0.374282\pi\)
\(734\) 0.575335 0.0212360
\(735\) 26.5329 0.978679
\(736\) 70.5510 2.60054
\(737\) 0 0
\(738\) −8.61082 −0.316969
\(739\) −40.9275 −1.50554 −0.752772 0.658281i \(-0.771284\pi\)
−0.752772 + 0.658281i \(0.771284\pi\)
\(740\) 107.316 3.94503
\(741\) −14.4389 −0.530425
\(742\) 7.61493 0.279553
\(743\) 37.2039 1.36488 0.682440 0.730942i \(-0.260919\pi\)
0.682440 + 0.730942i \(0.260919\pi\)
\(744\) 7.73948 0.283743
\(745\) −75.6834 −2.77283
\(746\) 36.0485 1.31983
\(747\) −13.5843 −0.497024
\(748\) 0 0
\(749\) 9.65715 0.352865
\(750\) 65.7012 2.39907
\(751\) 7.31210 0.266822 0.133411 0.991061i \(-0.457407\pi\)
0.133411 + 0.991061i \(0.457407\pi\)
\(752\) 115.285 4.20400
\(753\) −4.44666 −0.162045
\(754\) 29.1478 1.06150
\(755\) 57.3979 2.08893
\(756\) 23.4345 0.852306
\(757\) −14.4499 −0.525191 −0.262595 0.964906i \(-0.584578\pi\)
−0.262595 + 0.964906i \(0.584578\pi\)
\(758\) 40.8641 1.48425
\(759\) 0 0
\(760\) 133.288 4.83487
\(761\) −32.7847 −1.18844 −0.594222 0.804301i \(-0.702540\pi\)
−0.594222 + 0.804301i \(0.702540\pi\)
\(762\) −21.7610 −0.788319
\(763\) 6.12189 0.221627
\(764\) −59.0765 −2.13731
\(765\) 15.1930 0.549302
\(766\) 72.2043 2.60885
\(767\) 7.80656 0.281879
\(768\) 22.6451 0.817133
\(769\) −13.1660 −0.474776 −0.237388 0.971415i \(-0.576291\pi\)
−0.237388 + 0.971415i \(0.576291\pi\)
\(770\) 0 0
\(771\) 13.2114 0.475796
\(772\) −23.9727 −0.862797
\(773\) 21.7279 0.781498 0.390749 0.920497i \(-0.372216\pi\)
0.390749 + 0.920497i \(0.372216\pi\)
\(774\) 36.5330 1.31315
\(775\) 10.8308 0.389054
\(776\) 2.44925 0.0879228
\(777\) −5.86796 −0.210512
\(778\) 48.8690 1.75204
\(779\) 8.66718 0.310534
\(780\) 57.5555 2.06082
\(781\) 0 0
\(782\) −42.9396 −1.53552
\(783\) 21.0532 0.752380
\(784\) −54.5881 −1.94958
\(785\) −79.0274 −2.82061
\(786\) −50.9679 −1.81796
\(787\) −8.24564 −0.293925 −0.146963 0.989142i \(-0.546950\pi\)
−0.146963 + 0.989142i \(0.546950\pi\)
\(788\) −19.3167 −0.688130
\(789\) 8.47309 0.301650
\(790\) −21.9154 −0.779714
\(791\) −9.44817 −0.335938
\(792\) 0 0
\(793\) 36.1063 1.28217
\(794\) −23.8593 −0.846736
\(795\) 13.5085 0.479099
\(796\) −58.3559 −2.06837
\(797\) −30.1405 −1.06763 −0.533816 0.845601i \(-0.679243\pi\)
−0.533816 + 0.845601i \(0.679243\pi\)
\(798\) −12.6217 −0.446804
\(799\) −27.2404 −0.963697
\(800\) −97.4783 −3.44638
\(801\) 19.3039 0.682070
\(802\) −90.7819 −3.20562
\(803\) 0 0
\(804\) −11.1439 −0.393015
\(805\) −29.4246 −1.03708
\(806\) 7.26637 0.255947
\(807\) 8.87888 0.312551
\(808\) 133.308 4.68977
\(809\) −11.4464 −0.402433 −0.201216 0.979547i \(-0.564489\pi\)
−0.201216 + 0.979547i \(0.564489\pi\)
\(810\) 3.11676 0.109512
\(811\) 26.4982 0.930477 0.465238 0.885185i \(-0.345969\pi\)
0.465238 + 0.885185i \(0.345969\pi\)
\(812\) 17.9108 0.628546
\(813\) −12.6090 −0.442217
\(814\) 0 0
\(815\) −66.4362 −2.32716
\(816\) 20.5852 0.720626
\(817\) −36.7721 −1.28649
\(818\) −69.4661 −2.42882
\(819\) 4.77869 0.166981
\(820\) −34.5487 −1.20649
\(821\) −12.4000 −0.432762 −0.216381 0.976309i \(-0.569425\pi\)
−0.216381 + 0.976309i \(0.569425\pi\)
\(822\) −18.7410 −0.653668
\(823\) −46.6157 −1.62492 −0.812460 0.583016i \(-0.801872\pi\)
−0.812460 + 0.583016i \(0.801872\pi\)
\(824\) 41.1714 1.43427
\(825\) 0 0
\(826\) 6.82409 0.237441
\(827\) −14.2837 −0.496693 −0.248347 0.968671i \(-0.579887\pi\)
−0.248347 + 0.968671i \(0.579887\pi\)
\(828\) 67.1071 2.33213
\(829\) −9.70944 −0.337223 −0.168611 0.985683i \(-0.553928\pi\)
−0.168611 + 0.985683i \(0.553928\pi\)
\(830\) −77.5354 −2.69129
\(831\) −2.48117 −0.0860708
\(832\) −15.3593 −0.532486
\(833\) 12.8986 0.446908
\(834\) 11.7987 0.408555
\(835\) 39.9314 1.38188
\(836\) 0 0
\(837\) 5.24843 0.181412
\(838\) 30.4847 1.05308
\(839\) 1.45901 0.0503705 0.0251852 0.999683i \(-0.491982\pi\)
0.0251852 + 0.999683i \(0.491982\pi\)
\(840\) 29.0513 1.00237
\(841\) −12.9092 −0.445147
\(842\) 42.8217 1.47573
\(843\) 23.3905 0.805611
\(844\) 84.1821 2.89767
\(845\) −20.5220 −0.705979
\(846\) 60.5621 2.08217
\(847\) 0 0
\(848\) −27.7922 −0.954388
\(849\) 28.8902 0.991510
\(850\) 59.3284 2.03495
\(851\) −44.6732 −1.53138
\(852\) 9.02995 0.309361
\(853\) −42.5950 −1.45842 −0.729212 0.684288i \(-0.760113\pi\)
−0.729212 + 0.684288i \(0.760113\pi\)
\(854\) 31.5623 1.08004
\(855\) 33.9987 1.16273
\(856\) −72.5879 −2.48100
\(857\) −10.9396 −0.373689 −0.186844 0.982390i \(-0.559826\pi\)
−0.186844 + 0.982390i \(0.559826\pi\)
\(858\) 0 0
\(859\) −10.8166 −0.369059 −0.184530 0.982827i \(-0.559076\pi\)
−0.184530 + 0.982827i \(0.559076\pi\)
\(860\) 146.579 4.99831
\(861\) 1.88909 0.0643799
\(862\) 71.9215 2.44965
\(863\) 37.4530 1.27491 0.637457 0.770486i \(-0.279986\pi\)
0.637457 + 0.770486i \(0.279986\pi\)
\(864\) −47.2364 −1.60702
\(865\) 7.55223 0.256783
\(866\) −20.2844 −0.689292
\(867\) 13.6902 0.464943
\(868\) 4.46505 0.151554
\(869\) 0 0
\(870\) 45.1995 1.53241
\(871\) −6.04140 −0.204705
\(872\) −46.0152 −1.55827
\(873\) 0.624746 0.0211444
\(874\) −96.0899 −3.25029
\(875\) 21.8868 0.739909
\(876\) −21.8899 −0.739591
\(877\) 2.62187 0.0885342 0.0442671 0.999020i \(-0.485905\pi\)
0.0442671 + 0.999020i \(0.485905\pi\)
\(878\) −103.225 −3.48367
\(879\) 29.5662 0.997243
\(880\) 0 0
\(881\) 2.04370 0.0688540 0.0344270 0.999407i \(-0.489039\pi\)
0.0344270 + 0.999407i \(0.489039\pi\)
\(882\) −28.6766 −0.965591
\(883\) 7.07464 0.238081 0.119040 0.992889i \(-0.462018\pi\)
0.119040 + 0.992889i \(0.462018\pi\)
\(884\) 27.9797 0.941060
\(885\) 12.1056 0.406926
\(886\) 22.6231 0.760039
\(887\) −13.8271 −0.464270 −0.232135 0.972684i \(-0.574571\pi\)
−0.232135 + 0.972684i \(0.574571\pi\)
\(888\) 44.1065 1.48012
\(889\) −7.24917 −0.243130
\(890\) 110.181 3.69328
\(891\) 0 0
\(892\) 27.5753 0.923291
\(893\) −60.9585 −2.03990
\(894\) −53.8695 −1.80167
\(895\) −60.5115 −2.02268
\(896\) 3.55539 0.118777
\(897\) −23.9589 −0.799965
\(898\) 88.2686 2.94556
\(899\) 4.01133 0.133785
\(900\) −92.7200 −3.09067
\(901\) 6.56698 0.218778
\(902\) 0 0
\(903\) −8.01481 −0.266716
\(904\) 71.0171 2.36199
\(905\) 62.2130 2.06803
\(906\) 40.8544 1.35730
\(907\) 8.47212 0.281312 0.140656 0.990059i \(-0.455079\pi\)
0.140656 + 0.990059i \(0.455079\pi\)
\(908\) −20.4697 −0.679312
\(909\) 34.0039 1.12784
\(910\) 27.2754 0.904172
\(911\) −5.85873 −0.194108 −0.0970541 0.995279i \(-0.530942\pi\)
−0.0970541 + 0.995279i \(0.530942\pi\)
\(912\) 46.0654 1.52538
\(913\) 0 0
\(914\) −60.8425 −2.01249
\(915\) 55.9901 1.85097
\(916\) 35.3428 1.16776
\(917\) −16.9787 −0.560687
\(918\) 28.7496 0.948878
\(919\) −16.3243 −0.538488 −0.269244 0.963072i \(-0.586774\pi\)
−0.269244 + 0.963072i \(0.586774\pi\)
\(920\) 221.170 7.29174
\(921\) −9.99734 −0.329424
\(922\) 88.7191 2.92181
\(923\) 4.89536 0.161133
\(924\) 0 0
\(925\) 61.7236 2.02946
\(926\) −21.6607 −0.711815
\(927\) 10.5019 0.344926
\(928\) −36.1023 −1.18512
\(929\) −35.3946 −1.16126 −0.580630 0.814167i \(-0.697194\pi\)
−0.580630 + 0.814167i \(0.697194\pi\)
\(930\) 11.2680 0.369491
\(931\) 28.8643 0.945989
\(932\) −110.921 −3.63333
\(933\) −3.11100 −0.101850
\(934\) −25.1383 −0.822552
\(935\) 0 0
\(936\) −35.9190 −1.17405
\(937\) −3.92506 −0.128226 −0.0641131 0.997943i \(-0.520422\pi\)
−0.0641131 + 0.997943i \(0.520422\pi\)
\(938\) −5.28108 −0.172433
\(939\) −22.7297 −0.741757
\(940\) 242.990 7.92545
\(941\) −38.1921 −1.24503 −0.622513 0.782609i \(-0.713888\pi\)
−0.622513 + 0.782609i \(0.713888\pi\)
\(942\) −56.2497 −1.83271
\(943\) 14.3817 0.468334
\(944\) −24.9059 −0.810617
\(945\) 19.7008 0.640867
\(946\) 0 0
\(947\) 39.5964 1.28671 0.643355 0.765568i \(-0.277542\pi\)
0.643355 + 0.765568i \(0.277542\pi\)
\(948\) −10.9652 −0.356132
\(949\) −11.8671 −0.385221
\(950\) 132.765 4.30746
\(951\) −19.5124 −0.632734
\(952\) 14.1229 0.457724
\(953\) 13.8143 0.447490 0.223745 0.974648i \(-0.428172\pi\)
0.223745 + 0.974648i \(0.428172\pi\)
\(954\) −14.6000 −0.472692
\(955\) −49.6640 −1.60709
\(956\) −60.1514 −1.94543
\(957\) 0 0
\(958\) −91.0783 −2.94261
\(959\) −6.24313 −0.201601
\(960\) −23.8176 −0.768710
\(961\) 1.00000 0.0322581
\(962\) 41.4103 1.33512
\(963\) −18.5155 −0.596653
\(964\) 0.492326 0.0158567
\(965\) −20.1532 −0.648756
\(966\) −20.9436 −0.673851
\(967\) 19.4593 0.625768 0.312884 0.949791i \(-0.398705\pi\)
0.312884 + 0.949791i \(0.398705\pi\)
\(968\) 0 0
\(969\) −10.8847 −0.349668
\(970\) 3.56587 0.114493
\(971\) −5.20244 −0.166954 −0.0834771 0.996510i \(-0.526603\pi\)
−0.0834771 + 0.996510i \(0.526603\pi\)
\(972\) −72.9609 −2.34022
\(973\) 3.93046 0.126005
\(974\) −100.380 −3.21639
\(975\) 33.1033 1.06016
\(976\) −115.193 −3.68723
\(977\) −26.5606 −0.849748 −0.424874 0.905253i \(-0.639682\pi\)
−0.424874 + 0.905253i \(0.639682\pi\)
\(978\) −47.2876 −1.51209
\(979\) 0 0
\(980\) −115.057 −3.67537
\(981\) −11.7374 −0.374746
\(982\) −32.2500 −1.02914
\(983\) 48.0759 1.53338 0.766691 0.642016i \(-0.221902\pi\)
0.766691 + 0.642016i \(0.221902\pi\)
\(984\) −14.1993 −0.452658
\(985\) −16.2391 −0.517420
\(986\) 21.9730 0.699764
\(987\) −13.2864 −0.422912
\(988\) 62.6129 1.99198
\(989\) −61.0173 −1.94024
\(990\) 0 0
\(991\) 17.5197 0.556531 0.278265 0.960504i \(-0.410240\pi\)
0.278265 + 0.960504i \(0.410240\pi\)
\(992\) −9.00010 −0.285753
\(993\) 30.4424 0.966061
\(994\) 4.27927 0.135730
\(995\) −49.0583 −1.55525
\(996\) −38.7942 −1.22924
\(997\) −14.2638 −0.451740 −0.225870 0.974157i \(-0.572523\pi\)
−0.225870 + 0.974157i \(0.572523\pi\)
\(998\) −1.80755 −0.0572170
\(999\) 29.9103 0.946319
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3751.2.a.p.1.3 30
11.2 odd 10 341.2.h.a.125.2 60
11.6 odd 10 341.2.h.a.311.2 yes 60
11.10 odd 2 3751.2.a.s.1.28 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
341.2.h.a.125.2 60 11.2 odd 10
341.2.h.a.311.2 yes 60 11.6 odd 10
3751.2.a.p.1.3 30 1.1 even 1 trivial
3751.2.a.s.1.28 30 11.10 odd 2