Properties

Label 3751.2.a.s.1.28
Level $3751$
Weight $2$
Character 3751.1
Self dual yes
Analytic conductor $29.952$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3751,2,Mod(1,3751)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3751, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3751.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3751.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,9,-1,29,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9518857982\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: no (minimal twist has level 341)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.28
Character \(\chi\) \(=\) 3751.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.59478 q^{2} -1.09142 q^{3} +4.73286 q^{4} +3.97879 q^{5} -2.83200 q^{6} -0.943415 q^{7} +7.09117 q^{8} -1.80879 q^{9} +10.3241 q^{10} -5.16556 q^{12} +2.80038 q^{13} -2.44795 q^{14} -4.34255 q^{15} +8.93427 q^{16} +2.11107 q^{17} -4.69341 q^{18} +4.72413 q^{19} +18.8311 q^{20} +1.02967 q^{21} -7.83891 q^{23} -7.73948 q^{24} +10.8308 q^{25} +7.26637 q^{26} +5.24843 q^{27} -4.46505 q^{28} -4.01133 q^{29} -11.2680 q^{30} +1.00000 q^{31} +9.00010 q^{32} +5.47775 q^{34} -3.75365 q^{35} -8.56077 q^{36} +5.69890 q^{37} +12.2581 q^{38} -3.05641 q^{39} +28.2143 q^{40} +1.83466 q^{41} +2.67175 q^{42} -7.78390 q^{43} -7.19681 q^{45} -20.3402 q^{46} +12.9036 q^{47} -9.75109 q^{48} -6.10997 q^{49} +28.1035 q^{50} -2.30407 q^{51} +13.2538 q^{52} -3.11074 q^{53} +13.6185 q^{54} -6.68991 q^{56} -5.15603 q^{57} -10.4085 q^{58} -2.78768 q^{59} -20.5527 q^{60} +12.8934 q^{61} +2.59478 q^{62} +1.70644 q^{63} +5.48470 q^{64} +11.1422 q^{65} +2.15735 q^{67} +9.99139 q^{68} +8.55558 q^{69} -9.73989 q^{70} -1.74810 q^{71} -12.8265 q^{72} -4.23766 q^{73} +14.7874 q^{74} -11.8210 q^{75} +22.3587 q^{76} -7.93069 q^{78} -2.12274 q^{79} +35.5476 q^{80} -0.301892 q^{81} +4.76053 q^{82} -7.51015 q^{83} +4.87327 q^{84} +8.39950 q^{85} -20.1975 q^{86} +4.37806 q^{87} -10.6723 q^{89} -18.6741 q^{90} -2.64192 q^{91} -37.1005 q^{92} -1.09142 q^{93} +33.4821 q^{94} +18.7963 q^{95} -9.82293 q^{96} -0.345394 q^{97} -15.8540 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 9 q^{2} - q^{3} + 29 q^{4} - q^{5} + 11 q^{6} + 11 q^{7} + 27 q^{8} + 25 q^{9} + 8 q^{10} - 16 q^{12} + 2 q^{13} - 3 q^{14} - 11 q^{15} + 35 q^{16} + 32 q^{17} + 4 q^{18} + 17 q^{19} - 4 q^{20}+ \cdots + 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.59478 1.83478 0.917392 0.397985i \(-0.130290\pi\)
0.917392 + 0.397985i \(0.130290\pi\)
\(3\) −1.09142 −0.630134 −0.315067 0.949069i \(-0.602027\pi\)
−0.315067 + 0.949069i \(0.602027\pi\)
\(4\) 4.73286 2.36643
\(5\) 3.97879 1.77937 0.889685 0.456574i \(-0.150924\pi\)
0.889685 + 0.456574i \(0.150924\pi\)
\(6\) −2.83200 −1.15616
\(7\) −0.943415 −0.356577 −0.178289 0.983978i \(-0.557056\pi\)
−0.178289 + 0.983978i \(0.557056\pi\)
\(8\) 7.09117 2.50711
\(9\) −1.80879 −0.602931
\(10\) 10.3241 3.26476
\(11\) 0 0
\(12\) −5.16556 −1.49117
\(13\) 2.80038 0.776687 0.388343 0.921515i \(-0.373047\pi\)
0.388343 + 0.921515i \(0.373047\pi\)
\(14\) −2.44795 −0.654242
\(15\) −4.34255 −1.12124
\(16\) 8.93427 2.23357
\(17\) 2.11107 0.512009 0.256004 0.966676i \(-0.417594\pi\)
0.256004 + 0.966676i \(0.417594\pi\)
\(18\) −4.69341 −1.10625
\(19\) 4.72413 1.08379 0.541895 0.840446i \(-0.317707\pi\)
0.541895 + 0.840446i \(0.317707\pi\)
\(20\) 18.8311 4.21076
\(21\) 1.02967 0.224692
\(22\) 0 0
\(23\) −7.83891 −1.63453 −0.817263 0.576265i \(-0.804510\pi\)
−0.817263 + 0.576265i \(0.804510\pi\)
\(24\) −7.73948 −1.57981
\(25\) 10.8308 2.16616
\(26\) 7.26637 1.42505
\(27\) 5.24843 1.01006
\(28\) −4.46505 −0.843816
\(29\) −4.01133 −0.744885 −0.372442 0.928055i \(-0.621480\pi\)
−0.372442 + 0.928055i \(0.621480\pi\)
\(30\) −11.2680 −2.05724
\(31\) 1.00000 0.179605
\(32\) 9.00010 1.59101
\(33\) 0 0
\(34\) 5.47775 0.939426
\(35\) −3.75365 −0.634483
\(36\) −8.56077 −1.42679
\(37\) 5.69890 0.936893 0.468446 0.883492i \(-0.344814\pi\)
0.468446 + 0.883492i \(0.344814\pi\)
\(38\) 12.2581 1.98852
\(39\) −3.05641 −0.489417
\(40\) 28.2143 4.46107
\(41\) 1.83466 0.286526 0.143263 0.989685i \(-0.454241\pi\)
0.143263 + 0.989685i \(0.454241\pi\)
\(42\) 2.67175 0.412260
\(43\) −7.78390 −1.18703 −0.593516 0.804822i \(-0.702261\pi\)
−0.593516 + 0.804822i \(0.702261\pi\)
\(44\) 0 0
\(45\) −7.19681 −1.07284
\(46\) −20.3402 −2.99900
\(47\) 12.9036 1.88219 0.941094 0.338144i \(-0.109799\pi\)
0.941094 + 0.338144i \(0.109799\pi\)
\(48\) −9.75109 −1.40745
\(49\) −6.10997 −0.872853
\(50\) 28.1035 3.97444
\(51\) −2.30407 −0.322634
\(52\) 13.2538 1.83798
\(53\) −3.11074 −0.427293 −0.213646 0.976911i \(-0.568534\pi\)
−0.213646 + 0.976911i \(0.568534\pi\)
\(54\) 13.6185 1.85324
\(55\) 0 0
\(56\) −6.68991 −0.893977
\(57\) −5.15603 −0.682933
\(58\) −10.4085 −1.36670
\(59\) −2.78768 −0.362925 −0.181462 0.983398i \(-0.558083\pi\)
−0.181462 + 0.983398i \(0.558083\pi\)
\(60\) −20.5527 −2.65334
\(61\) 12.8934 1.65082 0.825412 0.564530i \(-0.190943\pi\)
0.825412 + 0.564530i \(0.190943\pi\)
\(62\) 2.59478 0.329537
\(63\) 1.70644 0.214991
\(64\) 5.48470 0.685587
\(65\) 11.1422 1.38201
\(66\) 0 0
\(67\) 2.15735 0.263562 0.131781 0.991279i \(-0.457930\pi\)
0.131781 + 0.991279i \(0.457930\pi\)
\(68\) 9.99139 1.21163
\(69\) 8.55558 1.02997
\(70\) −9.73989 −1.16414
\(71\) −1.74810 −0.207462 −0.103731 0.994605i \(-0.533078\pi\)
−0.103731 + 0.994605i \(0.533078\pi\)
\(72\) −12.8265 −1.51161
\(73\) −4.23766 −0.495980 −0.247990 0.968763i \(-0.579770\pi\)
−0.247990 + 0.968763i \(0.579770\pi\)
\(74\) 14.7874 1.71900
\(75\) −11.8210 −1.36497
\(76\) 22.3587 2.56472
\(77\) 0 0
\(78\) −7.93069 −0.897974
\(79\) −2.12274 −0.238827 −0.119414 0.992845i \(-0.538101\pi\)
−0.119414 + 0.992845i \(0.538101\pi\)
\(80\) 35.5476 3.97435
\(81\) −0.301892 −0.0335436
\(82\) 4.76053 0.525713
\(83\) −7.51015 −0.824346 −0.412173 0.911106i \(-0.635230\pi\)
−0.412173 + 0.911106i \(0.635230\pi\)
\(84\) 4.87327 0.531717
\(85\) 8.39950 0.911054
\(86\) −20.1975 −2.17795
\(87\) 4.37806 0.469377
\(88\) 0 0
\(89\) −10.6723 −1.13126 −0.565628 0.824660i \(-0.691366\pi\)
−0.565628 + 0.824660i \(0.691366\pi\)
\(90\) −18.6741 −1.96843
\(91\) −2.64192 −0.276949
\(92\) −37.1005 −3.86800
\(93\) −1.09142 −0.113175
\(94\) 33.4821 3.45341
\(95\) 18.7963 1.92846
\(96\) −9.82293 −1.00255
\(97\) −0.345394 −0.0350694 −0.0175347 0.999846i \(-0.505582\pi\)
−0.0175347 + 0.999846i \(0.505582\pi\)
\(98\) −15.8540 −1.60150
\(99\) 0 0
\(100\) 51.2607 5.12607
\(101\) 18.7992 1.87059 0.935296 0.353868i \(-0.115134\pi\)
0.935296 + 0.353868i \(0.115134\pi\)
\(102\) −5.97855 −0.591964
\(103\) −5.80601 −0.572083 −0.286041 0.958217i \(-0.592339\pi\)
−0.286041 + 0.958217i \(0.592339\pi\)
\(104\) 19.8580 1.94724
\(105\) 4.09683 0.399810
\(106\) −8.07167 −0.783990
\(107\) −10.2364 −0.989588 −0.494794 0.869010i \(-0.664757\pi\)
−0.494794 + 0.869010i \(0.664757\pi\)
\(108\) 24.8401 2.39024
\(109\) −6.48908 −0.621541 −0.310771 0.950485i \(-0.600587\pi\)
−0.310771 + 0.950485i \(0.600587\pi\)
\(110\) 0 0
\(111\) −6.21992 −0.590368
\(112\) −8.42873 −0.796440
\(113\) −10.0149 −0.942119 −0.471060 0.882101i \(-0.656128\pi\)
−0.471060 + 0.882101i \(0.656128\pi\)
\(114\) −13.3788 −1.25303
\(115\) −31.1894 −2.90843
\(116\) −18.9851 −1.76272
\(117\) −5.06531 −0.468288
\(118\) −7.23340 −0.665888
\(119\) −1.99161 −0.182571
\(120\) −30.7938 −2.81108
\(121\) 0 0
\(122\) 33.4554 3.02891
\(123\) −2.00239 −0.180550
\(124\) 4.73286 0.425024
\(125\) 23.1996 2.07503
\(126\) 4.42783 0.394463
\(127\) 7.68397 0.681842 0.340921 0.940092i \(-0.389261\pi\)
0.340921 + 0.940092i \(0.389261\pi\)
\(128\) −3.76863 −0.333103
\(129\) 8.49553 0.747990
\(130\) 28.9114 2.53570
\(131\) 17.9971 1.57241 0.786207 0.617963i \(-0.212042\pi\)
0.786207 + 0.617963i \(0.212042\pi\)
\(132\) 0 0
\(133\) −4.45682 −0.386455
\(134\) 5.59783 0.483579
\(135\) 20.8824 1.79727
\(136\) 14.9699 1.28366
\(137\) −6.61758 −0.565378 −0.282689 0.959212i \(-0.591226\pi\)
−0.282689 + 0.959212i \(0.591226\pi\)
\(138\) 22.1998 1.88977
\(139\) −4.16620 −0.353373 −0.176686 0.984267i \(-0.556538\pi\)
−0.176686 + 0.984267i \(0.556538\pi\)
\(140\) −17.7655 −1.50146
\(141\) −14.0833 −1.18603
\(142\) −4.53594 −0.380648
\(143\) 0 0
\(144\) −16.1602 −1.34669
\(145\) −15.9602 −1.32543
\(146\) −10.9958 −0.910017
\(147\) 6.66857 0.550014
\(148\) 26.9721 2.21709
\(149\) 19.0217 1.55832 0.779159 0.626826i \(-0.215646\pi\)
0.779159 + 0.626826i \(0.215646\pi\)
\(150\) −30.6729 −2.50443
\(151\) −14.4260 −1.17397 −0.586984 0.809598i \(-0.699685\pi\)
−0.586984 + 0.809598i \(0.699685\pi\)
\(152\) 33.4996 2.71718
\(153\) −3.81848 −0.308706
\(154\) 0 0
\(155\) 3.97879 0.319584
\(156\) −14.4656 −1.15817
\(157\) −19.8622 −1.58517 −0.792586 0.609760i \(-0.791266\pi\)
−0.792586 + 0.609760i \(0.791266\pi\)
\(158\) −5.50804 −0.438196
\(159\) 3.39514 0.269252
\(160\) 35.8095 2.83099
\(161\) 7.39535 0.582835
\(162\) −0.783343 −0.0615452
\(163\) −16.6976 −1.30785 −0.653927 0.756557i \(-0.726880\pi\)
−0.653927 + 0.756557i \(0.726880\pi\)
\(164\) 8.68320 0.678044
\(165\) 0 0
\(166\) −19.4872 −1.51250
\(167\) −10.0361 −0.776614 −0.388307 0.921530i \(-0.626940\pi\)
−0.388307 + 0.921530i \(0.626940\pi\)
\(168\) 7.30154 0.563326
\(169\) −5.15785 −0.396758
\(170\) 21.7948 1.67159
\(171\) −8.54497 −0.653450
\(172\) −36.8401 −2.80903
\(173\) −1.89812 −0.144311 −0.0721557 0.997393i \(-0.522988\pi\)
−0.0721557 + 0.997393i \(0.522988\pi\)
\(174\) 11.3601 0.861206
\(175\) −10.2179 −0.772404
\(176\) 0 0
\(177\) 3.04254 0.228691
\(178\) −27.6921 −2.07561
\(179\) −15.2085 −1.13674 −0.568369 0.822774i \(-0.692425\pi\)
−0.568369 + 0.822774i \(0.692425\pi\)
\(180\) −34.0615 −2.53880
\(181\) 15.6361 1.16223 0.581113 0.813823i \(-0.302618\pi\)
0.581113 + 0.813823i \(0.302618\pi\)
\(182\) −6.85520 −0.508141
\(183\) −14.0721 −1.04024
\(184\) −55.5871 −4.09793
\(185\) 22.6747 1.66708
\(186\) −2.83200 −0.207652
\(187\) 0 0
\(188\) 61.0712 4.45407
\(189\) −4.95145 −0.360165
\(190\) 48.7723 3.53832
\(191\) −12.4822 −0.903179 −0.451589 0.892226i \(-0.649143\pi\)
−0.451589 + 0.892226i \(0.649143\pi\)
\(192\) −5.98613 −0.432012
\(193\) 5.06516 0.364598 0.182299 0.983243i \(-0.441646\pi\)
0.182299 + 0.983243i \(0.441646\pi\)
\(194\) −0.896220 −0.0643448
\(195\) −12.1608 −0.870854
\(196\) −28.9177 −2.06555
\(197\) 4.08140 0.290788 0.145394 0.989374i \(-0.453555\pi\)
0.145394 + 0.989374i \(0.453555\pi\)
\(198\) 0 0
\(199\) −12.3299 −0.874046 −0.437023 0.899450i \(-0.643967\pi\)
−0.437023 + 0.899450i \(0.643967\pi\)
\(200\) 76.8031 5.43080
\(201\) −2.35458 −0.166079
\(202\) 48.7797 3.43213
\(203\) 3.78435 0.265609
\(204\) −10.9048 −0.763492
\(205\) 7.29974 0.509836
\(206\) −15.0653 −1.04965
\(207\) 14.1790 0.985506
\(208\) 25.0194 1.73478
\(209\) 0 0
\(210\) 10.6304 0.733564
\(211\) −17.7867 −1.22449 −0.612244 0.790669i \(-0.709733\pi\)
−0.612244 + 0.790669i \(0.709733\pi\)
\(212\) −14.7227 −1.01116
\(213\) 1.90792 0.130729
\(214\) −26.5611 −1.81568
\(215\) −30.9705 −2.11217
\(216\) 37.2175 2.53233
\(217\) −0.943415 −0.0640432
\(218\) −16.8377 −1.14039
\(219\) 4.62508 0.312534
\(220\) 0 0
\(221\) 5.91180 0.397670
\(222\) −16.1393 −1.08320
\(223\) 5.82635 0.390161 0.195081 0.980787i \(-0.437503\pi\)
0.195081 + 0.980787i \(0.437503\pi\)
\(224\) −8.49083 −0.567317
\(225\) −19.5907 −1.30605
\(226\) −25.9863 −1.72858
\(227\) 4.32502 0.287062 0.143531 0.989646i \(-0.454154\pi\)
0.143531 + 0.989646i \(0.454154\pi\)
\(228\) −24.4028 −1.61612
\(229\) 7.46753 0.493468 0.246734 0.969083i \(-0.420643\pi\)
0.246734 + 0.969083i \(0.420643\pi\)
\(230\) −80.9296 −5.33634
\(231\) 0 0
\(232\) −28.4450 −1.86751
\(233\) 23.4363 1.53536 0.767681 0.640832i \(-0.221410\pi\)
0.767681 + 0.640832i \(0.221410\pi\)
\(234\) −13.1434 −0.859208
\(235\) 51.3409 3.34911
\(236\) −13.1937 −0.858836
\(237\) 2.31681 0.150493
\(238\) −5.16779 −0.334978
\(239\) 12.7093 0.822096 0.411048 0.911614i \(-0.365163\pi\)
0.411048 + 0.911614i \(0.365163\pi\)
\(240\) −38.7976 −2.50437
\(241\) −0.104023 −0.00670070 −0.00335035 0.999994i \(-0.501066\pi\)
−0.00335035 + 0.999994i \(0.501066\pi\)
\(242\) 0 0
\(243\) −15.4158 −0.988925
\(244\) 61.0225 3.90656
\(245\) −24.3103 −1.55313
\(246\) −5.19576 −0.331270
\(247\) 13.2294 0.841765
\(248\) 7.09117 0.450290
\(249\) 8.19676 0.519449
\(250\) 60.1977 3.80724
\(251\) 4.07418 0.257160 0.128580 0.991699i \(-0.458958\pi\)
0.128580 + 0.991699i \(0.458958\pi\)
\(252\) 8.07636 0.508763
\(253\) 0 0
\(254\) 19.9382 1.25103
\(255\) −9.16742 −0.574086
\(256\) −20.7482 −1.29676
\(257\) −12.1047 −0.755072 −0.377536 0.925995i \(-0.623228\pi\)
−0.377536 + 0.925995i \(0.623228\pi\)
\(258\) 22.0440 1.37240
\(259\) −5.37642 −0.334075
\(260\) 52.7343 3.27044
\(261\) 7.25566 0.449114
\(262\) 46.6985 2.88504
\(263\) 7.76333 0.478708 0.239354 0.970932i \(-0.423064\pi\)
0.239354 + 0.970932i \(0.423064\pi\)
\(264\) 0 0
\(265\) −12.3770 −0.760312
\(266\) −11.5644 −0.709061
\(267\) 11.6480 0.712844
\(268\) 10.2104 0.623701
\(269\) −8.13513 −0.496008 −0.248004 0.968759i \(-0.579775\pi\)
−0.248004 + 0.968759i \(0.579775\pi\)
\(270\) 54.1853 3.29761
\(271\) −11.5528 −0.701782 −0.350891 0.936416i \(-0.614121\pi\)
−0.350891 + 0.936416i \(0.614121\pi\)
\(272\) 18.8608 1.14361
\(273\) 2.88346 0.174515
\(274\) −17.1711 −1.03735
\(275\) 0 0
\(276\) 40.4924 2.43736
\(277\) −2.27333 −0.136591 −0.0682956 0.997665i \(-0.521756\pi\)
−0.0682956 + 0.997665i \(0.521756\pi\)
\(278\) −10.8104 −0.648362
\(279\) −1.80879 −0.108290
\(280\) −26.6178 −1.59072
\(281\) 21.4312 1.27848 0.639238 0.769009i \(-0.279250\pi\)
0.639238 + 0.769009i \(0.279250\pi\)
\(282\) −36.5431 −2.17611
\(283\) 26.4702 1.57349 0.786745 0.617278i \(-0.211765\pi\)
0.786745 + 0.617278i \(0.211765\pi\)
\(284\) −8.27354 −0.490944
\(285\) −20.5148 −1.21519
\(286\) 0 0
\(287\) −1.73085 −0.102169
\(288\) −16.2793 −0.959268
\(289\) −12.5434 −0.737847
\(290\) −41.4133 −2.43187
\(291\) 0.376971 0.0220984
\(292\) −20.0563 −1.17370
\(293\) 27.0896 1.58259 0.791294 0.611436i \(-0.209408\pi\)
0.791294 + 0.611436i \(0.209408\pi\)
\(294\) 17.3034 1.00916
\(295\) −11.0916 −0.645777
\(296\) 40.4118 2.34889
\(297\) 0 0
\(298\) 49.3571 2.85918
\(299\) −21.9520 −1.26951
\(300\) −55.9472 −3.23011
\(301\) 7.34344 0.423269
\(302\) −37.4322 −2.15398
\(303\) −20.5179 −1.17872
\(304\) 42.2067 2.42072
\(305\) 51.3000 2.93743
\(306\) −9.90810 −0.566409
\(307\) −9.15990 −0.522783 −0.261392 0.965233i \(-0.584181\pi\)
−0.261392 + 0.965233i \(0.584181\pi\)
\(308\) 0 0
\(309\) 6.33682 0.360489
\(310\) 10.3241 0.586368
\(311\) 2.85040 0.161632 0.0808158 0.996729i \(-0.474247\pi\)
0.0808158 + 0.996729i \(0.474247\pi\)
\(312\) −21.6735 −1.22702
\(313\) 20.8258 1.17714 0.588571 0.808446i \(-0.299691\pi\)
0.588571 + 0.808446i \(0.299691\pi\)
\(314\) −51.5379 −2.90845
\(315\) 6.78958 0.382549
\(316\) −10.0467 −0.565168
\(317\) 17.8779 1.00413 0.502063 0.864831i \(-0.332575\pi\)
0.502063 + 0.864831i \(0.332575\pi\)
\(318\) 8.80962 0.494019
\(319\) 0 0
\(320\) 21.8225 1.21991
\(321\) 11.1722 0.623573
\(322\) 19.1893 1.06938
\(323\) 9.97296 0.554910
\(324\) −1.42881 −0.0793786
\(325\) 30.3304 1.68243
\(326\) −43.3265 −2.39963
\(327\) 7.08234 0.391654
\(328\) 13.0099 0.718351
\(329\) −12.1735 −0.671146
\(330\) 0 0
\(331\) −27.8924 −1.53310 −0.766552 0.642182i \(-0.778029\pi\)
−0.766552 + 0.642182i \(0.778029\pi\)
\(332\) −35.5445 −1.95076
\(333\) −10.3081 −0.564882
\(334\) −26.0413 −1.42492
\(335\) 8.58364 0.468974
\(336\) 9.19932 0.501864
\(337\) −11.8451 −0.645244 −0.322622 0.946528i \(-0.604564\pi\)
−0.322622 + 0.946528i \(0.604564\pi\)
\(338\) −13.3835 −0.727965
\(339\) 10.9305 0.593661
\(340\) 39.7537 2.15595
\(341\) 0 0
\(342\) −22.1723 −1.19894
\(343\) 12.3681 0.667817
\(344\) −55.1969 −2.97602
\(345\) 34.0409 1.83270
\(346\) −4.92519 −0.264780
\(347\) 3.15873 0.169570 0.0847848 0.996399i \(-0.472980\pi\)
0.0847848 + 0.996399i \(0.472980\pi\)
\(348\) 20.7208 1.11075
\(349\) 0.910133 0.0487183 0.0243592 0.999703i \(-0.492245\pi\)
0.0243592 + 0.999703i \(0.492245\pi\)
\(350\) −26.5133 −1.41719
\(351\) 14.6976 0.784501
\(352\) 0 0
\(353\) −29.5861 −1.57471 −0.787354 0.616502i \(-0.788549\pi\)
−0.787354 + 0.616502i \(0.788549\pi\)
\(354\) 7.89471 0.419599
\(355\) −6.95535 −0.369152
\(356\) −50.5103 −2.67704
\(357\) 2.17369 0.115044
\(358\) −39.4627 −2.08567
\(359\) −1.47815 −0.0780137 −0.0390069 0.999239i \(-0.512419\pi\)
−0.0390069 + 0.999239i \(0.512419\pi\)
\(360\) −51.0338 −2.68972
\(361\) 3.31742 0.174601
\(362\) 40.5723 2.13243
\(363\) 0 0
\(364\) −12.5039 −0.655381
\(365\) −16.8608 −0.882533
\(366\) −36.5140 −1.90862
\(367\) −0.221728 −0.0115741 −0.00578706 0.999983i \(-0.501842\pi\)
−0.00578706 + 0.999983i \(0.501842\pi\)
\(368\) −70.0350 −3.65083
\(369\) −3.31852 −0.172755
\(370\) 58.8359 3.05873
\(371\) 2.93472 0.152363
\(372\) −5.16556 −0.267822
\(373\) 13.8927 0.719338 0.359669 0.933080i \(-0.382890\pi\)
0.359669 + 0.933080i \(0.382890\pi\)
\(374\) 0 0
\(375\) −25.3206 −1.30755
\(376\) 91.5019 4.71885
\(377\) −11.2333 −0.578542
\(378\) −12.8479 −0.660825
\(379\) −15.7486 −0.808950 −0.404475 0.914549i \(-0.632546\pi\)
−0.404475 + 0.914549i \(0.632546\pi\)
\(380\) 88.9606 4.56358
\(381\) −8.38648 −0.429652
\(382\) −32.3885 −1.65714
\(383\) −27.8268 −1.42188 −0.710941 0.703251i \(-0.751731\pi\)
−0.710941 + 0.703251i \(0.751731\pi\)
\(384\) 4.11318 0.209900
\(385\) 0 0
\(386\) 13.1430 0.668959
\(387\) 14.0795 0.715699
\(388\) −1.63470 −0.0829894
\(389\) −18.8336 −0.954901 −0.477451 0.878659i \(-0.658439\pi\)
−0.477451 + 0.878659i \(0.658439\pi\)
\(390\) −31.5546 −1.59783
\(391\) −16.5485 −0.836892
\(392\) −43.3268 −2.18834
\(393\) −19.6425 −0.990832
\(394\) 10.5903 0.533533
\(395\) −8.44595 −0.424962
\(396\) 0 0
\(397\) 9.19514 0.461491 0.230745 0.973014i \(-0.425884\pi\)
0.230745 + 0.973014i \(0.425884\pi\)
\(398\) −31.9934 −1.60369
\(399\) 4.86428 0.243518
\(400\) 96.7654 4.83827
\(401\) 34.9864 1.74714 0.873569 0.486700i \(-0.161800\pi\)
0.873569 + 0.486700i \(0.161800\pi\)
\(402\) −6.10961 −0.304720
\(403\) 2.80038 0.139497
\(404\) 88.9741 4.42663
\(405\) −1.20117 −0.0596865
\(406\) 9.81953 0.487335
\(407\) 0 0
\(408\) −16.3386 −0.808879
\(409\) −26.7715 −1.32377 −0.661883 0.749607i \(-0.730242\pi\)
−0.661883 + 0.749607i \(0.730242\pi\)
\(410\) 18.9412 0.935438
\(411\) 7.22259 0.356264
\(412\) −27.4790 −1.35379
\(413\) 2.62994 0.129411
\(414\) 36.7912 1.80819
\(415\) −29.8813 −1.46682
\(416\) 25.2037 1.23571
\(417\) 4.54709 0.222672
\(418\) 0 0
\(419\) −11.7485 −0.573951 −0.286975 0.957938i \(-0.592650\pi\)
−0.286975 + 0.957938i \(0.592650\pi\)
\(420\) 19.3897 0.946122
\(421\) −16.5030 −0.804309 −0.402155 0.915572i \(-0.631739\pi\)
−0.402155 + 0.915572i \(0.631739\pi\)
\(422\) −46.1526 −2.24667
\(423\) −23.3400 −1.13483
\(424\) −22.0588 −1.07127
\(425\) 22.8645 1.10909
\(426\) 4.95064 0.239859
\(427\) −12.1638 −0.588646
\(428\) −48.4474 −2.34179
\(429\) 0 0
\(430\) −80.3616 −3.87538
\(431\) 27.7178 1.33512 0.667559 0.744556i \(-0.267339\pi\)
0.667559 + 0.744556i \(0.267339\pi\)
\(432\) 46.8909 2.25604
\(433\) 7.81740 0.375680 0.187840 0.982200i \(-0.439851\pi\)
0.187840 + 0.982200i \(0.439851\pi\)
\(434\) −2.44795 −0.117505
\(435\) 17.4194 0.835197
\(436\) −30.7119 −1.47083
\(437\) −37.0321 −1.77148
\(438\) 12.0011 0.573433
\(439\) −39.7818 −1.89868 −0.949340 0.314251i \(-0.898246\pi\)
−0.949340 + 0.314251i \(0.898246\pi\)
\(440\) 0 0
\(441\) 11.0517 0.526270
\(442\) 15.3398 0.729639
\(443\) −8.71872 −0.414239 −0.207119 0.978316i \(-0.566409\pi\)
−0.207119 + 0.978316i \(0.566409\pi\)
\(444\) −29.4380 −1.39707
\(445\) −42.4627 −2.01293
\(446\) 15.1181 0.715862
\(447\) −20.7607 −0.981950
\(448\) −5.17434 −0.244465
\(449\) −34.0178 −1.60540 −0.802700 0.596383i \(-0.796604\pi\)
−0.802700 + 0.596383i \(0.796604\pi\)
\(450\) −50.8334 −2.39631
\(451\) 0 0
\(452\) −47.3990 −2.22946
\(453\) 15.7449 0.739758
\(454\) 11.2225 0.526696
\(455\) −10.5117 −0.492795
\(456\) −36.5623 −1.71219
\(457\) −23.4481 −1.09686 −0.548428 0.836198i \(-0.684773\pi\)
−0.548428 + 0.836198i \(0.684773\pi\)
\(458\) 19.3766 0.905407
\(459\) 11.0798 0.517160
\(460\) −147.615 −6.88260
\(461\) 34.1914 1.59245 0.796227 0.604998i \(-0.206826\pi\)
0.796227 + 0.604998i \(0.206826\pi\)
\(462\) 0 0
\(463\) 8.34781 0.387956 0.193978 0.981006i \(-0.437861\pi\)
0.193978 + 0.981006i \(0.437861\pi\)
\(464\) −35.8383 −1.66375
\(465\) −4.34255 −0.201381
\(466\) 60.8120 2.81706
\(467\) 9.68806 0.448310 0.224155 0.974554i \(-0.428038\pi\)
0.224155 + 0.974554i \(0.428038\pi\)
\(468\) −23.9734 −1.10817
\(469\) −2.03527 −0.0939801
\(470\) 133.218 6.14490
\(471\) 21.6780 0.998872
\(472\) −19.7679 −0.909891
\(473\) 0 0
\(474\) 6.01161 0.276122
\(475\) 51.1661 2.34766
\(476\) −9.42603 −0.432041
\(477\) 5.62668 0.257628
\(478\) 32.9778 1.50837
\(479\) −35.1006 −1.60379 −0.801895 0.597466i \(-0.796174\pi\)
−0.801895 + 0.597466i \(0.796174\pi\)
\(480\) −39.0834 −1.78391
\(481\) 15.9591 0.727672
\(482\) −0.269916 −0.0122943
\(483\) −8.07146 −0.367264
\(484\) 0 0
\(485\) −1.37425 −0.0624015
\(486\) −40.0006 −1.81446
\(487\) 38.6855 1.75301 0.876505 0.481393i \(-0.159869\pi\)
0.876505 + 0.481393i \(0.159869\pi\)
\(488\) 91.4290 4.13879
\(489\) 18.2241 0.824124
\(490\) −63.0798 −2.84966
\(491\) −12.4288 −0.560905 −0.280452 0.959868i \(-0.590484\pi\)
−0.280452 + 0.959868i \(0.590484\pi\)
\(492\) −9.47706 −0.427259
\(493\) −8.46818 −0.381388
\(494\) 34.3273 1.54446
\(495\) 0 0
\(496\) 8.93427 0.401161
\(497\) 1.64919 0.0739762
\(498\) 21.2688 0.953076
\(499\) 0.696612 0.0311846 0.0155923 0.999878i \(-0.495037\pi\)
0.0155923 + 0.999878i \(0.495037\pi\)
\(500\) 109.800 4.91042
\(501\) 10.9536 0.489371
\(502\) 10.5716 0.471833
\(503\) −17.5725 −0.783521 −0.391761 0.920067i \(-0.628134\pi\)
−0.391761 + 0.920067i \(0.628134\pi\)
\(504\) 12.1007 0.539007
\(505\) 74.7982 3.32848
\(506\) 0 0
\(507\) 5.62941 0.250011
\(508\) 36.3672 1.61353
\(509\) 26.6855 1.18281 0.591407 0.806373i \(-0.298573\pi\)
0.591407 + 0.806373i \(0.298573\pi\)
\(510\) −23.7874 −1.05332
\(511\) 3.99787 0.176855
\(512\) −46.2996 −2.04617
\(513\) 24.7943 1.09469
\(514\) −31.4090 −1.38539
\(515\) −23.1009 −1.01795
\(516\) 40.2082 1.77007
\(517\) 0 0
\(518\) −13.9506 −0.612955
\(519\) 2.07165 0.0909355
\(520\) 79.0109 3.46486
\(521\) −15.6986 −0.687767 −0.343884 0.939012i \(-0.611743\pi\)
−0.343884 + 0.939012i \(0.611743\pi\)
\(522\) 18.8268 0.824027
\(523\) 22.1730 0.969557 0.484778 0.874637i \(-0.338900\pi\)
0.484778 + 0.874637i \(0.338900\pi\)
\(524\) 85.1779 3.72101
\(525\) 11.1521 0.486718
\(526\) 20.1441 0.878325
\(527\) 2.11107 0.0919595
\(528\) 0 0
\(529\) 38.4486 1.67168
\(530\) −32.1155 −1.39501
\(531\) 5.04233 0.218818
\(532\) −21.0935 −0.914519
\(533\) 5.13775 0.222541
\(534\) 30.2239 1.30791
\(535\) −40.7285 −1.76084
\(536\) 15.2981 0.660778
\(537\) 16.5989 0.716297
\(538\) −21.1088 −0.910067
\(539\) 0 0
\(540\) 98.8337 4.25313
\(541\) 26.4427 1.13686 0.568431 0.822731i \(-0.307551\pi\)
0.568431 + 0.822731i \(0.307551\pi\)
\(542\) −29.9769 −1.28762
\(543\) −17.0657 −0.732358
\(544\) 18.9998 0.814610
\(545\) −25.8187 −1.10595
\(546\) 7.48193 0.320197
\(547\) 2.98712 0.127720 0.0638599 0.997959i \(-0.479659\pi\)
0.0638599 + 0.997959i \(0.479659\pi\)
\(548\) −31.3201 −1.33793
\(549\) −23.3214 −0.995333
\(550\) 0 0
\(551\) −18.9500 −0.807299
\(552\) 60.6691 2.58225
\(553\) 2.00263 0.0851603
\(554\) −5.89879 −0.250615
\(555\) −24.7478 −1.05048
\(556\) −19.7181 −0.836232
\(557\) −20.7439 −0.878949 −0.439475 0.898255i \(-0.644835\pi\)
−0.439475 + 0.898255i \(0.644835\pi\)
\(558\) −4.69341 −0.198688
\(559\) −21.7979 −0.921953
\(560\) −33.5362 −1.41716
\(561\) 0 0
\(562\) 55.6091 2.34573
\(563\) −17.2469 −0.726868 −0.363434 0.931620i \(-0.618396\pi\)
−0.363434 + 0.931620i \(0.618396\pi\)
\(564\) −66.6546 −2.80666
\(565\) −39.8471 −1.67638
\(566\) 68.6843 2.88701
\(567\) 0.284809 0.0119609
\(568\) −12.3961 −0.520129
\(569\) −28.1306 −1.17930 −0.589648 0.807660i \(-0.700733\pi\)
−0.589648 + 0.807660i \(0.700733\pi\)
\(570\) −53.2313 −2.22961
\(571\) 8.79886 0.368221 0.184110 0.982906i \(-0.441060\pi\)
0.184110 + 0.982906i \(0.441060\pi\)
\(572\) 0 0
\(573\) 13.6234 0.569124
\(574\) −4.49116 −0.187457
\(575\) −84.9017 −3.54065
\(576\) −9.92068 −0.413362
\(577\) 10.6156 0.441934 0.220967 0.975281i \(-0.429079\pi\)
0.220967 + 0.975281i \(0.429079\pi\)
\(578\) −32.5473 −1.35379
\(579\) −5.52824 −0.229746
\(580\) −75.5377 −3.13653
\(581\) 7.08519 0.293943
\(582\) 0.978156 0.0405459
\(583\) 0 0
\(584\) −30.0499 −1.24348
\(585\) −20.1538 −0.833259
\(586\) 70.2913 2.90371
\(587\) 18.7969 0.775831 0.387916 0.921695i \(-0.373195\pi\)
0.387916 + 0.921695i \(0.373195\pi\)
\(588\) 31.5614 1.30157
\(589\) 4.72413 0.194654
\(590\) −28.7802 −1.18486
\(591\) −4.45454 −0.183235
\(592\) 50.9155 2.09261
\(593\) −24.9434 −1.02430 −0.512151 0.858895i \(-0.671151\pi\)
−0.512151 + 0.858895i \(0.671151\pi\)
\(594\) 0 0
\(595\) −7.92421 −0.324861
\(596\) 90.0271 3.68765
\(597\) 13.4572 0.550766
\(598\) −56.9604 −2.32929
\(599\) −35.2146 −1.43883 −0.719415 0.694580i \(-0.755590\pi\)
−0.719415 + 0.694580i \(0.755590\pi\)
\(600\) −83.8248 −3.42213
\(601\) −11.4452 −0.466857 −0.233429 0.972374i \(-0.574995\pi\)
−0.233429 + 0.972374i \(0.574995\pi\)
\(602\) 19.0546 0.776607
\(603\) −3.90219 −0.158910
\(604\) −68.2761 −2.77812
\(605\) 0 0
\(606\) −53.2394 −2.16270
\(607\) 12.5735 0.510341 0.255170 0.966896i \(-0.417868\pi\)
0.255170 + 0.966896i \(0.417868\pi\)
\(608\) 42.5177 1.72432
\(609\) −4.13033 −0.167369
\(610\) 133.112 5.38955
\(611\) 36.1351 1.46187
\(612\) −18.0724 −0.730532
\(613\) −39.4093 −1.59173 −0.795863 0.605476i \(-0.792983\pi\)
−0.795863 + 0.605476i \(0.792983\pi\)
\(614\) −23.7679 −0.959194
\(615\) −7.96711 −0.321265
\(616\) 0 0
\(617\) −10.4788 −0.421862 −0.210931 0.977501i \(-0.567650\pi\)
−0.210931 + 0.977501i \(0.567650\pi\)
\(618\) 16.4426 0.661419
\(619\) 41.3087 1.66034 0.830168 0.557513i \(-0.188244\pi\)
0.830168 + 0.557513i \(0.188244\pi\)
\(620\) 18.8311 0.756275
\(621\) −41.1420 −1.65097
\(622\) 7.39616 0.296559
\(623\) 10.0684 0.403380
\(624\) −27.3068 −1.09315
\(625\) 38.1523 1.52609
\(626\) 54.0382 2.15980
\(627\) 0 0
\(628\) −94.0049 −3.75120
\(629\) 12.0308 0.479697
\(630\) 17.6174 0.701896
\(631\) 28.2903 1.12622 0.563109 0.826383i \(-0.309605\pi\)
0.563109 + 0.826383i \(0.309605\pi\)
\(632\) −15.0527 −0.598765
\(633\) 19.4129 0.771592
\(634\) 46.3893 1.84235
\(635\) 30.5730 1.21325
\(636\) 16.0687 0.637166
\(637\) −17.1103 −0.677933
\(638\) 0 0
\(639\) 3.16196 0.125085
\(640\) −14.9946 −0.592715
\(641\) −10.4828 −0.414047 −0.207024 0.978336i \(-0.566378\pi\)
−0.207024 + 0.978336i \(0.566378\pi\)
\(642\) 28.9895 1.14412
\(643\) 9.87595 0.389469 0.194735 0.980856i \(-0.437615\pi\)
0.194735 + 0.980856i \(0.437615\pi\)
\(644\) 35.0012 1.37924
\(645\) 33.8020 1.33095
\(646\) 25.8776 1.01814
\(647\) −23.0701 −0.906979 −0.453490 0.891262i \(-0.649821\pi\)
−0.453490 + 0.891262i \(0.649821\pi\)
\(648\) −2.14077 −0.0840973
\(649\) 0 0
\(650\) 78.7006 3.08689
\(651\) 1.02967 0.0403558
\(652\) −79.0273 −3.09495
\(653\) 23.4917 0.919302 0.459651 0.888100i \(-0.347974\pi\)
0.459651 + 0.888100i \(0.347974\pi\)
\(654\) 18.3771 0.718601
\(655\) 71.6068 2.79791
\(656\) 16.3914 0.639975
\(657\) 7.66504 0.299042
\(658\) −31.5875 −1.23141
\(659\) 22.9063 0.892303 0.446152 0.894957i \(-0.352794\pi\)
0.446152 + 0.894957i \(0.352794\pi\)
\(660\) 0 0
\(661\) 41.9465 1.63153 0.815764 0.578385i \(-0.196317\pi\)
0.815764 + 0.578385i \(0.196317\pi\)
\(662\) −72.3745 −2.81291
\(663\) −6.45228 −0.250586
\(664\) −53.2557 −2.06672
\(665\) −17.7328 −0.687647
\(666\) −26.7473 −1.03644
\(667\) 31.4445 1.21753
\(668\) −47.4993 −1.83780
\(669\) −6.35902 −0.245854
\(670\) 22.2726 0.860466
\(671\) 0 0
\(672\) 9.26710 0.357486
\(673\) −37.2341 −1.43527 −0.717635 0.696419i \(-0.754775\pi\)
−0.717635 + 0.696419i \(0.754775\pi\)
\(674\) −30.7354 −1.18388
\(675\) 56.8448 2.18796
\(676\) −24.4114 −0.938900
\(677\) 30.4392 1.16987 0.584937 0.811079i \(-0.301119\pi\)
0.584937 + 0.811079i \(0.301119\pi\)
\(678\) 28.3621 1.08924
\(679\) 0.325850 0.0125050
\(680\) 59.5623 2.28411
\(681\) −4.72043 −0.180887
\(682\) 0 0
\(683\) 22.5409 0.862505 0.431252 0.902231i \(-0.358072\pi\)
0.431252 + 0.902231i \(0.358072\pi\)
\(684\) −40.4422 −1.54635
\(685\) −26.3300 −1.00602
\(686\) 32.0926 1.22530
\(687\) −8.15024 −0.310951
\(688\) −69.5434 −2.65132
\(689\) −8.71126 −0.331873
\(690\) 88.3285 3.36261
\(691\) 24.7842 0.942834 0.471417 0.881910i \(-0.343743\pi\)
0.471417 + 0.881910i \(0.343743\pi\)
\(692\) −8.98354 −0.341503
\(693\) 0 0
\(694\) 8.19620 0.311123
\(695\) −16.5765 −0.628781
\(696\) 31.0456 1.17678
\(697\) 3.87309 0.146704
\(698\) 2.36159 0.0893876
\(699\) −25.5790 −0.967485
\(700\) −48.3601 −1.82784
\(701\) −23.4281 −0.884868 −0.442434 0.896801i \(-0.645885\pi\)
−0.442434 + 0.896801i \(0.645885\pi\)
\(702\) 38.1371 1.43939
\(703\) 26.9223 1.01540
\(704\) 0 0
\(705\) −56.0347 −2.11039
\(706\) −76.7692 −2.88925
\(707\) −17.7354 −0.667010
\(708\) 14.3999 0.541182
\(709\) −0.631329 −0.0237101 −0.0118550 0.999930i \(-0.503774\pi\)
−0.0118550 + 0.999930i \(0.503774\pi\)
\(710\) −18.0476 −0.677313
\(711\) 3.83960 0.143996
\(712\) −75.6788 −2.83618
\(713\) −7.83891 −0.293570
\(714\) 5.64025 0.211081
\(715\) 0 0
\(716\) −71.9798 −2.69001
\(717\) −13.8712 −0.518031
\(718\) −3.83547 −0.143138
\(719\) 13.8351 0.515961 0.257981 0.966150i \(-0.416943\pi\)
0.257981 + 0.966150i \(0.416943\pi\)
\(720\) −64.2983 −2.39626
\(721\) 5.47747 0.203992
\(722\) 8.60796 0.320355
\(723\) 0.113533 0.00422234
\(724\) 74.0037 2.75033
\(725\) −43.4459 −1.61354
\(726\) 0 0
\(727\) −42.5296 −1.57734 −0.788669 0.614819i \(-0.789229\pi\)
−0.788669 + 0.614819i \(0.789229\pi\)
\(728\) −18.7343 −0.694340
\(729\) 17.7309 0.656699
\(730\) −43.7499 −1.61926
\(731\) −16.4323 −0.607771
\(732\) −66.6014 −2.46166
\(733\) −20.8343 −0.769531 −0.384766 0.923014i \(-0.625718\pi\)
−0.384766 + 0.923014i \(0.625718\pi\)
\(734\) −0.575335 −0.0212360
\(735\) 26.5329 0.978679
\(736\) −70.5510 −2.60054
\(737\) 0 0
\(738\) −8.61082 −0.316969
\(739\) 40.9275 1.50554 0.752772 0.658281i \(-0.228716\pi\)
0.752772 + 0.658281i \(0.228716\pi\)
\(740\) 107.316 3.94503
\(741\) −14.4389 −0.530425
\(742\) 7.61493 0.279553
\(743\) −37.2039 −1.36488 −0.682440 0.730942i \(-0.739081\pi\)
−0.682440 + 0.730942i \(0.739081\pi\)
\(744\) −7.73948 −0.283743
\(745\) 75.6834 2.77283
\(746\) 36.0485 1.31983
\(747\) 13.5843 0.497024
\(748\) 0 0
\(749\) 9.65715 0.352865
\(750\) −65.7012 −2.39907
\(751\) 7.31210 0.266822 0.133411 0.991061i \(-0.457407\pi\)
0.133411 + 0.991061i \(0.457407\pi\)
\(752\) 115.285 4.20400
\(753\) −4.44666 −0.162045
\(754\) −29.1478 −1.06150
\(755\) −57.3979 −2.08893
\(756\) −23.4345 −0.852306
\(757\) −14.4499 −0.525191 −0.262595 0.964906i \(-0.584578\pi\)
−0.262595 + 0.964906i \(0.584578\pi\)
\(758\) −40.8641 −1.48425
\(759\) 0 0
\(760\) 133.288 4.83487
\(761\) 32.7847 1.18844 0.594222 0.804301i \(-0.297460\pi\)
0.594222 + 0.804301i \(0.297460\pi\)
\(762\) −21.7610 −0.788319
\(763\) 6.12189 0.221627
\(764\) −59.0765 −2.13731
\(765\) −15.1930 −0.549302
\(766\) −72.2043 −2.60885
\(767\) −7.80656 −0.281879
\(768\) 22.6451 0.817133
\(769\) 13.1660 0.474776 0.237388 0.971415i \(-0.423709\pi\)
0.237388 + 0.971415i \(0.423709\pi\)
\(770\) 0 0
\(771\) 13.2114 0.475796
\(772\) 23.9727 0.862797
\(773\) 21.7279 0.781498 0.390749 0.920497i \(-0.372216\pi\)
0.390749 + 0.920497i \(0.372216\pi\)
\(774\) 36.5330 1.31315
\(775\) 10.8308 0.389054
\(776\) −2.44925 −0.0879228
\(777\) 5.86796 0.210512
\(778\) −48.8690 −1.75204
\(779\) 8.66718 0.310534
\(780\) −57.5555 −2.06082
\(781\) 0 0
\(782\) −42.9396 −1.53552
\(783\) −21.0532 −0.752380
\(784\) −54.5881 −1.94958
\(785\) −79.0274 −2.82061
\(786\) −50.9679 −1.81796
\(787\) 8.24564 0.293925 0.146963 0.989142i \(-0.453050\pi\)
0.146963 + 0.989142i \(0.453050\pi\)
\(788\) 19.3167 0.688130
\(789\) −8.47309 −0.301650
\(790\) −21.9154 −0.779714
\(791\) 9.44817 0.335938
\(792\) 0 0
\(793\) 36.1063 1.28217
\(794\) 23.8593 0.846736
\(795\) 13.5085 0.479099
\(796\) −58.3559 −2.06837
\(797\) −30.1405 −1.06763 −0.533816 0.845601i \(-0.679243\pi\)
−0.533816 + 0.845601i \(0.679243\pi\)
\(798\) 12.6217 0.446804
\(799\) 27.2404 0.963697
\(800\) 97.4783 3.44638
\(801\) 19.3039 0.682070
\(802\) 90.7819 3.20562
\(803\) 0 0
\(804\) −11.1439 −0.393015
\(805\) 29.4246 1.03708
\(806\) 7.26637 0.255947
\(807\) 8.87888 0.312551
\(808\) 133.308 4.68977
\(809\) 11.4464 0.402433 0.201216 0.979547i \(-0.435511\pi\)
0.201216 + 0.979547i \(0.435511\pi\)
\(810\) −3.11676 −0.109512
\(811\) −26.4982 −0.930477 −0.465238 0.885185i \(-0.654031\pi\)
−0.465238 + 0.885185i \(0.654031\pi\)
\(812\) 17.9108 0.628546
\(813\) 12.6090 0.442217
\(814\) 0 0
\(815\) −66.4362 −2.32716
\(816\) −20.5852 −0.720626
\(817\) −36.7721 −1.28649
\(818\) −69.4661 −2.42882
\(819\) 4.77869 0.166981
\(820\) 34.5487 1.20649
\(821\) 12.4000 0.432762 0.216381 0.976309i \(-0.430575\pi\)
0.216381 + 0.976309i \(0.430575\pi\)
\(822\) 18.7410 0.653668
\(823\) −46.6157 −1.62492 −0.812460 0.583016i \(-0.801872\pi\)
−0.812460 + 0.583016i \(0.801872\pi\)
\(824\) −41.1714 −1.43427
\(825\) 0 0
\(826\) 6.82409 0.237441
\(827\) 14.2837 0.496693 0.248347 0.968671i \(-0.420113\pi\)
0.248347 + 0.968671i \(0.420113\pi\)
\(828\) 67.1071 2.33213
\(829\) −9.70944 −0.337223 −0.168611 0.985683i \(-0.553928\pi\)
−0.168611 + 0.985683i \(0.553928\pi\)
\(830\) −77.5354 −2.69129
\(831\) 2.48117 0.0860708
\(832\) 15.3593 0.532486
\(833\) −12.8986 −0.446908
\(834\) 11.7987 0.408555
\(835\) −39.9314 −1.38188
\(836\) 0 0
\(837\) 5.24843 0.181412
\(838\) −30.4847 −1.05308
\(839\) 1.45901 0.0503705 0.0251852 0.999683i \(-0.491982\pi\)
0.0251852 + 0.999683i \(0.491982\pi\)
\(840\) 29.0513 1.00237
\(841\) −12.9092 −0.445147
\(842\) −42.8217 −1.47573
\(843\) −23.3905 −0.805611
\(844\) −84.1821 −2.89767
\(845\) −20.5220 −0.705979
\(846\) −60.5621 −2.08217
\(847\) 0 0
\(848\) −27.7922 −0.954388
\(849\) −28.8902 −0.991510
\(850\) 59.3284 2.03495
\(851\) −44.6732 −1.53138
\(852\) 9.02995 0.309361
\(853\) 42.5950 1.45842 0.729212 0.684288i \(-0.239887\pi\)
0.729212 + 0.684288i \(0.239887\pi\)
\(854\) −31.5623 −1.08004
\(855\) −33.9987 −1.16273
\(856\) −72.5879 −2.48100
\(857\) 10.9396 0.373689 0.186844 0.982390i \(-0.440174\pi\)
0.186844 + 0.982390i \(0.440174\pi\)
\(858\) 0 0
\(859\) −10.8166 −0.369059 −0.184530 0.982827i \(-0.559076\pi\)
−0.184530 + 0.982827i \(0.559076\pi\)
\(860\) −146.579 −4.99831
\(861\) 1.88909 0.0643799
\(862\) 71.9215 2.44965
\(863\) 37.4530 1.27491 0.637457 0.770486i \(-0.279986\pi\)
0.637457 + 0.770486i \(0.279986\pi\)
\(864\) 47.2364 1.60702
\(865\) −7.55223 −0.256783
\(866\) 20.2844 0.689292
\(867\) 13.6902 0.464943
\(868\) −4.46505 −0.151554
\(869\) 0 0
\(870\) 45.1995 1.53241
\(871\) 6.04140 0.204705
\(872\) −46.0152 −1.55827
\(873\) 0.624746 0.0211444
\(874\) −96.0899 −3.25029
\(875\) −21.8868 −0.739909
\(876\) 21.8899 0.739591
\(877\) −2.62187 −0.0885342 −0.0442671 0.999020i \(-0.514095\pi\)
−0.0442671 + 0.999020i \(0.514095\pi\)
\(878\) −103.225 −3.48367
\(879\) −29.5662 −0.997243
\(880\) 0 0
\(881\) 2.04370 0.0688540 0.0344270 0.999407i \(-0.489039\pi\)
0.0344270 + 0.999407i \(0.489039\pi\)
\(882\) 28.6766 0.965591
\(883\) 7.07464 0.238081 0.119040 0.992889i \(-0.462018\pi\)
0.119040 + 0.992889i \(0.462018\pi\)
\(884\) 27.9797 0.941060
\(885\) 12.1056 0.406926
\(886\) −22.6231 −0.760039
\(887\) 13.8271 0.464270 0.232135 0.972684i \(-0.425429\pi\)
0.232135 + 0.972684i \(0.425429\pi\)
\(888\) −44.1065 −1.48012
\(889\) −7.24917 −0.243130
\(890\) −110.181 −3.69328
\(891\) 0 0
\(892\) 27.5753 0.923291
\(893\) 60.9585 2.03990
\(894\) −53.8695 −1.80167
\(895\) −60.5115 −2.02268
\(896\) 3.55539 0.118777
\(897\) 23.9589 0.799965
\(898\) −88.2686 −2.94556
\(899\) −4.01133 −0.133785
\(900\) −92.7200 −3.09067
\(901\) −6.56698 −0.218778
\(902\) 0 0
\(903\) −8.01481 −0.266716
\(904\) −71.0171 −2.36199
\(905\) 62.2130 2.06803
\(906\) 40.8544 1.35730
\(907\) 8.47212 0.281312 0.140656 0.990059i \(-0.455079\pi\)
0.140656 + 0.990059i \(0.455079\pi\)
\(908\) 20.4697 0.679312
\(909\) −34.0039 −1.12784
\(910\) −27.2754 −0.904172
\(911\) −5.85873 −0.194108 −0.0970541 0.995279i \(-0.530942\pi\)
−0.0970541 + 0.995279i \(0.530942\pi\)
\(912\) −46.0654 −1.52538
\(913\) 0 0
\(914\) −60.8425 −2.01249
\(915\) −55.9901 −1.85097
\(916\) 35.3428 1.16776
\(917\) −16.9787 −0.560687
\(918\) 28.7496 0.948878
\(919\) 16.3243 0.538488 0.269244 0.963072i \(-0.413226\pi\)
0.269244 + 0.963072i \(0.413226\pi\)
\(920\) −221.170 −7.29174
\(921\) 9.99734 0.329424
\(922\) 88.7191 2.92181
\(923\) −4.89536 −0.161133
\(924\) 0 0
\(925\) 61.7236 2.02946
\(926\) 21.6607 0.711815
\(927\) 10.5019 0.344926
\(928\) −36.1023 −1.18512
\(929\) −35.3946 −1.16126 −0.580630 0.814167i \(-0.697194\pi\)
−0.580630 + 0.814167i \(0.697194\pi\)
\(930\) −11.2680 −0.369491
\(931\) −28.8643 −0.945989
\(932\) 110.921 3.63333
\(933\) −3.11100 −0.101850
\(934\) 25.1383 0.822552
\(935\) 0 0
\(936\) −35.9190 −1.17405
\(937\) 3.92506 0.128226 0.0641131 0.997943i \(-0.479578\pi\)
0.0641131 + 0.997943i \(0.479578\pi\)
\(938\) −5.28108 −0.172433
\(939\) −22.7297 −0.741757
\(940\) 242.990 7.92545
\(941\) 38.1921 1.24503 0.622513 0.782609i \(-0.286112\pi\)
0.622513 + 0.782609i \(0.286112\pi\)
\(942\) 56.2497 1.83271
\(943\) −14.3817 −0.468334
\(944\) −24.9059 −0.810617
\(945\) −19.7008 −0.640867
\(946\) 0 0
\(947\) 39.5964 1.28671 0.643355 0.765568i \(-0.277542\pi\)
0.643355 + 0.765568i \(0.277542\pi\)
\(948\) 10.9652 0.356132
\(949\) −11.8671 −0.385221
\(950\) 132.765 4.30746
\(951\) −19.5124 −0.632734
\(952\) −14.1229 −0.457724
\(953\) −13.8143 −0.447490 −0.223745 0.974648i \(-0.571828\pi\)
−0.223745 + 0.974648i \(0.571828\pi\)
\(954\) 14.6000 0.472692
\(955\) −49.6640 −1.60709
\(956\) 60.1514 1.94543
\(957\) 0 0
\(958\) −91.0783 −2.94261
\(959\) 6.24313 0.201601
\(960\) −23.8176 −0.768710
\(961\) 1.00000 0.0322581
\(962\) 41.4103 1.33512
\(963\) 18.5155 0.596653
\(964\) −0.492326 −0.0158567
\(965\) 20.1532 0.648756
\(966\) −20.9436 −0.673851
\(967\) −19.4593 −0.625768 −0.312884 0.949791i \(-0.601295\pi\)
−0.312884 + 0.949791i \(0.601295\pi\)
\(968\) 0 0
\(969\) −10.8847 −0.349668
\(970\) −3.56587 −0.114493
\(971\) −5.20244 −0.166954 −0.0834771 0.996510i \(-0.526603\pi\)
−0.0834771 + 0.996510i \(0.526603\pi\)
\(972\) −72.9609 −2.34022
\(973\) 3.93046 0.126005
\(974\) 100.380 3.21639
\(975\) −33.1033 −1.06016
\(976\) 115.193 3.68723
\(977\) −26.5606 −0.849748 −0.424874 0.905253i \(-0.639682\pi\)
−0.424874 + 0.905253i \(0.639682\pi\)
\(978\) 47.2876 1.51209
\(979\) 0 0
\(980\) −115.057 −3.67537
\(981\) 11.7374 0.374746
\(982\) −32.2500 −1.02914
\(983\) 48.0759 1.53338 0.766691 0.642016i \(-0.221902\pi\)
0.766691 + 0.642016i \(0.221902\pi\)
\(984\) −14.1993 −0.452658
\(985\) 16.2391 0.517420
\(986\) −21.9730 −0.699764
\(987\) 13.2864 0.422912
\(988\) 62.6129 1.99198
\(989\) 61.0173 1.94024
\(990\) 0 0
\(991\) 17.5197 0.556531 0.278265 0.960504i \(-0.410240\pi\)
0.278265 + 0.960504i \(0.410240\pi\)
\(992\) 9.00010 0.285753
\(993\) 30.4424 0.966061
\(994\) 4.27927 0.135730
\(995\) −49.0583 −1.55525
\(996\) 38.7942 1.22924
\(997\) 14.2638 0.451740 0.225870 0.974157i \(-0.427477\pi\)
0.225870 + 0.974157i \(0.427477\pi\)
\(998\) 1.80755 0.0572170
\(999\) 29.9103 0.946319
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3751.2.a.s.1.28 30
11.5 even 5 341.2.h.a.311.2 yes 60
11.9 even 5 341.2.h.a.125.2 60
11.10 odd 2 3751.2.a.p.1.3 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
341.2.h.a.125.2 60 11.9 even 5
341.2.h.a.311.2 yes 60 11.5 even 5
3751.2.a.p.1.3 30 11.10 odd 2
3751.2.a.s.1.28 30 1.1 even 1 trivial