Properties

Label 3751.1.d.e.1332.2
Level $3751$
Weight $1$
Character 3751.1332
Self dual yes
Analytic conductor $1.872$
Analytic rank $0$
Dimension $3$
Projective image $D_{9}$
CM discriminant -31
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3751,1,Mod(1332,3751)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3751.1332"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3751, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3751.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,3,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.87199286239\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.1636073786281.1
Artin image: $D_{18}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{18} - \cdots)\)

Embedding invariants

Embedding label 1332.2
Root \(-0.347296\) of defining polynomial
Character \(\chi\) \(=\) 3751.1332

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.347296 q^{2} -0.879385 q^{4} +0.347296 q^{5} -1.53209 q^{7} +0.652704 q^{8} +1.00000 q^{9} -0.120615 q^{10} +0.532089 q^{14} +0.652704 q^{16} -0.347296 q^{18} -0.347296 q^{19} -0.305407 q^{20} -0.879385 q^{25} +1.34730 q^{28} +1.00000 q^{31} -0.879385 q^{32} -0.532089 q^{35} -0.879385 q^{36} +0.120615 q^{38} +0.226682 q^{40} +1.87939 q^{41} +0.347296 q^{45} -1.00000 q^{47} +1.34730 q^{49} +0.305407 q^{50} -1.00000 q^{56} +1.53209 q^{59} -0.347296 q^{62} -1.53209 q^{63} -0.347296 q^{64} -1.00000 q^{67} +0.184793 q^{70} +1.53209 q^{71} +0.652704 q^{72} +0.305407 q^{76} +0.226682 q^{80} +1.00000 q^{81} -0.652704 q^{82} -0.120615 q^{90} +0.347296 q^{94} -0.120615 q^{95} +1.53209 q^{97} -0.467911 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{4} + 3 q^{8} + 3 q^{9} - 6 q^{10} - 3 q^{14} + 3 q^{16} - 3 q^{20} + 3 q^{25} + 3 q^{28} + 3 q^{31} + 3 q^{32} + 3 q^{35} + 3 q^{36} + 6 q^{38} - 6 q^{40} - 3 q^{47} + 3 q^{49} + 3 q^{50} - 3 q^{56}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3751\mathbb{Z}\right)^\times\).

\(n\) \(2421\) \(2543\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −0.879385 −0.879385
\(5\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(6\) 0 0
\(7\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(8\) 0.652704 0.652704
\(9\) 1.00000 1.00000
\(10\) −0.120615 −0.120615
\(11\) 0 0
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0.532089 0.532089
\(15\) 0 0
\(16\) 0.652704 0.652704
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −0.347296 −0.347296
\(19\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(20\) −0.305407 −0.305407
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −0.879385 −0.879385
\(26\) 0 0
\(27\) 0 0
\(28\) 1.34730 1.34730
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 1.00000 1.00000
\(32\) −0.879385 −0.879385
\(33\) 0 0
\(34\) 0 0
\(35\) −0.532089 −0.532089
\(36\) −0.879385 −0.879385
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0.120615 0.120615
\(39\) 0 0
\(40\) 0.226682 0.226682
\(41\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0.347296 0.347296
\(46\) 0 0
\(47\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0 0
\(49\) 1.34730 1.34730
\(50\) 0.305407 0.305407
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.00000 −1.00000
\(57\) 0 0
\(58\) 0 0
\(59\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −0.347296 −0.347296
\(63\) −1.53209 −1.53209
\(64\) −0.347296 −0.347296
\(65\) 0 0
\(66\) 0 0
\(67\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0.184793 0.184793
\(71\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(72\) 0.652704 0.652704
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.305407 0.305407
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0.226682 0.226682
\(81\) 1.00000 1.00000
\(82\) −0.652704 −0.652704
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −0.120615 −0.120615
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0.347296 0.347296
\(95\) −0.120615 −0.120615
\(96\) 0 0
\(97\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(98\) −0.467911 −0.467911
\(99\) 0 0
\(100\) 0.773318 0.773318
\(101\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(102\) 0 0
\(103\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(108\) 0 0
\(109\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.00000 −1.00000
\(113\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.532089 −0.532089
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) −0.879385 −0.879385
\(125\) −0.652704 −0.652704
\(126\) 0.532089 0.532089
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.00000 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 0.532089 0.532089
\(134\) 0.347296 0.347296
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0.467911 0.467911
\(141\) 0 0
\(142\) −0.532089 −0.532089
\(143\) 0 0
\(144\) 0.652704 0.652704
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −0.226682 −0.226682
\(153\) 0 0
\(154\) 0 0
\(155\) 0.347296 0.347296
\(156\) 0 0
\(157\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.305407 −0.305407
\(161\) 0 0
\(162\) −0.347296 −0.347296
\(163\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(164\) −1.65270 −1.65270
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) −0.347296 −0.347296
\(172\) 0 0
\(173\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 1.34730 1.34730
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −0.305407 −0.305407
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0.879385 0.879385
\(189\) 0 0
\(190\) 0.0418891 0.0418891
\(191\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(192\) 0 0
\(193\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(194\) −0.532089 −0.532089
\(195\) 0 0
\(196\) −1.18479 −1.18479
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −0.573978 −0.573978
\(201\) 0 0
\(202\) −0.652704 −0.652704
\(203\) 0 0
\(204\) 0 0
\(205\) 0.652704 0.652704
\(206\) −0.120615 −0.120615
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.652704 −0.652704
\(215\) 0 0
\(216\) 0 0
\(217\) −1.53209 −1.53209
\(218\) 0.532089 0.532089
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 1.34730 1.34730
\(225\) −0.879385 −0.879385
\(226\) −0.532089 −0.532089
\(227\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(234\) 0 0
\(235\) −0.347296 −0.347296
\(236\) −1.34730 −1.34730
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.467911 0.467911
\(246\) 0 0
\(247\) 0 0
\(248\) 0.652704 0.652704
\(249\) 0 0
\(250\) 0.226682 0.226682
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 1.34730 1.34730
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −0.347296 −0.347296
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.184793 −0.184793
\(267\) 0 0
\(268\) 0.879385 0.879385
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 1.00000 1.00000
\(280\) −0.347296 −0.347296
\(281\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(282\) 0 0
\(283\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(284\) −1.34730 −1.34730
\(285\) 0 0
\(286\) 0 0
\(287\) −2.87939 −2.87939
\(288\) −0.879385 −0.879385
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) 0 0
\(295\) 0.532089 0.532089
\(296\) 0 0
\(297\) 0 0
\(298\) 0.694593 0.694593
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.226682 −0.226682
\(305\) 0 0
\(306\) 0 0
\(307\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.120615 −0.120615
\(311\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −0.532089 −0.532089
\(315\) −0.532089 −0.532089
\(316\) 0 0
\(317\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.120615 −0.120615
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.879385 −0.879385
\(325\) 0 0
\(326\) 0.652704 0.652704
\(327\) 0 0
\(328\) 1.22668 1.22668
\(329\) 1.53209 1.53209
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.347296 −0.347296
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −0.347296 −0.347296
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0.120615 0.120615
\(343\) −0.532089 −0.532089
\(344\) 0 0
\(345\) 0 0
\(346\) −0.347296 −0.347296
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(350\) −0.467911 −0.467911
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0.532089 0.532089
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(360\) 0.226682 0.226682
\(361\) −0.879385 −0.879385
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 1.87939 1.87939
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −0.652704 −0.652704
\(377\) 0 0
\(378\) 0 0
\(379\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(380\) 0.106067 0.106067
\(381\) 0 0
\(382\) 0.652704 0.652704
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.652704 −0.652704
\(387\) 0 0
\(388\) −1.34730 −1.34730
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.879385 0.879385
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.573978 −0.573978
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.65270 −1.65270
\(405\) 0.347296 0.347296
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) −0.226682 −0.226682
\(411\) 0 0
\(412\) −0.305407 −0.305407
\(413\) −2.34730 −2.34730
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(420\) 0 0
\(421\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(422\) −0.652704 −0.652704
\(423\) −1.00000 −1.00000
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −1.65270 −1.65270
\(429\) 0 0
\(430\) 0 0
\(431\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0.532089 0.532089
\(435\) 0 0
\(436\) 1.34730 1.34730
\(437\) 0 0
\(438\) 0 0
\(439\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(440\) 0 0
\(441\) 1.34730 1.34730
\(442\) 0 0
\(443\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.532089 0.532089
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0.305407 0.305407
\(451\) 0 0
\(452\) −1.34730 −1.34730
\(453\) 0 0
\(454\) 0.694593 0.694593
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.120615 0.120615
\(467\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(468\) 0 0
\(469\) 1.53209 1.53209
\(470\) 0.120615 0.120615
\(471\) 0 0
\(472\) 1.00000 1.00000
\(473\) 0 0
\(474\) 0 0
\(475\) 0.305407 0.305407
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.532089 0.532089
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.162504 −0.162504
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.652704 0.652704
\(497\) −2.34730 −2.34730
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0.573978 0.573978
\(501\) 0 0
\(502\) 0 0
\(503\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(504\) −1.00000 −1.00000
\(505\) 0.652704 0.652704
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0.652704 0.652704
\(515\) 0.120615 0.120615
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −0.879385 −0.879385
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 1.53209 1.53209
\(532\) −0.467911 −0.467911
\(533\) 0 0
\(534\) 0 0
\(535\) 0.652704 0.652704
\(536\) −0.652704 −0.652704
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.532089 −0.532089
\(546\) 0 0
\(547\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) −0.347296 −0.347296
\(559\) 0 0
\(560\) −0.347296 −0.347296
\(561\) 0 0
\(562\) 0.532089 0.532089
\(563\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(564\) 0 0
\(565\) 0.532089 0.532089
\(566\) 0.694593 0.694593
\(567\) −1.53209 −1.53209
\(568\) 1.00000 1.00000
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 1.00000 1.00000
\(575\) 0 0
\(576\) −0.347296 −0.347296
\(577\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) −0.347296 −0.347296
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −0.347296 −0.347296
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) −0.347296 −0.347296
\(590\) −0.184793 −0.184793
\(591\) 0 0
\(592\) 0 0
\(593\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.75877 1.75877
\(597\) 0 0
\(598\) 0 0
\(599\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −1.00000 −1.00000
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0.305407 0.305407
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −0.652704 −0.652704
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) −0.305407 −0.305407
\(621\) 0 0
\(622\) 0.652704 0.652704
\(623\) 0 0
\(624\) 0 0
\(625\) 0.652704 0.652704
\(626\) 0 0
\(627\) 0 0
\(628\) −1.34730 −1.34730
\(629\) 0 0
\(630\) 0.184793 0.184793
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −0.120615 −0.120615
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.53209 1.53209
\(640\) 0.347296 0.347296
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.652704 0.652704
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.65270 1.65270
\(653\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 0.347296 0.347296
\(656\) 1.22668 1.22668
\(657\) 0 0
\(658\) −0.532089 −0.532089
\(659\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(660\) 0 0
\(661\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.184793 0.184793
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0.120615 0.120615
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.879385 −0.879385
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) −2.34730 −2.34730
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(684\) 0.305407 0.305407
\(685\) 0 0
\(686\) 0.184793 0.184793
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(692\) −0.879385 −0.879385
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −0.347296 −0.347296
\(699\) 0 0
\(700\) −1.18479 −1.18479
\(701\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.87939 −2.87939
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) −0.184793 −0.184793
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −0.652704 −0.652704
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0.226682 0.226682
\(721\) −0.532089 −0.532089
\(722\) 0.305407 0.305407
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −0.652704 −0.652704
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −0.694593 −0.694593
\(746\) −0.652704 −0.652704
\(747\) 0 0
\(748\) 0 0
\(749\) −2.87939 −2.87939
\(750\) 0 0
\(751\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(752\) −0.652704 −0.652704
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0.347296 0.347296
\(759\) 0 0
\(760\) −0.0787257 −0.0787257
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 2.34730 2.34730
\(764\) 1.65270 1.65270
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.65270 −1.65270
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) −0.879385 −0.879385
\(776\) 1.00000 1.00000
\(777\) 0 0
\(778\) 0 0
\(779\) −0.652704 −0.652704
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.879385 0.879385
\(785\) 0.532089 0.532089
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.34730 −2.34730
\(792\) 0 0
\(793\) 0 0
\(794\) 0.652704 0.652704
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.773318 0.773318
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1.22668 1.22668
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −0.120615 −0.120615
\(811\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.652704 −0.652704
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −0.573978 −0.573978
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0.226682 0.226682
\(825\) 0 0
\(826\) 0.815207 0.815207
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0.652704 0.652704
\(839\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) −0.120615 −0.120615
\(843\) 0 0
\(844\) −1.65270 −1.65270
\(845\) 0.347296 0.347296
\(846\) 0.347296 0.347296
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) −0.120615 −0.120615
\(856\) 1.22668 1.22668
\(857\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.347296 −0.347296
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0.347296 0.347296
\(866\) 0 0
\(867\) 0 0
\(868\) 1.34730 1.34730
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −1.00000 −1.00000
\(873\) 1.53209 1.53209
\(874\) 0 0
\(875\) 1.00000 1.00000
\(876\) 0 0
\(877\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(878\) 0.532089 0.532089
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −0.467911 −0.467911
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.120615 −0.120615
\(887\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.347296 0.347296
\(894\) 0 0
\(895\) 0 0
\(896\) −1.53209 −1.53209
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.773318 0.773318
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 1.00000 1.00000
\(905\) 0 0
\(906\) 0 0
\(907\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(908\) 1.75877 1.75877
\(909\) 1.87939 1.87939
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.53209 −1.53209
\(918\) 0 0
\(919\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0.347296 0.347296
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −0.467911 −0.467911
\(932\) 0.305407 0.305407
\(933\) 0 0
\(934\) 0.652704 0.652704
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(938\) −0.532089 −0.532089
\(939\) 0 0
\(940\) 0.305407 0.305407
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.00000 1.00000
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.106067 −0.106067
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) −0.652704 −0.652704
\(956\) 0 0
\(957\) 0 0
\(958\) 0.120615 0.120615
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 1.87939 1.87939
\(964\) 0 0
\(965\) 0.652704 0.652704
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −0.184793 −0.184793
\(971\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.411474 −0.411474
\(981\) −1.53209 −1.53209
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −0.879385 −0.879385
\(993\) 0 0
\(994\) 0.815207 0.815207
\(995\) 0 0
\(996\) 0 0
\(997\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3751.1.d.e.1332.2 yes 3
11.2 odd 10 3751.1.t.f.2138.2 12
11.3 even 5 3751.1.t.e.2913.2 12
11.4 even 5 3751.1.t.e.3657.2 12
11.5 even 5 3751.1.t.e.2665.2 12
11.6 odd 10 3751.1.t.f.2665.2 12
11.7 odd 10 3751.1.t.f.3657.2 12
11.8 odd 10 3751.1.t.f.2913.2 12
11.9 even 5 3751.1.t.e.2138.2 12
11.10 odd 2 3751.1.d.d.1332.2 3
31.30 odd 2 CM 3751.1.d.e.1332.2 yes 3
341.30 even 10 3751.1.t.f.2913.2 12
341.61 even 10 3751.1.t.f.2665.2 12
341.92 odd 10 3751.1.t.e.3657.2 12
341.123 even 10 3751.1.t.f.2138.2 12
341.185 odd 10 3751.1.t.e.2138.2 12
341.216 even 10 3751.1.t.f.3657.2 12
341.247 odd 10 3751.1.t.e.2665.2 12
341.278 odd 10 3751.1.t.e.2913.2 12
341.340 even 2 3751.1.d.d.1332.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3751.1.d.d.1332.2 3 11.10 odd 2
3751.1.d.d.1332.2 3 341.340 even 2
3751.1.d.e.1332.2 yes 3 1.1 even 1 trivial
3751.1.d.e.1332.2 yes 3 31.30 odd 2 CM
3751.1.t.e.2138.2 12 11.9 even 5
3751.1.t.e.2138.2 12 341.185 odd 10
3751.1.t.e.2665.2 12 11.5 even 5
3751.1.t.e.2665.2 12 341.247 odd 10
3751.1.t.e.2913.2 12 11.3 even 5
3751.1.t.e.2913.2 12 341.278 odd 10
3751.1.t.e.3657.2 12 11.4 even 5
3751.1.t.e.3657.2 12 341.92 odd 10
3751.1.t.f.2138.2 12 11.2 odd 10
3751.1.t.f.2138.2 12 341.123 even 10
3751.1.t.f.2665.2 12 11.6 odd 10
3751.1.t.f.2665.2 12 341.61 even 10
3751.1.t.f.2913.2 12 11.8 odd 10
3751.1.t.f.2913.2 12 341.30 even 10
3751.1.t.f.3657.2 12 11.7 odd 10
3751.1.t.f.3657.2 12 341.216 even 10