Properties

Label 3751.1.t.e.3657.2
Level $3751$
Weight $1$
Character 3751.3657
Analytic conductor $1.872$
Analytic rank $0$
Dimension $12$
Projective image $D_{9}$
CM discriminant -31
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3751,1,Mod(2138,3751)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3751, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([2, 5])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3751.2138"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3751.t (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-3,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.87199286239\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{10})\)
Coefficient field: 12.0.84075626953125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 3x^{10} - x^{9} + 9x^{8} + 9x^{7} + 28x^{6} + 18x^{5} + 75x^{4} + 26x^{3} + 9x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.1636073786281.1

Embedding invariants

Embedding label 3657.2
Root \(0.473442 + 1.45710i\) of defining polynomial
Character \(\chi\) \(=\) 3751.3657
Dual form 3751.1.t.e.2913.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.107320 - 0.330298i) q^{2} +(0.711438 - 0.516890i) q^{4} +(0.107320 - 0.330298i) q^{5} +(1.23949 - 0.900539i) q^{7} +(-0.528048 - 0.383650i) q^{8} +(0.309017 + 0.951057i) q^{9} -0.120615 q^{10} +(-0.430469 - 0.312754i) q^{14} +(0.201697 - 0.620758i) q^{16} +(0.280969 - 0.204136i) q^{18} +(0.280969 + 0.204136i) q^{19} +(-0.0943760 - 0.290460i) q^{20} +(0.711438 + 0.516890i) q^{25} +(0.416337 - 1.28135i) q^{28} +(0.309017 + 0.951057i) q^{31} -0.879385 q^{32} +(-0.164425 - 0.506047i) q^{35} +(0.711438 + 0.516890i) q^{36} +(0.0372720 - 0.114711i) q^{38} +(-0.183389 + 0.133240i) q^{40} +(-1.52045 - 1.10467i) q^{41} +0.347296 q^{45} +(0.809017 + 0.587785i) q^{47} +(0.416337 - 1.28135i) q^{49} +(0.0943760 - 0.290460i) q^{50} -1.00000 q^{56} +(-1.23949 + 0.900539i) q^{59} +(0.280969 - 0.204136i) q^{62} +(1.23949 + 0.900539i) q^{63} +(-0.107320 - 0.330298i) q^{64} -1.00000 q^{67} +(-0.149500 + 0.108618i) q^{70} +(0.473442 - 1.45710i) q^{71} +(0.201697 - 0.620758i) q^{72} +0.305407 q^{76} +(-0.183389 - 0.133240i) q^{80} +(-0.809017 + 0.587785i) q^{81} +(-0.201697 + 0.620758i) q^{82} +(-0.0372720 - 0.114711i) q^{90} +(0.107320 - 0.330298i) q^{94} +(0.0975794 - 0.0708956i) q^{95} +(0.473442 + 1.45710i) q^{97} -0.467911 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{4} - 3 q^{8} - 3 q^{9} - 24 q^{10} + 3 q^{14} - 3 q^{16} + 3 q^{20} - 3 q^{25} - 3 q^{28} - 3 q^{31} + 12 q^{32} - 3 q^{35} - 3 q^{36} - 6 q^{38} + 6 q^{40} + 3 q^{47} - 3 q^{49} - 3 q^{50}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3751\mathbb{Z}\right)^\times\).

\(n\) \(2421\) \(2543\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.107320 0.330298i −0.107320 0.330298i 0.882948 0.469472i \(-0.155556\pi\)
−0.990268 + 0.139173i \(0.955556\pi\)
\(3\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(4\) 0.711438 0.516890i 0.711438 0.516890i
\(5\) 0.107320 0.330298i 0.107320 0.330298i −0.882948 0.469472i \(-0.844444\pi\)
0.990268 + 0.139173i \(0.0444444\pi\)
\(6\) 0 0
\(7\) 1.23949 0.900539i 1.23949 0.900539i 0.241922 0.970296i \(-0.422222\pi\)
0.997564 + 0.0697565i \(0.0222222\pi\)
\(8\) −0.528048 0.383650i −0.528048 0.383650i
\(9\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(10\) −0.120615 −0.120615
\(11\) 0 0
\(12\) 0 0
\(13\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(14\) −0.430469 0.312754i −0.430469 0.312754i
\(15\) 0 0
\(16\) 0.201697 0.620758i 0.201697 0.620758i
\(17\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(18\) 0.280969 0.204136i 0.280969 0.204136i
\(19\) 0.280969 + 0.204136i 0.280969 + 0.204136i 0.719340 0.694658i \(-0.244444\pi\)
−0.438371 + 0.898794i \(0.644444\pi\)
\(20\) −0.0943760 0.290460i −0.0943760 0.290460i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0.711438 + 0.516890i 0.711438 + 0.516890i
\(26\) 0 0
\(27\) 0 0
\(28\) 0.416337 1.28135i 0.416337 1.28135i
\(29\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(30\) 0 0
\(31\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(32\) −0.879385 −0.879385
\(33\) 0 0
\(34\) 0 0
\(35\) −0.164425 0.506047i −0.164425 0.506047i
\(36\) 0.711438 + 0.516890i 0.711438 + 0.516890i
\(37\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(38\) 0.0372720 0.114711i 0.0372720 0.114711i
\(39\) 0 0
\(40\) −0.183389 + 0.133240i −0.183389 + 0.133240i
\(41\) −1.52045 1.10467i −1.52045 1.10467i −0.961262 0.275637i \(-0.911111\pi\)
−0.559193 0.829038i \(-0.688889\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0.347296 0.347296
\(46\) 0 0
\(47\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(48\) 0 0
\(49\) 0.416337 1.28135i 0.416337 1.28135i
\(50\) 0.0943760 0.290460i 0.0943760 0.290460i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.00000 −1.00000
\(57\) 0 0
\(58\) 0 0
\(59\) −1.23949 + 0.900539i −1.23949 + 0.900539i −0.997564 0.0697565i \(-0.977778\pi\)
−0.241922 + 0.970296i \(0.577778\pi\)
\(60\) 0 0
\(61\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(62\) 0.280969 0.204136i 0.280969 0.204136i
\(63\) 1.23949 + 0.900539i 1.23949 + 0.900539i
\(64\) −0.107320 0.330298i −0.107320 0.330298i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.149500 + 0.108618i −0.149500 + 0.108618i
\(71\) 0.473442 1.45710i 0.473442 1.45710i −0.374607 0.927184i \(-0.622222\pi\)
0.848048 0.529919i \(-0.177778\pi\)
\(72\) 0.201697 0.620758i 0.201697 0.620758i
\(73\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.305407 0.305407
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(80\) −0.183389 0.133240i −0.183389 0.133240i
\(81\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(82\) −0.201697 + 0.620758i −0.201697 + 0.620758i
\(83\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −0.0372720 0.114711i −0.0372720 0.114711i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0.107320 0.330298i 0.107320 0.330298i
\(95\) 0.0975794 0.0708956i 0.0975794 0.0708956i
\(96\) 0 0
\(97\) 0.473442 + 1.45710i 0.473442 + 1.45710i 0.848048 + 0.529919i \(0.177778\pi\)
−0.374607 + 0.927184i \(0.622222\pi\)
\(98\) −0.467911 −0.467911
\(99\) 0 0
\(100\) 0.773318 0.773318
\(101\) 0.580762 + 1.78740i 0.580762 + 1.78740i 0.615661 + 0.788011i \(0.288889\pi\)
−0.0348995 + 0.999391i \(0.511111\pi\)
\(102\) 0 0
\(103\) −0.280969 + 0.204136i −0.280969 + 0.204136i −0.719340 0.694658i \(-0.755556\pi\)
0.438371 + 0.898794i \(0.355556\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.52045 1.10467i −1.52045 1.10467i −0.961262 0.275637i \(-0.911111\pi\)
−0.559193 0.829038i \(-0.688889\pi\)
\(108\) 0 0
\(109\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.309017 0.951057i −0.309017 0.951057i
\(113\) −1.23949 0.900539i −1.23949 0.900539i −0.241922 0.970296i \(-0.577778\pi\)
−0.997564 + 0.0697565i \(0.977778\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0.430469 + 0.312754i 0.430469 + 0.312754i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0.711438 + 0.516890i 0.711438 + 0.516890i
\(125\) 0.528048 0.383650i 0.528048 0.383650i
\(126\) 0.164425 0.506047i 0.164425 0.506047i
\(127\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(128\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(129\) 0 0
\(130\) 0 0
\(131\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 0.532089 0.532089
\(134\) 0.107320 + 0.330298i 0.107320 + 0.330298i
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(138\) 0 0
\(139\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(140\) −0.378548 0.275031i −0.378548 0.275031i
\(141\) 0 0
\(142\) −0.532089 −0.532089
\(143\) 0 0
\(144\) 0.652704 0.652704
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i \(0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(150\) 0 0
\(151\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(152\) −0.0700485 0.215587i −0.0700485 0.215587i
\(153\) 0 0
\(154\) 0 0
\(155\) 0.347296 0.347296
\(156\) 0 0
\(157\) −1.23949 0.900539i −1.23949 0.900539i −0.241922 0.970296i \(-0.577778\pi\)
−0.997564 + 0.0697565i \(0.977778\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.0943760 + 0.290460i −0.0943760 + 0.290460i
\(161\) 0 0
\(162\) 0.280969 + 0.204136i 0.280969 + 0.204136i
\(163\) −0.580762 1.78740i −0.580762 1.78740i −0.615661 0.788011i \(-0.711111\pi\)
0.0348995 0.999391i \(-0.488889\pi\)
\(164\) −1.65270 −1.65270
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(168\) 0 0
\(169\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(170\) 0 0
\(171\) −0.107320 + 0.330298i −0.107320 + 0.330298i
\(172\) 0 0
\(173\) −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(174\) 0 0
\(175\) 1.34730 1.34730
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(180\) 0.247080 0.179514i 0.247080 0.179514i
\(181\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0.879385 0.879385
\(189\) 0 0
\(190\) −0.0338890 0.0246218i −0.0338890 0.0246218i
\(191\) 1.52045 1.10467i 1.52045 1.10467i 0.559193 0.829038i \(-0.311111\pi\)
0.961262 0.275637i \(-0.0888889\pi\)
\(192\) 0 0
\(193\) 0.580762 1.78740i 0.580762 1.78740i −0.0348995 0.999391i \(-0.511111\pi\)
0.615661 0.788011i \(-0.288889\pi\)
\(194\) 0.430469 0.312754i 0.430469 0.312754i
\(195\) 0 0
\(196\) −0.366121 1.12680i −0.366121 1.12680i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −0.177369 0.545885i −0.177369 0.545885i
\(201\) 0 0
\(202\) 0.528048 0.383650i 0.528048 0.383650i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.528048 + 0.383650i −0.528048 + 0.383650i
\(206\) 0.0975794 + 0.0708956i 0.0975794 + 0.0708956i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.580762 + 1.78740i 0.580762 + 1.78740i 0.615661 + 0.788011i \(0.288889\pi\)
−0.0348995 + 0.999391i \(0.511111\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.201697 + 0.620758i −0.201697 + 0.620758i
\(215\) 0 0
\(216\) 0 0
\(217\) 1.23949 + 0.900539i 1.23949 + 0.900539i
\(218\) 0.164425 + 0.506047i 0.164425 + 0.506047i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(224\) −1.08999 + 0.791921i −1.08999 + 0.791921i
\(225\) −0.271745 + 0.836345i −0.271745 + 0.836345i
\(226\) −0.164425 + 0.506047i −0.164425 + 0.506047i
\(227\) 1.61803 1.17557i 1.61803 1.17557i 0.809017 0.587785i \(-0.200000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(228\) 0 0
\(229\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.107320 0.330298i −0.107320 0.330298i 0.882948 0.469472i \(-0.155556\pi\)
−0.990268 + 0.139173i \(0.955556\pi\)
\(234\) 0 0
\(235\) 0.280969 0.204136i 0.280969 0.204136i
\(236\) −0.416337 + 1.28135i −0.416337 + 1.28135i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.378548 0.275031i −0.378548 0.275031i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.201697 0.620758i 0.201697 0.620758i
\(249\) 0 0
\(250\) −0.183389 0.133240i −0.183389 0.133240i
\(251\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(252\) 1.34730 1.34730
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.52045 1.10467i 1.52045 1.10467i 0.559193 0.829038i \(-0.311111\pi\)
0.961262 0.275637i \(-0.0888889\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −0.107320 0.330298i −0.107320 0.330298i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.0571040 0.175748i −0.0571040 0.175748i
\(267\) 0 0
\(268\) −0.711438 + 0.516890i −0.711438 + 0.516890i
\(269\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(270\) 0 0
\(271\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(278\) 0 0
\(279\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(280\) −0.107320 + 0.330298i −0.107320 + 0.330298i
\(281\) −0.473442 + 1.45710i −0.473442 + 1.45710i 0.374607 + 0.927184i \(0.377778\pi\)
−0.848048 + 0.529919i \(0.822222\pi\)
\(282\) 0 0
\(283\) 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(284\) −0.416337 1.28135i −0.416337 1.28135i
\(285\) 0 0
\(286\) 0 0
\(287\) −2.87939 −2.87939
\(288\) −0.271745 0.836345i −0.271745 0.836345i
\(289\) −0.809017 0.587785i −0.809017 0.587785i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(294\) 0 0
\(295\) 0.164425 + 0.506047i 0.164425 + 0.506047i
\(296\) 0 0
\(297\) 0 0
\(298\) 0.694593 0.694593
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0.183389 0.133240i 0.183389 0.133240i
\(305\) 0 0
\(306\) 0 0
\(307\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.0372720 0.114711i −0.0372720 0.114711i
\(311\) 1.52045 + 1.10467i 1.52045 + 1.10467i 0.961262 + 0.275637i \(0.0888889\pi\)
0.559193 + 0.829038i \(0.311111\pi\)
\(312\) 0 0
\(313\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(314\) −0.164425 + 0.506047i −0.164425 + 0.506047i
\(315\) 0.430469 0.312754i 0.430469 0.312754i
\(316\) 0 0
\(317\) 0.107320 + 0.330298i 0.107320 + 0.330298i 0.990268 0.139173i \(-0.0444444\pi\)
−0.882948 + 0.469472i \(0.844444\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.120615 −0.120615
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.271745 + 0.836345i −0.271745 + 0.836345i
\(325\) 0 0
\(326\) −0.528048 + 0.383650i −0.528048 + 0.383650i
\(327\) 0 0
\(328\) 0.379065 + 1.16664i 0.379065 + 1.16664i
\(329\) 1.53209 1.53209
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.107320 + 0.330298i −0.107320 + 0.330298i
\(336\) 0 0
\(337\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(338\) 0.280969 + 0.204136i 0.280969 + 0.204136i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0.120615 0.120615
\(343\) −0.164425 0.506047i −0.164425 0.506047i
\(344\) 0 0
\(345\) 0 0
\(346\) −0.107320 + 0.330298i −0.107320 + 0.330298i
\(347\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(348\) 0 0
\(349\) −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(350\) −0.144592 0.445010i −0.144592 0.445010i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −0.430469 0.312754i −0.430469 0.312754i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.52045 + 1.10467i −1.52045 + 1.10467i −0.559193 + 0.829038i \(0.688889\pi\)
−0.961262 + 0.275637i \(0.911111\pi\)
\(360\) −0.183389 0.133240i −0.183389 0.133240i
\(361\) −0.271745 0.836345i −0.271745 0.836345i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(368\) 0 0
\(369\) 0.580762 1.78740i 0.580762 1.78740i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −0.201697 0.620758i −0.201697 0.620758i
\(377\) 0 0
\(378\) 0 0
\(379\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(380\) 0.0327765 0.100876i 0.0327765 0.100876i
\(381\) 0 0
\(382\) −0.528048 0.383650i −0.528048 0.383650i
\(383\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.652704 −0.652704
\(387\) 0 0
\(388\) 1.08999 + 0.791921i 1.08999 + 0.791921i
\(389\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.711438 + 0.516890i −0.711438 + 0.516890i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.464358 0.337376i 0.464358 0.337376i
\(401\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.33707 + 0.971435i 1.33707 + 0.971435i
\(405\) 0.107320 + 0.330298i 0.107320 + 0.330298i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(410\) 0.183389 + 0.133240i 0.183389 + 0.133240i
\(411\) 0 0
\(412\) −0.0943760 + 0.290460i −0.0943760 + 0.290460i
\(413\) −0.725354 + 2.23241i −0.725354 + 2.23241i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(420\) 0 0
\(421\) −0.280969 0.204136i −0.280969 0.204136i 0.438371 0.898794i \(-0.355556\pi\)
−0.719340 + 0.694658i \(0.755556\pi\)
\(422\) 0.528048 0.383650i 0.528048 0.383650i
\(423\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −1.65270 −1.65270
\(429\) 0 0
\(430\) 0 0
\(431\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(432\) 0 0
\(433\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(434\) 0.164425 0.506047i 0.164425 0.506047i
\(435\) 0 0
\(436\) −1.08999 + 0.791921i −1.08999 + 0.791921i
\(437\) 0 0
\(438\) 0 0
\(439\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(440\) 0 0
\(441\) 1.34730 1.34730
\(442\) 0 0
\(443\) −0.280969 0.204136i −0.280969 0.204136i 0.438371 0.898794i \(-0.355556\pi\)
−0.719340 + 0.694658i \(0.755556\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.430469 0.312754i −0.430469 0.312754i
\(449\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(450\) 0.305407 0.305407
\(451\) 0 0
\(452\) −1.34730 −1.34730
\(453\) 0 0
\(454\) −0.561937 0.408271i −0.561937 0.408271i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.0975794 + 0.0708956i −0.0975794 + 0.0708956i
\(467\) −0.580762 + 1.78740i −0.580762 + 1.78740i 0.0348995 + 0.999391i \(0.488889\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(468\) 0 0
\(469\) −1.23949 + 0.900539i −1.23949 + 0.900539i
\(470\) −0.0975794 0.0708956i −0.0975794 0.0708956i
\(471\) 0 0
\(472\) 1.00000 1.00000
\(473\) 0 0
\(474\) 0 0
\(475\) 0.0943760 + 0.290460i 0.0943760 + 0.290460i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.107320 + 0.330298i −0.107320 + 0.330298i −0.990268 0.139173i \(-0.955556\pi\)
0.882948 + 0.469472i \(0.155556\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.532089 0.532089
\(486\) 0 0
\(487\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.0502164 + 0.154550i −0.0502164 + 0.154550i
\(491\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.652704 0.652704
\(497\) −0.725354 2.23241i −0.725354 2.23241i
\(498\) 0 0
\(499\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(500\) 0.177369 0.545885i 0.177369 0.545885i
\(501\) 0 0
\(502\) 0 0
\(503\) 1.23949 + 0.900539i 1.23949 + 0.900539i 0.997564 0.0697565i \(-0.0222222\pi\)
0.241922 + 0.970296i \(0.422222\pi\)
\(504\) −0.309017 0.951057i −0.309017 0.951057i
\(505\) 0.652704 0.652704
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(513\) 0 0
\(514\) −0.528048 0.383650i −0.528048 0.383650i
\(515\) 0.0372720 + 0.114711i 0.0372720 + 0.114711i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(522\) 0 0
\(523\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(524\) 0.711438 0.516890i 0.711438 0.516890i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) −1.23949 0.900539i −1.23949 0.900539i
\(532\) 0.378548 0.275031i 0.378548 0.275031i
\(533\) 0 0
\(534\) 0 0
\(535\) −0.528048 + 0.383650i −0.528048 + 0.383650i
\(536\) 0.528048 + 0.383650i 0.528048 + 0.383650i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.473442 1.45710i −0.473442 1.45710i −0.848048 0.529919i \(-0.822222\pi\)
0.374607 0.927184i \(-0.377778\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.164425 + 0.506047i −0.164425 + 0.506047i
\(546\) 0 0
\(547\) 0.280969 + 0.204136i 0.280969 + 0.204136i 0.719340 0.694658i \(-0.244444\pi\)
−0.438371 + 0.898794i \(0.644444\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(558\) 0.280969 + 0.204136i 0.280969 + 0.204136i
\(559\) 0 0
\(560\) −0.347296 −0.347296
\(561\) 0 0
\(562\) 0.532089 0.532089
\(563\) 0.580762 + 1.78740i 0.580762 + 1.78740i 0.615661 + 0.788011i \(0.288889\pi\)
−0.0348995 + 0.999391i \(0.511111\pi\)
\(564\) 0 0
\(565\) −0.430469 + 0.312754i −0.430469 + 0.312754i
\(566\) 0.214641 0.660597i 0.214641 0.660597i
\(567\) −0.473442 + 1.45710i −0.473442 + 1.45710i
\(568\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(569\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(575\) 0 0
\(576\) 0.280969 0.204136i 0.280969 0.204136i
\(577\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(578\) −0.107320 + 0.330298i −0.107320 + 0.330298i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0.280969 + 0.204136i 0.280969 + 0.204136i
\(587\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(588\) 0 0
\(589\) −0.107320 + 0.330298i −0.107320 + 0.330298i
\(590\) 0.149500 0.108618i 0.149500 0.108618i
\(591\) 0 0
\(592\) 0 0
\(593\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.543490 + 1.67269i 0.543490 + 1.67269i
\(597\) 0 0
\(598\) 0 0
\(599\) 0.107320 0.330298i 0.107320 0.330298i −0.882948 0.469472i \(-0.844444\pi\)
0.990268 + 0.139173i \(0.0444444\pi\)
\(600\) 0 0
\(601\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(602\) 0 0
\(603\) −0.309017 0.951057i −0.309017 0.951057i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(608\) −0.247080 0.179514i −0.247080 0.179514i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(614\) −0.201697 0.620758i −0.201697 0.620758i
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(618\) 0 0
\(619\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(620\) 0.247080 0.179514i 0.247080 0.179514i
\(621\) 0 0
\(622\) 0.201697 0.620758i 0.201697 0.620758i
\(623\) 0 0
\(624\) 0 0
\(625\) 0.201697 + 0.620758i 0.201697 + 0.620758i
\(626\) 0 0
\(627\) 0 0
\(628\) −1.34730 −1.34730
\(629\) 0 0
\(630\) −0.149500 0.108618i −0.149500 0.108618i
\(631\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.0975794 0.0708956i 0.0975794 0.0708956i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.53209 1.53209
\(640\) 0.107320 + 0.330298i 0.107320 + 0.330298i
\(641\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(642\) 0 0
\(643\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(648\) 0.652704 0.652704
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −1.33707 0.971435i −1.33707 0.971435i
\(653\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(654\) 0 0
\(655\) 0.107320 0.330298i 0.107320 0.330298i
\(656\) −0.992406 + 0.721025i −0.992406 + 0.721025i
\(657\) 0 0
\(658\) −0.164425 0.506047i −0.164425 0.506047i
\(659\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(660\) 0 0
\(661\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.0571040 0.175748i 0.0571040 0.175748i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0.120615 0.120615
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.271745 + 0.836345i −0.271745 + 0.836345i
\(677\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(678\) 0 0
\(679\) 1.89900 + 1.37971i 1.89900 + 1.37971i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(684\) 0.0943760 + 0.290460i 0.0943760 + 0.290460i
\(685\) 0 0
\(686\) −0.149500 + 0.108618i −0.149500 + 0.108618i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.107320 + 0.330298i 0.107320 + 0.330298i 0.990268 0.139173i \(-0.0444444\pi\)
−0.882948 + 0.469472i \(0.844444\pi\)
\(692\) −0.879385 −0.879385
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −0.107320 + 0.330298i −0.107320 + 0.330298i
\(699\) 0 0
\(700\) 0.958517 0.696404i 0.958517 0.696404i
\(701\) 1.23949 + 0.900539i 1.23949 + 0.900539i 0.997564 0.0697565i \(-0.0222222\pi\)
0.241922 + 0.970296i \(0.422222\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.32947 + 1.69246i 2.32947 + 1.69246i
\(708\) 0 0
\(709\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(710\) −0.0571040 + 0.175748i −0.0571040 + 0.175748i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0.528048 + 0.383650i 0.528048 + 0.383650i
\(719\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(720\) 0.0700485 0.215587i 0.0700485 0.215587i
\(721\) −0.164425 + 0.506047i −0.164425 + 0.506047i
\(722\) −0.247080 + 0.179514i −0.247080 + 0.179514i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(728\) 0 0
\(729\) −0.809017 0.587785i −0.809017 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1.23949 0.900539i 1.23949 0.900539i 0.241922 0.970296i \(-0.422222\pi\)
0.997564 + 0.0697565i \(0.0222222\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −0.652704 −0.652704
\(739\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(744\) 0 0
\(745\) 0.561937 + 0.408271i 0.561937 + 0.408271i
\(746\) −0.201697 0.620758i −0.201697 0.620758i
\(747\) 0 0
\(748\) 0 0
\(749\) −2.87939 −2.87939
\(750\) 0 0
\(751\) −0.280969 0.204136i −0.280969 0.204136i 0.438371 0.898794i \(-0.355556\pi\)
−0.719340 + 0.694658i \(0.755556\pi\)
\(752\) 0.528048 0.383650i 0.528048 0.383650i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(758\) 0.347296 0.347296
\(759\) 0 0
\(760\) −0.0787257 −0.0787257
\(761\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(762\) 0 0
\(763\) −1.89900 + 1.37971i −1.89900 + 1.37971i
\(764\) 0.510714 1.57181i 0.510714 1.57181i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.510714 1.57181i −0.510714 1.57181i
\(773\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(774\) 0 0
\(775\) −0.271745 + 0.836345i −0.271745 + 0.836345i
\(776\) 0.309017 0.951057i 0.309017 0.951057i
\(777\) 0 0
\(778\) 0 0
\(779\) −0.201697 0.620758i −0.201697 0.620758i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.711438 0.516890i −0.711438 0.516890i
\(785\) −0.430469 + 0.312754i −0.430469 + 0.312754i
\(786\) 0 0
\(787\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.34730 −2.34730
\(792\) 0 0
\(793\) 0 0
\(794\) 0.201697 + 0.620758i 0.201697 + 0.620758i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.625628 0.454545i −0.625628 0.454545i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.379065 1.16664i 0.379065 1.16664i
\(809\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(810\) 0.0975794 0.0708956i 0.0975794 0.0708956i
\(811\) −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.652704 −0.652704
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −0.177369 + 0.545885i −0.177369 + 0.545885i
\(821\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(822\) 0 0
\(823\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(824\) 0.226682 0.226682
\(825\) 0 0
\(826\) 0.815207 0.815207
\(827\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(828\) 0 0
\(829\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0.201697 + 0.620758i 0.201697 + 0.620758i
\(839\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(840\) 0 0
\(841\) 0.309017 0.951057i 0.309017 0.951057i
\(842\) −0.0372720 + 0.114711i −0.0372720 + 0.114711i
\(843\) 0 0
\(844\) 1.33707 + 0.971435i 1.33707 + 0.971435i
\(845\) 0.107320 + 0.330298i 0.107320 + 0.330298i
\(846\) 0.347296 0.347296
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i \(0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(854\) 0 0
\(855\) 0.0975794 + 0.0708956i 0.0975794 + 0.0708956i
\(856\) 0.379065 + 1.16664i 0.379065 + 1.16664i
\(857\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.280969 0.204136i 0.280969 0.204136i
\(863\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(864\) 0 0
\(865\) −0.280969 + 0.204136i −0.280969 + 0.204136i
\(866\) 0 0
\(867\) 0 0
\(868\) 1.34730 1.34730
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(873\) −1.23949 + 0.900539i −1.23949 + 0.900539i
\(874\) 0 0
\(875\) 0.309017 0.951057i 0.309017 0.951057i
\(876\) 0 0
\(877\) −1.52045 1.10467i −1.52045 1.10467i −0.961262 0.275637i \(-0.911111\pi\)
−0.559193 0.829038i \(-0.688889\pi\)
\(878\) 0.164425 + 0.506047i 0.164425 + 0.506047i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −0.144592 0.445010i −0.144592 0.445010i
\(883\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.0372720 + 0.114711i −0.0372720 + 0.114711i
\(887\) 0.280969 0.204136i 0.280969 0.204136i −0.438371 0.898794i \(-0.644444\pi\)
0.719340 + 0.694658i \(0.244444\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.107320 + 0.330298i 0.107320 + 0.330298i
\(894\) 0 0
\(895\) 0 0
\(896\) −0.473442 + 1.45710i −0.473442 + 1.45710i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.238969 + 0.735470i 0.238969 + 0.735470i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(905\) 0 0
\(906\) 0 0
\(907\) 0.107320 0.330298i 0.107320 0.330298i −0.882948 0.469472i \(-0.844444\pi\)
0.990268 + 0.139173i \(0.0444444\pi\)
\(908\) 0.543490 1.67269i 0.543490 1.67269i
\(909\) −1.52045 + 1.10467i −1.52045 + 1.10467i
\(910\) 0 0
\(911\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.23949 0.900539i 1.23949 0.900539i
\(918\) 0 0
\(919\) 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −0.280969 0.204136i −0.280969 0.204136i
\(928\) 0 0
\(929\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(930\) 0 0
\(931\) 0.378548 0.275031i 0.378548 0.275031i
\(932\) −0.247080 0.179514i −0.247080 0.179514i
\(933\) 0 0
\(934\) 0.652704 0.652704
\(935\) 0 0
\(936\) 0 0
\(937\) −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(938\) 0.430469 + 0.312754i 0.430469 + 0.312754i
\(939\) 0 0
\(940\) 0.0943760 0.290460i 0.0943760 0.290460i
\(941\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.0858099 0.0623445i 0.0858099 0.0623445i
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(954\) 0 0
\(955\) −0.201697 0.620758i −0.201697 0.620758i
\(956\) 0 0
\(957\) 0 0
\(958\) 0.120615 0.120615
\(959\) 0 0
\(960\) 0 0
\(961\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(962\) 0 0
\(963\) 0.580762 1.78740i 0.580762 1.78740i
\(964\) 0 0
\(965\) −0.528048 0.383650i −0.528048 0.383650i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −0.0571040 0.175748i −0.0571040 0.175748i
\(971\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.580762 1.78740i −0.580762 1.78740i −0.615661 0.788011i \(-0.711111\pi\)
0.0348995 0.999391i \(-0.488889\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.411474 −0.411474
\(981\) −0.473442 1.45710i −0.473442 1.45710i
\(982\) 0 0
\(983\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −0.271745 0.836345i −0.271745 0.836345i
\(993\) 0 0
\(994\) −0.659517 + 0.479167i −0.659517 + 0.479167i
\(995\) 0 0
\(996\) 0 0
\(997\) 0.280969 0.204136i 0.280969 0.204136i −0.438371 0.898794i \(-0.644444\pi\)
0.719340 + 0.694658i \(0.244444\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3751.1.t.e.3657.2 12
11.2 odd 10 3751.1.t.f.2913.2 12
11.3 even 5 3751.1.d.e.1332.2 yes 3
11.4 even 5 inner 3751.1.t.e.2665.2 12
11.5 even 5 inner 3751.1.t.e.2138.2 12
11.6 odd 10 3751.1.t.f.2138.2 12
11.7 odd 10 3751.1.t.f.2665.2 12
11.8 odd 10 3751.1.d.d.1332.2 3
11.9 even 5 inner 3751.1.t.e.2913.2 12
11.10 odd 2 3751.1.t.f.3657.2 12
31.30 odd 2 CM 3751.1.t.e.3657.2 12
341.30 even 10 3751.1.d.d.1332.2 3
341.61 even 10 3751.1.t.f.2138.2 12
341.92 odd 10 inner 3751.1.t.e.2665.2 12
341.123 even 10 3751.1.t.f.2913.2 12
341.185 odd 10 inner 3751.1.t.e.2913.2 12
341.216 even 10 3751.1.t.f.2665.2 12
341.247 odd 10 inner 3751.1.t.e.2138.2 12
341.278 odd 10 3751.1.d.e.1332.2 yes 3
341.340 even 2 3751.1.t.f.3657.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3751.1.d.d.1332.2 3 11.8 odd 10
3751.1.d.d.1332.2 3 341.30 even 10
3751.1.d.e.1332.2 yes 3 11.3 even 5
3751.1.d.e.1332.2 yes 3 341.278 odd 10
3751.1.t.e.2138.2 12 11.5 even 5 inner
3751.1.t.e.2138.2 12 341.247 odd 10 inner
3751.1.t.e.2665.2 12 11.4 even 5 inner
3751.1.t.e.2665.2 12 341.92 odd 10 inner
3751.1.t.e.2913.2 12 11.9 even 5 inner
3751.1.t.e.2913.2 12 341.185 odd 10 inner
3751.1.t.e.3657.2 12 1.1 even 1 trivial
3751.1.t.e.3657.2 12 31.30 odd 2 CM
3751.1.t.f.2138.2 12 11.6 odd 10
3751.1.t.f.2138.2 12 341.61 even 10
3751.1.t.f.2665.2 12 11.7 odd 10
3751.1.t.f.2665.2 12 341.216 even 10
3751.1.t.f.2913.2 12 11.2 odd 10
3751.1.t.f.2913.2 12 341.123 even 10
3751.1.t.f.3657.2 12 11.10 odd 2
3751.1.t.f.3657.2 12 341.340 even 2