Properties

Label 2-3751-31.30-c0-0-3
Degree $2$
Conductor $3751$
Sign $1$
Analytic cond. $1.87199$
Root an. cond. $1.36820$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.347·2-s − 0.879·4-s + 0.347·5-s − 1.53·7-s + 0.652·8-s + 9-s − 0.120·10-s + 0.532·14-s + 0.652·16-s − 0.347·18-s − 0.347·19-s − 0.305·20-s − 0.879·25-s + 1.34·28-s + 31-s − 0.879·32-s − 0.532·35-s − 0.879·36-s + 0.120·38-s + 0.226·40-s + 1.87·41-s + 0.347·45-s − 47-s + 1.34·49-s + 0.305·50-s − 56-s + 1.53·59-s + ⋯
L(s)  = 1  − 0.347·2-s − 0.879·4-s + 0.347·5-s − 1.53·7-s + 0.652·8-s + 9-s − 0.120·10-s + 0.532·14-s + 0.652·16-s − 0.347·18-s − 0.347·19-s − 0.305·20-s − 0.879·25-s + 1.34·28-s + 31-s − 0.879·32-s − 0.532·35-s − 0.879·36-s + 0.120·38-s + 0.226·40-s + 1.87·41-s + 0.347·45-s − 47-s + 1.34·49-s + 0.305·50-s − 56-s + 1.53·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3751\)    =    \(11^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(1.87199\)
Root analytic conductor: \(1.36820\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3751} (1332, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3751,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7770061440\)
\(L(\frac12)\) \(\approx\) \(0.7770061440\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
31 \( 1 - T \)
good2 \( 1 + 0.347T + T^{2} \)
3 \( 1 - T^{2} \)
5 \( 1 - 0.347T + T^{2} \)
7 \( 1 + 1.53T + T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + 0.347T + T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - 1.87T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - 1.53T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + T + T^{2} \)
71 \( 1 - 1.53T + T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - 1.53T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.906877362359874053300948487293, −7.981554275738434380808690608279, −7.27803332687698477188027938461, −6.44008177226272622241026222712, −5.86195235124405501593723572798, −4.80101782074305773869212445175, −4.06293325768557475756715389773, −3.34643022340595556409566959721, −2.15127931846108192597560732419, −0.805259854826387142198382045383, 0.805259854826387142198382045383, 2.15127931846108192597560732419, 3.34643022340595556409566959721, 4.06293325768557475756715389773, 4.80101782074305773869212445175, 5.86195235124405501593723572798, 6.44008177226272622241026222712, 7.27803332687698477188027938461, 7.981554275738434380808690608279, 8.906877362359874053300948487293

Graph of the $Z$-function along the critical line