Properties

Label 375.2.l.b.368.3
Level $375$
Weight $2$
Character 375.368
Analytic conductor $2.994$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,2,Mod(32,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.l (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,20,0,-6,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 368.3
Character \(\chi\) \(=\) 375.368
Dual form 375.2.l.b.107.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32314 + 0.674175i) q^{2} +(1.68525 - 0.399927i) q^{3} +(0.120624 - 0.166024i) q^{4} +(-1.96020 + 1.66531i) q^{6} +(1.72218 - 1.72218i) q^{7} +(0.416937 - 2.63243i) q^{8} +(2.68012 - 1.34795i) q^{9} +(-3.72206 - 1.20937i) q^{11} +(0.136883 - 0.328033i) q^{12} +(2.65113 - 5.20313i) q^{13} +(-1.11764 + 3.43974i) q^{14} +(1.34989 + 4.15452i) q^{16} +(-0.760813 - 0.120501i) q^{17} +(-2.63742 + 3.59040i) q^{18} +(2.08083 + 2.86402i) q^{19} +(2.21355 - 3.59105i) q^{21} +(5.74013 - 0.909148i) q^{22} +(0.471845 + 0.926047i) q^{23} +(-0.350141 - 4.60305i) q^{24} +8.67180i q^{26} +(3.97758 - 3.34348i) q^{27} +(-0.0781880 - 0.493660i) q^{28} +(0.111964 + 0.0813465i) q^{29} +(0.372717 - 0.270795i) q^{31} +(-0.817733 - 0.817733i) q^{32} +(-6.75624 - 0.549535i) q^{33} +(1.08790 - 0.353481i) q^{34} +(0.0994927 - 0.607559i) q^{36} +(-4.55581 - 2.32130i) q^{37} +(-4.68409 - 2.38666i) q^{38} +(2.38693 - 9.82881i) q^{39} +(6.18190 - 2.00862i) q^{41} +(-0.507853 + 6.24379i) q^{42} +(5.58451 + 5.58451i) q^{43} +(-0.649753 + 0.472073i) q^{44} +(-1.24864 - 0.907186i) q^{46} +(0.629748 + 3.97607i) q^{47} +(3.93640 + 6.46154i) q^{48} +1.06819i q^{49} +(-1.33035 + 0.101196i) q^{51} +(-0.544057 - 1.06777i) q^{52} +(2.90283 - 0.459763i) q^{53} +(-3.00881 + 7.10549i) q^{54} +(-3.81549 - 5.25157i) q^{56} +(4.65212 + 3.99440i) q^{57} +(-0.202986 - 0.0321498i) q^{58} +(0.855253 + 2.63220i) q^{59} +(1.24058 - 3.81812i) q^{61} +(-0.310595 + 0.609576i) q^{62} +(2.29423 - 6.93706i) q^{63} +(-6.67577 - 2.16909i) q^{64} +(9.30995 - 3.82778i) q^{66} +(-0.304459 + 1.92228i) q^{67} +(-0.111778 + 0.111778i) q^{68} +(1.16553 + 1.37191i) q^{69} +(-2.08859 + 2.87469i) q^{71} +(-2.43096 - 7.61724i) q^{72} +(-10.6846 + 5.44405i) q^{73} +7.59295 q^{74} +0.726495 q^{76} +(-8.49280 + 4.32730i) q^{77} +(3.46809 + 14.6141i) q^{78} +(-0.518361 + 0.713462i) q^{79} +(5.36605 - 7.22534i) q^{81} +(-6.82537 + 6.82537i) q^{82} +(1.49428 - 9.43448i) q^{83} +(-0.329194 - 0.800669i) q^{84} +(-11.1540 - 3.62417i) q^{86} +(0.221219 + 0.0923115i) q^{87} +(-4.73545 + 9.29383i) q^{88} +(-3.64270 + 11.2111i) q^{89} +(-4.39501 - 13.5264i) q^{91} +(0.210662 + 0.0333656i) q^{92} +(0.519822 - 0.605416i) q^{93} +(-3.51381 - 4.83635i) q^{94} +(-1.70512 - 1.05105i) q^{96} +(-16.0719 + 2.54554i) q^{97} +(-0.720145 - 1.41336i) q^{98} +(-11.6057 + 1.77590i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 20 q^{4} - 6 q^{6} + 20 q^{7} + 10 q^{9} + 40 q^{12} - 8 q^{16} + 10 q^{18} - 6 q^{21} - 30 q^{27} - 80 q^{28} - 12 q^{31} - 50 q^{33} - 20 q^{34} - 22 q^{36} - 120 q^{37} - 30 q^{39} + 60 q^{42}+ \cdots + 42 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{7}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32314 + 0.674175i −0.935603 + 0.476714i −0.854187 0.519967i \(-0.825944\pi\)
−0.0814164 + 0.996680i \(0.525944\pi\)
\(3\) 1.68525 0.399927i 0.972978 0.230898i
\(4\) 0.120624 0.166024i 0.0603118 0.0830121i
\(5\) 0 0
\(6\) −1.96020 + 1.66531i −0.800249 + 0.679861i
\(7\) 1.72218 1.72218i 0.650923 0.650923i −0.302292 0.953215i \(-0.597752\pi\)
0.953215 + 0.302292i \(0.0977518\pi\)
\(8\) 0.416937 2.63243i 0.147409 0.930706i
\(9\) 2.68012 1.34795i 0.893372 0.449318i
\(10\) 0 0
\(11\) −3.72206 1.20937i −1.12224 0.364638i −0.311619 0.950207i \(-0.600871\pi\)
−0.810623 + 0.585569i \(0.800871\pi\)
\(12\) 0.136883 0.328033i 0.0395147 0.0946949i
\(13\) 2.65113 5.20313i 0.735290 1.44309i −0.155104 0.987898i \(-0.549571\pi\)
0.890394 0.455190i \(-0.150429\pi\)
\(14\) −1.11764 + 3.43974i −0.298702 + 0.919309i
\(15\) 0 0
\(16\) 1.34989 + 4.15452i 0.337471 + 1.03863i
\(17\) −0.760813 0.120501i −0.184524 0.0292258i 0.0634883 0.997983i \(-0.479777\pi\)
−0.248013 + 0.968757i \(0.579777\pi\)
\(18\) −2.63742 + 3.59040i −0.621646 + 0.846265i
\(19\) 2.08083 + 2.86402i 0.477376 + 0.657051i 0.977998 0.208614i \(-0.0668954\pi\)
−0.500622 + 0.865666i \(0.666895\pi\)
\(20\) 0 0
\(21\) 2.21355 3.59105i 0.483037 0.783631i
\(22\) 5.74013 0.909148i 1.22380 0.193831i
\(23\) 0.471845 + 0.926047i 0.0983864 + 0.193094i 0.934953 0.354770i \(-0.115441\pi\)
−0.836567 + 0.547864i \(0.815441\pi\)
\(24\) −0.350141 4.60305i −0.0714722 0.939593i
\(25\) 0 0
\(26\) 8.67180i 1.70068i
\(27\) 3.97758 3.34348i 0.765485 0.643454i
\(28\) −0.0781880 0.493660i −0.0147761 0.0932929i
\(29\) 0.111964 + 0.0813465i 0.0207912 + 0.0151057i 0.598132 0.801397i \(-0.295910\pi\)
−0.577341 + 0.816503i \(0.695910\pi\)
\(30\) 0 0
\(31\) 0.372717 0.270795i 0.0669420 0.0486362i −0.553811 0.832642i \(-0.686827\pi\)
0.620753 + 0.784006i \(0.286827\pi\)
\(32\) −0.817733 0.817733i −0.144556 0.144556i
\(33\) −6.75624 0.549535i −1.17611 0.0956617i
\(34\) 1.08790 0.353481i 0.186574 0.0606215i
\(35\) 0 0
\(36\) 0.0994927 0.607559i 0.0165821 0.101260i
\(37\) −4.55581 2.32130i −0.748970 0.381620i 0.0374602 0.999298i \(-0.488073\pi\)
−0.786431 + 0.617679i \(0.788073\pi\)
\(38\) −4.68409 2.38666i −0.759859 0.387168i
\(39\) 2.38693 9.82881i 0.382215 1.57387i
\(40\) 0 0
\(41\) 6.18190 2.00862i 0.965450 0.313694i 0.216472 0.976289i \(-0.430545\pi\)
0.748978 + 0.662595i \(0.230545\pi\)
\(42\) −0.507853 + 6.24379i −0.0783634 + 0.963437i
\(43\) 5.58451 + 5.58451i 0.851630 + 0.851630i 0.990334 0.138704i \(-0.0442938\pi\)
−0.138704 + 0.990334i \(0.544294\pi\)
\(44\) −0.649753 + 0.472073i −0.0979539 + 0.0711677i
\(45\) 0 0
\(46\) −1.24864 0.907186i −0.184101 0.133757i
\(47\) 0.629748 + 3.97607i 0.0918582 + 0.579970i 0.990089 + 0.140445i \(0.0448532\pi\)
−0.898230 + 0.439525i \(0.855147\pi\)
\(48\) 3.93640 + 6.46154i 0.568170 + 0.932642i
\(49\) 1.06819i 0.152598i
\(50\) 0 0
\(51\) −1.33035 + 0.101196i −0.186286 + 0.0141703i
\(52\) −0.544057 1.06777i −0.0754471 0.148073i
\(53\) 2.90283 0.459763i 0.398734 0.0631533i 0.0461526 0.998934i \(-0.485304\pi\)
0.352581 + 0.935781i \(0.385304\pi\)
\(54\) −3.00881 + 7.10549i −0.409447 + 0.966934i
\(55\) 0 0
\(56\) −3.81549 5.25157i −0.509866 0.701770i
\(57\) 4.65212 + 3.99440i 0.616188 + 0.529071i
\(58\) −0.202986 0.0321498i −0.0266533 0.00422147i
\(59\) 0.855253 + 2.63220i 0.111344 + 0.342683i 0.991167 0.132619i \(-0.0423388\pi\)
−0.879823 + 0.475302i \(0.842339\pi\)
\(60\) 0 0
\(61\) 1.24058 3.81812i 0.158840 0.488860i −0.839689 0.543067i \(-0.817263\pi\)
0.998530 + 0.0542065i \(0.0172629\pi\)
\(62\) −0.310595 + 0.609576i −0.0394456 + 0.0774163i
\(63\) 2.29423 6.93706i 0.289045 0.873988i
\(64\) −6.67577 2.16909i −0.834471 0.271136i
\(65\) 0 0
\(66\) 9.30995 3.82778i 1.14598 0.471167i
\(67\) −0.304459 + 1.92228i −0.0371956 + 0.234844i −0.999281 0.0379032i \(-0.987932\pi\)
0.962086 + 0.272747i \(0.0879322\pi\)
\(68\) −0.111778 + 0.111778i −0.0135551 + 0.0135551i
\(69\) 1.16553 + 1.37191i 0.140313 + 0.165159i
\(70\) 0 0
\(71\) −2.08859 + 2.87469i −0.247870 + 0.341163i −0.914764 0.403989i \(-0.867623\pi\)
0.666894 + 0.745152i \(0.267623\pi\)
\(72\) −2.43096 7.61724i −0.286491 0.897700i
\(73\) −10.6846 + 5.44405i −1.25053 + 0.637178i −0.948698 0.316182i \(-0.897599\pi\)
−0.301834 + 0.953360i \(0.597599\pi\)
\(74\) 7.59295 0.882662
\(75\) 0 0
\(76\) 0.726495 0.0833347
\(77\) −8.49280 + 4.32730i −0.967845 + 0.493142i
\(78\) 3.46809 + 14.6141i 0.392684 + 1.65472i
\(79\) −0.518361 + 0.713462i −0.0583201 + 0.0802708i −0.837181 0.546926i \(-0.815798\pi\)
0.778861 + 0.627197i \(0.215798\pi\)
\(80\) 0 0
\(81\) 5.36605 7.22534i 0.596228 0.802816i
\(82\) −6.82537 + 6.82537i −0.753736 + 0.753736i
\(83\) 1.49428 9.43448i 0.164018 1.03557i −0.759078 0.651000i \(-0.774350\pi\)
0.923096 0.384569i \(-0.125650\pi\)
\(84\) −0.329194 0.800669i −0.0359180 0.0873601i
\(85\) 0 0
\(86\) −11.1540 3.62417i −1.20277 0.390804i
\(87\) 0.221219 + 0.0923115i 0.0237172 + 0.00989684i
\(88\) −4.73545 + 9.29383i −0.504800 + 0.990726i
\(89\) −3.64270 + 11.2111i −0.386125 + 1.18837i 0.549535 + 0.835470i \(0.314805\pi\)
−0.935661 + 0.352901i \(0.885195\pi\)
\(90\) 0 0
\(91\) −4.39501 13.5264i −0.460722 1.41796i
\(92\) 0.210662 + 0.0333656i 0.0219630 + 0.00347860i
\(93\) 0.519822 0.605416i 0.0539030 0.0627787i
\(94\) −3.51381 4.83635i −0.362422 0.498831i
\(95\) 0 0
\(96\) −1.70512 1.05105i −0.174028 0.107272i
\(97\) −16.0719 + 2.54554i −1.63186 + 0.258461i −0.904083 0.427356i \(-0.859445\pi\)
−0.727774 + 0.685817i \(0.759445\pi\)
\(98\) −0.720145 1.41336i −0.0727456 0.142771i
\(99\) −11.6057 + 1.77590i −1.16642 + 0.178485i
\(100\) 0 0
\(101\) 14.8155i 1.47420i 0.675784 + 0.737100i \(0.263805\pi\)
−0.675784 + 0.737100i \(0.736195\pi\)
\(102\) 1.69202 1.03079i 0.167535 0.102063i
\(103\) −1.39927 8.83465i −0.137874 0.870504i −0.955551 0.294826i \(-0.904738\pi\)
0.817677 0.575678i \(-0.195262\pi\)
\(104\) −12.5915 9.14829i −1.23470 0.897063i
\(105\) 0 0
\(106\) −3.53089 + 2.56534i −0.342951 + 0.249168i
\(107\) −10.2862 10.2862i −0.994405 0.994405i 0.00557906 0.999984i \(-0.498224\pi\)
−0.999984 + 0.00557906i \(0.998224\pi\)
\(108\) −0.0753098 1.06368i −0.00724668 0.102352i
\(109\) −9.46329 + 3.07481i −0.906419 + 0.294513i −0.724884 0.688871i \(-0.758107\pi\)
−0.181535 + 0.983384i \(0.558107\pi\)
\(110\) 0 0
\(111\) −8.60602 2.08997i −0.816847 0.198372i
\(112\) 9.47958 + 4.83009i 0.895736 + 0.456400i
\(113\) −4.31931 2.20080i −0.406326 0.207034i 0.238868 0.971052i \(-0.423224\pi\)
−0.645194 + 0.764018i \(0.723224\pi\)
\(114\) −8.84834 2.14882i −0.828723 0.201256i
\(115\) 0 0
\(116\) 0.0270110 0.00877640i 0.00250791 0.000814868i
\(117\) 0.0917569 17.5186i 0.00848293 1.61959i
\(118\) −2.90618 2.90618i −0.267536 0.267536i
\(119\) −1.51778 + 1.10273i −0.139135 + 0.101087i
\(120\) 0 0
\(121\) 3.49193 + 2.53704i 0.317449 + 0.230640i
\(122\) 0.932613 + 5.88829i 0.0844349 + 0.533101i
\(123\) 9.61472 5.85733i 0.866930 0.528138i
\(124\) 0.0945443i 0.00849033i
\(125\) 0 0
\(126\) 1.64120 + 10.7254i 0.146210 + 0.955497i
\(127\) 5.18173 + 10.1697i 0.459804 + 0.902417i 0.998214 + 0.0597340i \(0.0190253\pi\)
−0.538410 + 0.842683i \(0.680975\pi\)
\(128\) 12.5798 1.99244i 1.11190 0.176108i
\(129\) 11.6447 + 7.17788i 1.02526 + 0.631977i
\(130\) 0 0
\(131\) 2.60417 + 3.58434i 0.227528 + 0.313165i 0.907483 0.420088i \(-0.138001\pi\)
−0.679956 + 0.733253i \(0.738001\pi\)
\(132\) −0.906199 + 1.05541i −0.0788745 + 0.0918619i
\(133\) 8.51593 + 1.34879i 0.738425 + 0.116955i
\(134\) −0.893109 2.74871i −0.0771529 0.237452i
\(135\) 0 0
\(136\) −0.634422 + 1.95255i −0.0544012 + 0.167430i
\(137\) 3.76412 7.38749i 0.321590 0.631156i −0.672453 0.740139i \(-0.734759\pi\)
0.994044 + 0.108983i \(0.0347595\pi\)
\(138\) −2.46707 1.02947i −0.210011 0.0876343i
\(139\) 20.8266 + 6.76697i 1.76649 + 0.573967i 0.997839 0.0657043i \(-0.0209294\pi\)
0.768649 + 0.639671i \(0.220929\pi\)
\(140\) 0 0
\(141\) 2.65142 + 6.44881i 0.223290 + 0.543088i
\(142\) 0.825452 5.21170i 0.0692704 0.437356i
\(143\) −16.1601 + 16.1601i −1.35138 + 1.35138i
\(144\) 9.21794 + 9.31501i 0.768162 + 0.776251i
\(145\) 0 0
\(146\) 10.4669 14.4065i 0.866251 1.19229i
\(147\) 0.427197 + 1.80016i 0.0352346 + 0.148475i
\(148\) −0.934931 + 0.476371i −0.0768508 + 0.0391575i
\(149\) 5.61752 0.460205 0.230103 0.973166i \(-0.426094\pi\)
0.230103 + 0.973166i \(0.426094\pi\)
\(150\) 0 0
\(151\) −14.6821 −1.19482 −0.597408 0.801938i \(-0.703803\pi\)
−0.597408 + 0.801938i \(0.703803\pi\)
\(152\) 8.40692 4.28354i 0.681891 0.347441i
\(153\) −2.20150 + 0.702584i −0.177981 + 0.0568005i
\(154\) 8.31983 11.4513i 0.670431 0.922769i
\(155\) 0 0
\(156\) −1.34390 1.58188i −0.107598 0.126651i
\(157\) 7.39864 7.39864i 0.590476 0.590476i −0.347284 0.937760i \(-0.612896\pi\)
0.937760 + 0.347284i \(0.112896\pi\)
\(158\) 0.204867 1.29348i 0.0162983 0.102904i
\(159\) 4.70811 1.93573i 0.373377 0.153514i
\(160\) 0 0
\(161\) 2.40742 + 0.782219i 0.189731 + 0.0616475i
\(162\) −2.22890 + 13.1778i −0.175119 + 1.03535i
\(163\) −3.88333 + 7.62146i −0.304166 + 0.596959i −0.991608 0.129280i \(-0.958733\pi\)
0.687442 + 0.726239i \(0.258733\pi\)
\(164\) 0.412204 1.26863i 0.0321877 0.0990635i
\(165\) 0 0
\(166\) 4.38335 + 13.4906i 0.340214 + 1.04707i
\(167\) 17.2815 + 2.73713i 1.33729 + 0.211805i 0.783779 0.621039i \(-0.213289\pi\)
0.553507 + 0.832845i \(0.313289\pi\)
\(168\) −8.53028 7.32427i −0.658126 0.565080i
\(169\) −12.4029 17.0711i −0.954066 1.31316i
\(170\) 0 0
\(171\) 9.43744 + 4.87104i 0.721699 + 0.372498i
\(172\) 1.60079 0.253540i 0.122059 0.0193322i
\(173\) 7.59919 + 14.9142i 0.577755 + 1.13391i 0.976232 + 0.216730i \(0.0695392\pi\)
−0.398476 + 0.917179i \(0.630461\pi\)
\(174\) −0.354939 + 0.0269992i −0.0269078 + 0.00204680i
\(175\) 0 0
\(176\) 17.0959i 1.28865i
\(177\) 2.49400 + 4.09386i 0.187460 + 0.307714i
\(178\) −2.73841 17.2897i −0.205253 1.29591i
\(179\) 7.83739 + 5.69420i 0.585794 + 0.425604i 0.840808 0.541333i \(-0.182080\pi\)
−0.255014 + 0.966937i \(0.582080\pi\)
\(180\) 0 0
\(181\) 7.76955 5.64491i 0.577506 0.419583i −0.260318 0.965523i \(-0.583827\pi\)
0.837824 + 0.545940i \(0.183827\pi\)
\(182\) 14.9344 + 14.9344i 1.10701 + 1.10701i
\(183\) 0.563718 6.93062i 0.0416712 0.512326i
\(184\) 2.63449 0.855997i 0.194217 0.0631049i
\(185\) 0 0
\(186\) −0.279643 + 1.15150i −0.0205044 + 0.0844322i
\(187\) 2.68606 + 1.36862i 0.196424 + 0.100083i
\(188\) 0.736087 + 0.375055i 0.0536847 + 0.0273537i
\(189\) 1.09202 12.6082i 0.0794327 0.917111i
\(190\) 0 0
\(191\) 10.1420 3.29532i 0.733847 0.238441i 0.0818306 0.996646i \(-0.473923\pi\)
0.652016 + 0.758205i \(0.273923\pi\)
\(192\) −12.1178 0.985629i −0.874527 0.0711316i
\(193\) −8.82760 8.82760i −0.635425 0.635425i 0.313999 0.949423i \(-0.398331\pi\)
−0.949423 + 0.313999i \(0.898331\pi\)
\(194\) 19.5493 14.2034i 1.40356 1.01975i
\(195\) 0 0
\(196\) 0.177345 + 0.128849i 0.0126675 + 0.00920348i
\(197\) −1.19701 7.55759i −0.0852831 0.538456i −0.992928 0.118718i \(-0.962122\pi\)
0.907645 0.419739i \(-0.137878\pi\)
\(198\) 14.1587 10.1741i 1.00622 0.723038i
\(199\) 16.5759i 1.17503i 0.809212 + 0.587517i \(0.199895\pi\)
−0.809212 + 0.587517i \(0.800105\pi\)
\(200\) 0 0
\(201\) 0.255683 + 3.36128i 0.0180345 + 0.237086i
\(202\) −9.98825 19.6030i −0.702771 1.37927i
\(203\) 0.332915 0.0527286i 0.0233661 0.00370082i
\(204\) −0.143671 + 0.233077i −0.0100590 + 0.0163187i
\(205\) 0 0
\(206\) 7.80753 + 10.7461i 0.543976 + 0.748719i
\(207\) 2.51287 + 1.84589i 0.174656 + 0.128298i
\(208\) 25.1952 + 3.99053i 1.74697 + 0.276693i
\(209\) −4.28132 13.1765i −0.296145 0.911440i
\(210\) 0 0
\(211\) −7.40904 + 22.8027i −0.510059 + 1.56980i 0.282036 + 0.959404i \(0.408990\pi\)
−0.792096 + 0.610397i \(0.791010\pi\)
\(212\) 0.273818 0.537398i 0.0188059 0.0369086i
\(213\) −2.37012 + 5.67985i −0.162398 + 0.389177i
\(214\) 20.5448 + 6.67542i 1.40442 + 0.456322i
\(215\) 0 0
\(216\) −7.14311 11.8647i −0.486027 0.807292i
\(217\) 0.175529 1.10824i 0.0119157 0.0752325i
\(218\) 10.4483 10.4483i 0.707650 0.707650i
\(219\) −15.8289 + 13.4476i −1.06962 + 0.908706i
\(220\) 0 0
\(221\) −2.64399 + 3.63914i −0.177854 + 0.244795i
\(222\) 12.7960 3.03663i 0.858811 0.203805i
\(223\) −2.11546 + 1.07788i −0.141662 + 0.0721802i −0.523385 0.852097i \(-0.675331\pi\)
0.381723 + 0.924277i \(0.375331\pi\)
\(224\) −2.81657 −0.188190
\(225\) 0 0
\(226\) 7.19878 0.478856
\(227\) −10.8425 + 5.52455i −0.719644 + 0.366677i −0.775146 0.631782i \(-0.782324\pi\)
0.0555024 + 0.998459i \(0.482324\pi\)
\(228\) 1.22432 0.290545i 0.0810828 0.0192418i
\(229\) 8.52530 11.7341i 0.563368 0.775409i −0.428382 0.903598i \(-0.640916\pi\)
0.991750 + 0.128188i \(0.0409162\pi\)
\(230\) 0 0
\(231\) −12.5819 + 10.6891i −0.827826 + 0.703289i
\(232\) 0.260821 0.260821i 0.0171237 0.0171237i
\(233\) −3.38975 + 21.4020i −0.222070 + 1.40209i 0.584710 + 0.811242i \(0.301208\pi\)
−0.806780 + 0.590852i \(0.798792\pi\)
\(234\) 11.6892 + 23.2414i 0.764145 + 1.51934i
\(235\) 0 0
\(236\) 0.540172 + 0.175513i 0.0351622 + 0.0114249i
\(237\) −0.588233 + 1.40967i −0.0382098 + 0.0915677i
\(238\) 1.26481 2.48232i 0.0819853 0.160905i
\(239\) 2.61133 8.03683i 0.168913 0.519859i −0.830391 0.557182i \(-0.811883\pi\)
0.999303 + 0.0373221i \(0.0118827\pi\)
\(240\) 0 0
\(241\) 0.483477 + 1.48799i 0.0311435 + 0.0958498i 0.965420 0.260699i \(-0.0839532\pi\)
−0.934277 + 0.356549i \(0.883953\pi\)
\(242\) −6.33073 1.00269i −0.406955 0.0644553i
\(243\) 6.15351 14.3225i 0.394748 0.918790i
\(244\) −0.484257 0.666523i −0.0310014 0.0426698i
\(245\) 0 0
\(246\) −8.77278 + 14.2321i −0.559332 + 0.907405i
\(247\) 20.4184 3.23396i 1.29919 0.205772i
\(248\) −0.557450 1.09406i −0.0353981 0.0694727i
\(249\) −1.25488 16.4970i −0.0795250 1.04546i
\(250\) 0 0
\(251\) 8.41068i 0.530878i −0.964128 0.265439i \(-0.914483\pi\)
0.964128 0.265439i \(-0.0855168\pi\)
\(252\) −0.874983 1.21767i −0.0551187 0.0767061i
\(253\) −0.636299 4.01743i −0.0400038 0.252574i
\(254\) −13.7123 9.96260i −0.860389 0.625109i
\(255\) 0 0
\(256\) −3.94407 + 2.86553i −0.246504 + 0.179096i
\(257\) −10.6415 10.6415i −0.663801 0.663801i 0.292473 0.956274i \(-0.405522\pi\)
−0.956274 + 0.292473i \(0.905522\pi\)
\(258\) −20.2467 1.64681i −1.26050 0.102526i
\(259\) −11.8436 + 3.84823i −0.735927 + 0.239117i
\(260\) 0 0
\(261\) 0.409727 + 0.0670961i 0.0253615 + 0.00415314i
\(262\) −5.86216 2.98692i −0.362165 0.184532i
\(263\) 1.66971 + 0.850760i 0.102959 + 0.0524601i 0.504711 0.863288i \(-0.331599\pi\)
−0.401753 + 0.915748i \(0.631599\pi\)
\(264\) −4.26354 + 17.5562i −0.262403 + 1.08051i
\(265\) 0 0
\(266\) −12.1771 + 3.95658i −0.746627 + 0.242594i
\(267\) −1.65523 + 20.3502i −0.101299 + 1.24541i
\(268\) 0.282420 + 0.282420i 0.0172515 + 0.0172515i
\(269\) −19.0018 + 13.8056i −1.15856 + 0.841745i −0.989596 0.143877i \(-0.954043\pi\)
−0.168966 + 0.985622i \(0.554043\pi\)
\(270\) 0 0
\(271\) 0.609720 + 0.442988i 0.0370379 + 0.0269096i 0.606150 0.795350i \(-0.292713\pi\)
−0.569112 + 0.822260i \(0.692713\pi\)
\(272\) −0.526387 3.32348i −0.0319169 0.201515i
\(273\) −12.8163 21.0377i −0.775676 1.27326i
\(274\) 12.3124i 0.743818i
\(275\) 0 0
\(276\) 0.368361 0.0280202i 0.0221727 0.00168662i
\(277\) 4.16594 + 8.17612i 0.250307 + 0.491255i 0.981635 0.190771i \(-0.0610989\pi\)
−0.731327 + 0.682027i \(0.761099\pi\)
\(278\) −32.1187 + 5.08710i −1.92635 + 0.305104i
\(279\) 0.633907 1.22817i 0.0379510 0.0735284i
\(280\) 0 0
\(281\) −14.7500 20.3017i −0.879913 1.21110i −0.976445 0.215766i \(-0.930775\pi\)
0.0965320 0.995330i \(-0.469225\pi\)
\(282\) −7.85583 6.74518i −0.467808 0.401669i
\(283\) 23.3503 + 3.69832i 1.38803 + 0.219843i 0.805322 0.592838i \(-0.201993\pi\)
0.582709 + 0.812681i \(0.301993\pi\)
\(284\) 0.225336 + 0.693512i 0.0133712 + 0.0411524i
\(285\) 0 0
\(286\) 10.4874 32.2769i 0.620133 1.90857i
\(287\) 7.18714 14.1056i 0.424243 0.832624i
\(288\) −3.29388 1.08935i −0.194094 0.0641908i
\(289\) −15.6036 5.06993i −0.917861 0.298231i
\(290\) 0 0
\(291\) −26.0671 + 10.7175i −1.52808 + 0.628270i
\(292\) −0.384966 + 2.43058i −0.0225284 + 0.142239i
\(293\) 17.4959 17.4959i 1.02212 1.02212i 0.0223711 0.999750i \(-0.492878\pi\)
0.999750 0.0223711i \(-0.00712154\pi\)
\(294\) −1.77887 2.09386i −0.103746 0.122117i
\(295\) 0 0
\(296\) −8.01016 + 11.0250i −0.465581 + 0.640817i
\(297\) −18.8483 + 7.63428i −1.09369 + 0.442986i
\(298\) −7.43278 + 3.78719i −0.430569 + 0.219386i
\(299\) 6.06926 0.350994
\(300\) 0 0
\(301\) 19.2351 1.10869
\(302\) 19.4266 9.89833i 1.11787 0.569585i
\(303\) 5.92513 + 24.9678i 0.340390 + 1.43436i
\(304\) −9.08974 + 12.5110i −0.521333 + 0.717553i
\(305\) 0 0
\(306\) 2.43923 2.41381i 0.139442 0.137988i
\(307\) 4.00162 4.00162i 0.228384 0.228384i −0.583633 0.812017i \(-0.698369\pi\)
0.812017 + 0.583633i \(0.198369\pi\)
\(308\) −0.305997 + 1.93199i −0.0174358 + 0.110085i
\(309\) −5.89133 14.3290i −0.335146 0.815146i
\(310\) 0 0
\(311\) 32.7389 + 10.6375i 1.85645 + 0.603198i 0.995528 + 0.0944627i \(0.0301133\pi\)
0.860923 + 0.508735i \(0.169887\pi\)
\(312\) −24.8785 10.3814i −1.40847 0.587733i
\(313\) −8.86459 + 17.3977i −0.501056 + 0.983378i 0.492530 + 0.870296i \(0.336072\pi\)
−0.993586 + 0.113082i \(0.963928\pi\)
\(314\) −4.80148 + 14.7774i −0.270963 + 0.833939i
\(315\) 0 0
\(316\) 0.0559255 + 0.172121i 0.00314605 + 0.00968256i
\(317\) 2.89957 + 0.459247i 0.162856 + 0.0257939i 0.237330 0.971429i \(-0.423728\pi\)
−0.0744738 + 0.997223i \(0.523728\pi\)
\(318\) −4.92448 + 5.73534i −0.276151 + 0.321622i
\(319\) −0.318358 0.438182i −0.0178246 0.0245335i
\(320\) 0 0
\(321\) −21.4485 13.2211i −1.19714 0.737928i
\(322\) −3.71271 + 0.588036i −0.206901 + 0.0327700i
\(323\) −1.23801 2.42973i −0.0688846 0.135194i
\(324\) −0.552309 1.76244i −0.0306838 0.0979134i
\(325\) 0 0
\(326\) 12.7023i 0.703516i
\(327\) −14.7183 + 8.96644i −0.813923 + 0.495845i
\(328\) −2.71010 17.1109i −0.149640 0.944792i
\(329\) 7.93206 + 5.76298i 0.437308 + 0.317723i
\(330\) 0 0
\(331\) 3.26639 2.37317i 0.179537 0.130441i −0.494387 0.869242i \(-0.664607\pi\)
0.673924 + 0.738800i \(0.264607\pi\)
\(332\) −1.38611 1.38611i −0.0760725 0.0760725i
\(333\) −15.3391 0.0803415i −0.840578 0.00440268i
\(334\) −24.7112 + 8.02917i −1.35214 + 0.439337i
\(335\) 0 0
\(336\) 17.9071 + 4.34875i 0.976913 + 0.237244i
\(337\) −9.50552 4.84331i −0.517799 0.263832i 0.175503 0.984479i \(-0.443845\pi\)
−0.693302 + 0.720647i \(0.743845\pi\)
\(338\) 27.9196 + 14.2258i 1.51863 + 0.773779i
\(339\) −8.15926 1.98148i −0.443150 0.107619i
\(340\) 0 0
\(341\) −1.71476 + 0.557161i −0.0928597 + 0.0301719i
\(342\) −15.7710 0.0826036i −0.852799 0.00446669i
\(343\) 13.8949 + 13.8949i 0.750253 + 0.750253i
\(344\) 17.0292 12.3725i 0.918155 0.667079i
\(345\) 0 0
\(346\) −20.1096 14.6105i −1.08110 0.785465i
\(347\) 3.88435 + 24.5248i 0.208523 + 1.31656i 0.840600 + 0.541656i \(0.182202\pi\)
−0.632077 + 0.774905i \(0.717798\pi\)
\(348\) 0.0420103 0.0255928i 0.00225199 0.00137192i
\(349\) 3.68396i 0.197198i 0.995127 + 0.0985990i \(0.0314361\pi\)
−0.995127 + 0.0985990i \(0.968564\pi\)
\(350\) 0 0
\(351\) −6.85152 29.5598i −0.365707 1.57779i
\(352\) 2.05471 + 4.03259i 0.109516 + 0.214938i
\(353\) 0.544691 0.0862706i 0.0289910 0.00459172i −0.141922 0.989878i \(-0.545328\pi\)
0.170913 + 0.985286i \(0.445328\pi\)
\(354\) −6.05990 3.73537i −0.322080 0.198533i
\(355\) 0 0
\(356\) 1.42191 + 1.95710i 0.0753613 + 0.103726i
\(357\) −2.11683 + 2.46538i −0.112034 + 0.130482i
\(358\) −14.2089 2.25046i −0.750962 0.118941i
\(359\) −0.0579467 0.178342i −0.00305831 0.00941251i 0.949516 0.313719i \(-0.101575\pi\)
−0.952574 + 0.304307i \(0.901575\pi\)
\(360\) 0 0
\(361\) 1.99857 6.15098i 0.105188 0.323736i
\(362\) −6.47457 + 12.7071i −0.340296 + 0.667868i
\(363\) 6.89940 + 2.87902i 0.362125 + 0.151109i
\(364\) −2.77586 0.901931i −0.145495 0.0472741i
\(365\) 0 0
\(366\) 3.92657 + 9.55025i 0.205245 + 0.499199i
\(367\) −3.24722 + 20.5021i −0.169503 + 1.07020i 0.745426 + 0.666589i \(0.232246\pi\)
−0.914929 + 0.403614i \(0.867754\pi\)
\(368\) −3.21034 + 3.21034i −0.167351 + 0.167351i
\(369\) 13.8607 13.7162i 0.721558 0.714039i
\(370\) 0 0
\(371\) 4.20740 5.79099i 0.218437 0.300653i
\(372\) −0.0378109 0.159331i −0.00196040 0.00826091i
\(373\) −4.29685 + 2.18936i −0.222483 + 0.113361i −0.561680 0.827355i \(-0.689845\pi\)
0.339197 + 0.940715i \(0.389845\pi\)
\(374\) −4.47672 −0.231486
\(375\) 0 0
\(376\) 10.7293 0.553322
\(377\) 0.720086 0.366902i 0.0370863 0.0188964i
\(378\) 7.05523 + 17.4186i 0.362882 + 0.895918i
\(379\) −4.09975 + 5.64282i −0.210590 + 0.289852i −0.901225 0.433351i \(-0.857331\pi\)
0.690635 + 0.723203i \(0.257331\pi\)
\(380\) 0 0
\(381\) 12.7997 + 15.0662i 0.655746 + 0.771864i
\(382\) −11.1976 + 11.1976i −0.572921 + 0.572921i
\(383\) −1.60030 + 10.1039i −0.0817714 + 0.516284i 0.912472 + 0.409139i \(0.134171\pi\)
−0.994243 + 0.107145i \(0.965829\pi\)
\(384\) 20.4032 8.38874i 1.04119 0.428086i
\(385\) 0 0
\(386\) 17.6315 + 5.72883i 0.897421 + 0.291590i
\(387\) 22.4948 + 7.43948i 1.14347 + 0.378170i
\(388\) −1.51603 + 2.97538i −0.0769650 + 0.151052i
\(389\) 9.90598 30.4875i 0.502253 1.54578i −0.303087 0.952963i \(-0.598017\pi\)
0.805340 0.592813i \(-0.201983\pi\)
\(390\) 0 0
\(391\) −0.247396 0.761407i −0.0125114 0.0385060i
\(392\) 2.81193 + 0.445366i 0.142024 + 0.0224944i
\(393\) 5.82215 + 4.99901i 0.293688 + 0.252167i
\(394\) 6.67895 + 9.19278i 0.336481 + 0.463126i
\(395\) 0 0
\(396\) −1.10508 + 2.14105i −0.0555324 + 0.107592i
\(397\) −10.1301 + 1.60445i −0.508414 + 0.0805249i −0.405371 0.914152i \(-0.632858\pi\)
−0.103043 + 0.994677i \(0.532858\pi\)
\(398\) −11.1751 21.9323i −0.560155 1.09937i
\(399\) 14.8909 1.13271i 0.745476 0.0567063i
\(400\) 0 0
\(401\) 14.6016i 0.729167i −0.931171 0.364584i \(-0.881211\pi\)
0.931171 0.364584i \(-0.118789\pi\)
\(402\) −2.60439 4.27507i −0.129895 0.213221i
\(403\) −0.420860 2.65721i −0.0209645 0.132365i
\(404\) 2.45974 + 1.78710i 0.122376 + 0.0889117i
\(405\) 0 0
\(406\) −0.404946 + 0.294210i −0.0200971 + 0.0146014i
\(407\) 14.1497 + 14.1497i 0.701373 + 0.701373i
\(408\) −0.288280 + 3.54425i −0.0142720 + 0.175467i
\(409\) 15.6748 5.09306i 0.775070 0.251835i 0.105336 0.994437i \(-0.466408\pi\)
0.669734 + 0.742601i \(0.266408\pi\)
\(410\) 0 0
\(411\) 3.38901 13.9551i 0.167167 0.688356i
\(412\) −1.63555 0.833355i −0.0805778 0.0410564i
\(413\) 6.00602 + 3.06022i 0.295537 + 0.150584i
\(414\) −4.56933 0.748265i −0.224570 0.0367752i
\(415\) 0 0
\(416\) −6.42268 + 2.08686i −0.314898 + 0.102317i
\(417\) 37.8042 + 3.07489i 1.85128 + 0.150578i
\(418\) 14.5481 + 14.5481i 0.711570 + 0.711570i
\(419\) −0.887321 + 0.644676i −0.0433484 + 0.0314945i −0.609248 0.792979i \(-0.708529\pi\)
0.565900 + 0.824474i \(0.308529\pi\)
\(420\) 0 0
\(421\) 23.5246 + 17.0916i 1.14652 + 0.832996i 0.988014 0.154362i \(-0.0493324\pi\)
0.158506 + 0.987358i \(0.449332\pi\)
\(422\) −5.56977 35.1662i −0.271132 1.71186i
\(423\) 7.04736 + 9.80747i 0.342654 + 0.476855i
\(424\) 7.83319i 0.380414i
\(425\) 0 0
\(426\) −0.693210 9.11312i −0.0335861 0.441532i
\(427\) −4.43899 8.71201i −0.214818 0.421603i
\(428\) −2.94852 + 0.467000i −0.142522 + 0.0225733i
\(429\) −20.7709 + 33.6967i −1.00283 + 1.62689i
\(430\) 0 0
\(431\) 15.6969 + 21.6049i 0.756091 + 1.04067i 0.997529 + 0.0702534i \(0.0223808\pi\)
−0.241439 + 0.970416i \(0.577619\pi\)
\(432\) 19.2598 + 12.0116i 0.926640 + 0.577908i
\(433\) −26.4272 4.18566i −1.27001 0.201150i −0.515187 0.857078i \(-0.672277\pi\)
−0.754823 + 0.655928i \(0.772277\pi\)
\(434\) 0.514901 + 1.58470i 0.0247160 + 0.0760681i
\(435\) 0 0
\(436\) −0.631004 + 1.94203i −0.0302196 + 0.0930064i
\(437\) −1.67039 + 3.27832i −0.0799055 + 0.156823i
\(438\) 11.8778 28.4646i 0.567545 1.36009i
\(439\) −19.2932 6.26873i −0.920812 0.299190i −0.190012 0.981782i \(-0.560853\pi\)
−0.730800 + 0.682592i \(0.760853\pi\)
\(440\) 0 0
\(441\) 1.43987 + 2.86287i 0.0685650 + 0.136327i
\(442\) 1.04496 6.59762i 0.0497037 0.313817i
\(443\) −12.0174 + 12.0174i −0.570962 + 0.570962i −0.932397 0.361435i \(-0.882287\pi\)
0.361435 + 0.932397i \(0.382287\pi\)
\(444\) −1.38508 + 1.17671i −0.0657328 + 0.0558441i
\(445\) 0 0
\(446\) 2.07237 2.85238i 0.0981298 0.135064i
\(447\) 9.46691 2.24660i 0.447770 0.106261i
\(448\) −15.2324 + 7.76132i −0.719665 + 0.366688i
\(449\) −23.5930 −1.11342 −0.556711 0.830706i \(-0.687937\pi\)
−0.556711 + 0.830706i \(0.687937\pi\)
\(450\) 0 0
\(451\) −25.4385 −1.19785
\(452\) −0.886396 + 0.451642i −0.0416926 + 0.0212434i
\(453\) −24.7430 + 5.87179i −1.16253 + 0.275881i
\(454\) 10.6217 14.6195i 0.498501 0.686128i
\(455\) 0 0
\(456\) 12.4546 10.5810i 0.583242 0.495500i
\(457\) 1.82957 1.82957i 0.0855837 0.0855837i −0.663019 0.748603i \(-0.730725\pi\)
0.748603 + 0.663019i \(0.230725\pi\)
\(458\) −3.36937 + 21.2734i −0.157441 + 0.994040i
\(459\) −3.42909 + 2.06447i −0.160056 + 0.0963610i
\(460\) 0 0
\(461\) −24.9186 8.09654i −1.16057 0.377094i −0.335458 0.942055i \(-0.608891\pi\)
−0.825117 + 0.564962i \(0.808891\pi\)
\(462\) 9.44130 22.6255i 0.439249 1.05264i
\(463\) 9.73607 19.1081i 0.452474 0.888030i −0.546255 0.837619i \(-0.683947\pi\)
0.998729 0.0504107i \(-0.0160530\pi\)
\(464\) −0.186817 + 0.574964i −0.00867277 + 0.0266920i
\(465\) 0 0
\(466\) −9.94359 30.6032i −0.460628 1.41767i
\(467\) −29.2023 4.62519i −1.35132 0.214028i −0.561556 0.827439i \(-0.689797\pi\)
−0.789764 + 0.613411i \(0.789797\pi\)
\(468\) −2.89744 2.12839i −0.133934 0.0983848i
\(469\) 2.78618 + 3.83484i 0.128654 + 0.177077i
\(470\) 0 0
\(471\) 9.50963 15.4275i 0.438180 0.710860i
\(472\) 7.28567 1.15394i 0.335350 0.0531142i
\(473\) −14.0321 27.5396i −0.645197 1.26627i
\(474\) −0.172046 2.26176i −0.00790233 0.103886i
\(475\) 0 0
\(476\) 0.385004i 0.0176467i
\(477\) 7.16018 5.14509i 0.327842 0.235578i
\(478\) 1.96307 + 12.3944i 0.0897889 + 0.566905i
\(479\) 24.4450 + 17.7603i 1.11692 + 0.811489i 0.983739 0.179603i \(-0.0574813\pi\)
0.133180 + 0.991092i \(0.457481\pi\)
\(480\) 0 0
\(481\) −24.1560 + 17.5504i −1.10142 + 0.800229i
\(482\) −1.64287 1.64287i −0.0748309 0.0748309i
\(483\) 4.36993 + 0.355438i 0.198839 + 0.0161730i
\(484\) 0.842420 0.273719i 0.0382918 0.0124418i
\(485\) 0 0
\(486\) 1.51391 + 23.0993i 0.0686723 + 1.04780i
\(487\) −13.4191 6.83736i −0.608076 0.309830i 0.122704 0.992443i \(-0.460843\pi\)
−0.730780 + 0.682613i \(0.760843\pi\)
\(488\) −9.53371 4.85767i −0.431571 0.219896i
\(489\) −3.49634 + 14.3971i −0.158110 + 0.651059i
\(490\) 0 0
\(491\) −31.9571 + 10.3835i −1.44220 + 0.468601i −0.922584 0.385797i \(-0.873927\pi\)
−0.519621 + 0.854397i \(0.673927\pi\)
\(492\) 0.187304 2.30281i 0.00844433 0.103819i
\(493\) −0.0753812 0.0753812i −0.00339500 0.00339500i
\(494\) −24.8362 + 18.0446i −1.11743 + 0.811863i
\(495\) 0 0
\(496\) 1.62815 + 1.18292i 0.0731060 + 0.0531146i
\(497\) 1.35382 + 8.54766i 0.0607270 + 0.383415i
\(498\) 12.7823 + 20.9819i 0.572787 + 0.940222i
\(499\) 32.3318i 1.44737i −0.690131 0.723684i \(-0.742447\pi\)
0.690131 0.723684i \(-0.257553\pi\)
\(500\) 0 0
\(501\) 30.2183 2.29862i 1.35006 0.102695i
\(502\) 5.67027 + 11.1285i 0.253077 + 0.496691i
\(503\) 0.646326 0.102368i 0.0288182 0.00456436i −0.142009 0.989865i \(-0.545356\pi\)
0.170827 + 0.985301i \(0.445356\pi\)
\(504\) −17.3048 8.93172i −0.770818 0.397850i
\(505\) 0 0
\(506\) 3.55037 + 4.88666i 0.157833 + 0.217238i
\(507\) −27.7291 23.8087i −1.23149 1.05738i
\(508\) 2.31346 + 0.366416i 0.102643 + 0.0162571i
\(509\) 7.29902 + 22.4641i 0.323523 + 0.995703i 0.972103 + 0.234556i \(0.0753635\pi\)
−0.648579 + 0.761147i \(0.724636\pi\)
\(510\) 0 0
\(511\) −9.02509 + 27.7764i −0.399247 + 1.22875i
\(512\) −8.27787 + 16.2462i −0.365834 + 0.717989i
\(513\) 17.8525 + 4.43463i 0.788206 + 0.195794i
\(514\) 21.2545 + 6.90601i 0.937497 + 0.304611i
\(515\) 0 0
\(516\) 2.59633 1.06748i 0.114297 0.0469930i
\(517\) 2.46458 15.5608i 0.108392 0.684361i
\(518\) 13.0764 13.0764i 0.574545 0.574545i
\(519\) 18.7711 + 22.0951i 0.823961 + 0.969866i
\(520\) 0 0
\(521\) −20.7338 + 28.5376i −0.908365 + 1.25026i 0.0593574 + 0.998237i \(0.481095\pi\)
−0.967722 + 0.252020i \(0.918905\pi\)
\(522\) −0.587362 + 0.187450i −0.0257081 + 0.00820447i
\(523\) 2.26510 1.15413i 0.0990460 0.0504664i −0.403766 0.914862i \(-0.632299\pi\)
0.502812 + 0.864396i \(0.332299\pi\)
\(524\) 0.909212 0.0397191
\(525\) 0 0
\(526\) −2.78282 −0.121337
\(527\) −0.316199 + 0.161111i −0.0137738 + 0.00701813i
\(528\) −6.83710 28.8108i −0.297547 1.25383i
\(529\) 12.8841 17.7335i 0.560180 0.771021i
\(530\) 0 0
\(531\) 5.84025 + 5.90175i 0.253445 + 0.256114i
\(532\) 1.25116 1.25116i 0.0542445 0.0542445i
\(533\) 5.93788 37.4903i 0.257198 1.62389i
\(534\) −11.5295 28.0422i −0.498931 1.21350i
\(535\) 0 0
\(536\) 4.93333 + 1.60294i 0.213087 + 0.0692363i
\(537\) 15.4852 + 6.46174i 0.668236 + 0.278845i
\(538\) 15.8347 31.0774i 0.682683 1.33984i
\(539\) 1.29183 3.97585i 0.0556432 0.171252i
\(540\) 0 0
\(541\) 3.34503 + 10.2949i 0.143814 + 0.442614i 0.996857 0.0792273i \(-0.0252453\pi\)
−0.853043 + 0.521841i \(0.825245\pi\)
\(542\) −1.10540 0.175078i −0.0474809 0.00752024i
\(543\) 10.8361 12.6203i 0.465020 0.541590i
\(544\) 0.523604 + 0.720680i 0.0224494 + 0.0308989i
\(545\) 0 0
\(546\) 31.1408 + 19.1955i 1.33271 + 0.821491i
\(547\) 22.7658 3.60575i 0.973396 0.154171i 0.350574 0.936535i \(-0.385986\pi\)
0.622821 + 0.782364i \(0.285986\pi\)
\(548\) −0.772462 1.51604i −0.0329979 0.0647621i
\(549\) −1.82174 11.9053i −0.0777500 0.508104i
\(550\) 0 0
\(551\) 0.489935i 0.0208719i
\(552\) 4.09743 2.49617i 0.174398 0.106244i
\(553\) 0.336000 + 2.12142i 0.0142882 + 0.0902120i
\(554\) −11.0243 8.00960i −0.468376 0.340295i
\(555\) 0 0
\(556\) 3.63566 2.64146i 0.154186 0.112023i
\(557\) −6.52436 6.52436i −0.276446 0.276446i 0.555242 0.831689i \(-0.312625\pi\)
−0.831689 + 0.555242i \(0.812625\pi\)
\(558\) −0.0107498 + 2.05240i −0.000455077 + 0.0868851i
\(559\) 43.8621 14.2517i 1.85517 0.602782i
\(560\) 0 0
\(561\) 5.07402 + 1.23223i 0.214225 + 0.0520247i
\(562\) 33.2033 + 16.9179i 1.40060 + 0.713639i
\(563\) −9.63388 4.90871i −0.406020 0.206877i 0.239040 0.971010i \(-0.423167\pi\)
−0.645059 + 0.764132i \(0.723167\pi\)
\(564\) 1.39048 + 0.337679i 0.0585499 + 0.0142189i
\(565\) 0 0
\(566\) −33.3891 + 10.8488i −1.40345 + 0.456008i
\(567\) −3.20204 21.6846i −0.134473 0.910669i
\(568\) 6.69663 + 6.69663i 0.280984 + 0.280984i
\(569\) −15.4318 + 11.2119i −0.646937 + 0.470027i −0.862226 0.506523i \(-0.830930\pi\)
0.215290 + 0.976550i \(0.430930\pi\)
\(570\) 0 0
\(571\) −7.63086 5.54414i −0.319342 0.232015i 0.416553 0.909111i \(-0.363238\pi\)
−0.735894 + 0.677096i \(0.763238\pi\)
\(572\) 0.733679 + 4.63227i 0.0306767 + 0.193685i
\(573\) 15.7738 9.60948i 0.658961 0.401442i
\(574\) 23.5090i 0.981248i
\(575\) 0 0
\(576\) −20.8157 + 3.18521i −0.867319 + 0.132717i
\(577\) 3.02469 + 5.93629i 0.125920 + 0.247131i 0.945357 0.326038i \(-0.105714\pi\)
−0.819437 + 0.573169i \(0.805714\pi\)
\(578\) 24.0639 3.81134i 1.00092 0.158531i
\(579\) −18.4071 11.3463i −0.764973 0.471536i
\(580\) 0 0
\(581\) −13.6745 18.8213i −0.567313 0.780839i
\(582\) 27.2651 31.7546i 1.13017 1.31627i
\(583\) −11.3605 1.79933i −0.470504 0.0745205i
\(584\) 9.87633 + 30.3962i 0.408685 + 1.25780i
\(585\) 0 0
\(586\) −11.3543 + 34.9448i −0.469040 + 1.44356i
\(587\) −7.27726 + 14.2824i −0.300365 + 0.589499i −0.991024 0.133681i \(-0.957320\pi\)
0.690660 + 0.723180i \(0.257320\pi\)
\(588\) 0.350400 + 0.146217i 0.0144503 + 0.00602988i
\(589\) 1.55112 + 0.503991i 0.0639129 + 0.0207666i
\(590\) 0 0
\(591\) −5.03974 12.2577i −0.207307 0.504214i
\(592\) 3.49407 22.0607i 0.143605 0.906689i
\(593\) 19.4509 19.4509i 0.798754 0.798754i −0.184145 0.982899i \(-0.558952\pi\)
0.982899 + 0.184145i \(0.0589517\pi\)
\(594\) 19.7921 22.8083i 0.812080 0.935834i
\(595\) 0 0
\(596\) 0.677606 0.932645i 0.0277558 0.0382026i
\(597\) 6.62915 + 27.9345i 0.271313 + 1.14328i
\(598\) −8.03050 + 4.09174i −0.328391 + 0.167324i
\(599\) −8.83948 −0.361171 −0.180586 0.983559i \(-0.557799\pi\)
−0.180586 + 0.983559i \(0.557799\pi\)
\(600\) 0 0
\(601\) −18.4292 −0.751744 −0.375872 0.926672i \(-0.622657\pi\)
−0.375872 + 0.926672i \(0.622657\pi\)
\(602\) −25.4507 + 12.9678i −1.03729 + 0.528528i
\(603\) 1.77515 + 5.56233i 0.0722899 + 0.226515i
\(604\) −1.77101 + 2.43759i −0.0720615 + 0.0991842i
\(605\) 0 0
\(606\) −24.6725 29.0414i −1.00225 1.17973i
\(607\) −11.7369 + 11.7369i −0.476386 + 0.476386i −0.903974 0.427588i \(-0.859363\pi\)
0.427588 + 0.903974i \(0.359363\pi\)
\(608\) 0.640439 4.04357i 0.0259732 0.163988i
\(609\) 0.539957 0.222003i 0.0218802 0.00899600i
\(610\) 0 0
\(611\) 22.3576 + 7.26441i 0.904490 + 0.293887i
\(612\) −0.148907 + 0.450250i −0.00601920 + 0.0182003i
\(613\) 6.54078 12.8370i 0.264180 0.518482i −0.720369 0.693591i \(-0.756028\pi\)
0.984549 + 0.175109i \(0.0560277\pi\)
\(614\) −2.59692 + 7.99250i −0.104803 + 0.322551i
\(615\) 0 0
\(616\) 7.85037 + 24.1610i 0.316300 + 0.973473i
\(617\) −13.5321 2.14327i −0.544782 0.0862849i −0.122023 0.992527i \(-0.538938\pi\)
−0.422759 + 0.906242i \(0.638938\pi\)
\(618\) 17.4553 + 14.9875i 0.702155 + 0.602884i
\(619\) 5.41760 + 7.45669i 0.217752 + 0.299710i 0.903893 0.427759i \(-0.140697\pi\)
−0.686141 + 0.727468i \(0.740697\pi\)
\(620\) 0 0
\(621\) 4.97302 + 2.10582i 0.199560 + 0.0845035i
\(622\) −50.4897 + 7.99679i −2.02445 + 0.320642i
\(623\) 13.0341 + 25.5809i 0.522201 + 1.02488i
\(624\) 44.0561 3.35122i 1.76365 0.134156i
\(625\) 0 0
\(626\) 28.9960i 1.15891i
\(627\) −12.4847 20.4935i −0.498592 0.818432i
\(628\) −0.335903 2.12081i −0.0134040 0.0846294i
\(629\) 3.18640 + 2.31506i 0.127050 + 0.0923073i
\(630\) 0 0
\(631\) 32.6151 23.6962i 1.29839 0.943333i 0.298448 0.954426i \(-0.403531\pi\)
0.999938 + 0.0110933i \(0.00353119\pi\)
\(632\) 1.66202 + 1.66202i 0.0661115 + 0.0661115i
\(633\) −3.36665 + 41.3912i −0.133812 + 1.64515i
\(634\) −4.14616 + 1.34717i −0.164665 + 0.0535029i
\(635\) 0 0
\(636\) 0.246531 1.01516i 0.00977558 0.0402535i
\(637\) 5.55791 + 2.83190i 0.220213 + 0.112204i
\(638\) 0.716643 + 0.365148i 0.0283722 + 0.0144563i
\(639\) −1.72270 + 10.5198i −0.0681491 + 0.416158i
\(640\) 0 0
\(641\) 41.3915 13.4489i 1.63487 0.531201i 0.659484 0.751718i \(-0.270775\pi\)
0.975383 + 0.220518i \(0.0707748\pi\)
\(642\) 37.2928 + 3.03329i 1.47183 + 0.119715i
\(643\) −19.6168 19.6168i −0.773612 0.773612i 0.205124 0.978736i \(-0.434240\pi\)
−0.978736 + 0.205124i \(0.934240\pi\)
\(644\) 0.420259 0.305336i 0.0165605 0.0120319i
\(645\) 0 0
\(646\) 3.27612 + 2.38024i 0.128897 + 0.0936494i
\(647\) −4.20028 26.5196i −0.165130 1.04259i −0.921481 0.388425i \(-0.873019\pi\)
0.756350 0.654167i \(-0.226981\pi\)
\(648\) −16.7829 17.1383i −0.659296 0.673255i
\(649\) 10.8315i 0.425173i
\(650\) 0 0
\(651\) −0.147408 1.93786i −0.00577737 0.0759508i
\(652\) 0.796926 + 1.56406i 0.0312100 + 0.0612531i
\(653\) −20.1993 + 3.19926i −0.790460 + 0.125197i −0.538594 0.842566i \(-0.681044\pi\)
−0.251866 + 0.967762i \(0.581044\pi\)
\(654\) 13.4294 21.7866i 0.525133 0.851922i
\(655\) 0 0
\(656\) 16.6897 + 22.9714i 0.651623 + 0.896883i
\(657\) −21.2975 + 28.9930i −0.830896 + 1.13112i
\(658\) −14.3805 2.27765i −0.560610 0.0887919i
\(659\) −2.65726 8.17820i −0.103512 0.318578i 0.885866 0.463941i \(-0.153565\pi\)
−0.989378 + 0.145363i \(0.953565\pi\)
\(660\) 0 0
\(661\) 12.9264 39.7835i 0.502781 1.54740i −0.301689 0.953406i \(-0.597551\pi\)
0.804470 0.593993i \(-0.202449\pi\)
\(662\) −2.72197 + 5.34217i −0.105792 + 0.207629i
\(663\) −3.00039 + 7.19026i −0.116525 + 0.279247i
\(664\) −24.2126 7.86716i −0.939632 0.305305i
\(665\) 0 0
\(666\) 20.3500 10.2349i 0.788546 0.396596i
\(667\) −0.0225011 + 0.142067i −0.000871248 + 0.00550084i
\(668\) 2.53899 2.53899i 0.0982366 0.0982366i
\(669\) −3.13400 + 2.66253i −0.121167 + 0.102939i
\(670\) 0 0
\(671\) −9.23504 + 12.7109i −0.356515 + 0.490700i
\(672\) −4.74661 + 1.12642i −0.183105 + 0.0434527i
\(673\) 20.5969 10.4947i 0.793954 0.404540i −0.00946407 0.999955i \(-0.503013\pi\)
0.803418 + 0.595416i \(0.203013\pi\)
\(674\) 15.8424 0.610226
\(675\) 0 0
\(676\) −4.33029 −0.166550
\(677\) 18.1854 9.26592i 0.698921 0.356118i −0.0681543 0.997675i \(-0.521711\pi\)
0.767076 + 0.641557i \(0.221711\pi\)
\(678\) 12.1317 2.87899i 0.465916 0.110567i
\(679\) −23.2949 + 32.0627i −0.893976 + 1.23045i
\(680\) 0 0
\(681\) −16.0629 + 13.6464i −0.615533 + 0.522933i
\(682\) 1.89325 1.89325i 0.0724964 0.0724964i
\(683\) 0.339136 2.14122i 0.0129767 0.0819315i −0.980350 0.197266i \(-0.936794\pi\)
0.993327 + 0.115334i \(0.0367939\pi\)
\(684\) 1.94709 0.979280i 0.0744489 0.0374437i
\(685\) 0 0
\(686\) −27.7525 9.01733i −1.05959 0.344283i
\(687\) 9.67447 23.1843i 0.369104 0.884537i
\(688\) −15.6625 + 30.7394i −0.597127 + 1.17193i
\(689\) 5.30356 16.3227i 0.202049 0.621844i
\(690\) 0 0
\(691\) 4.06682 + 12.5164i 0.154709 + 0.476146i 0.998131 0.0611055i \(-0.0194626\pi\)
−0.843422 + 0.537251i \(0.819463\pi\)
\(692\) 3.39277 + 0.537362i 0.128974 + 0.0204274i
\(693\) −16.9287 + 23.0456i −0.643068 + 0.875429i
\(694\) −21.6736 29.8311i −0.822717 1.13237i
\(695\) 0 0
\(696\) 0.335238 0.543857i 0.0127072 0.0206149i
\(697\) −4.94531 + 0.783260i −0.187317 + 0.0296681i
\(698\) −2.48363 4.87441i −0.0940069 0.184499i
\(699\) 2.84669 + 37.4234i 0.107672 + 1.41548i
\(700\) 0 0
\(701\) 21.8766i 0.826268i 0.910670 + 0.413134i \(0.135566\pi\)
−0.910670 + 0.413134i \(0.864434\pi\)
\(702\) 28.9940 + 34.4927i 1.09431 + 1.30184i
\(703\) −2.83162 17.8782i −0.106797 0.674288i
\(704\) 22.2243 + 16.1469i 0.837612 + 0.608560i
\(705\) 0 0
\(706\) −0.662542 + 0.481365i −0.0249351 + 0.0181164i
\(707\) 25.5150 + 25.5150i 0.959591 + 0.959591i
\(708\) 0.980516 + 0.0797525i 0.0368500 + 0.00299728i
\(709\) −24.3739 + 7.91956i −0.915381 + 0.297425i −0.728570 0.684971i \(-0.759815\pi\)
−0.186810 + 0.982396i \(0.559815\pi\)
\(710\) 0 0
\(711\) −0.427554 + 2.61089i −0.0160345 + 0.0979159i
\(712\) 27.9936 + 14.2635i 1.04911 + 0.534546i
\(713\) 0.426633 + 0.217380i 0.0159775 + 0.00814096i
\(714\) 1.13876 4.68916i 0.0426172 0.175487i
\(715\) 0 0
\(716\) 1.89075 0.614342i 0.0706606 0.0229590i
\(717\) 1.18658 14.5884i 0.0443136 0.544813i
\(718\) 0.196905 + 0.196905i 0.00734844 + 0.00734844i
\(719\) 5.09685 3.70308i 0.190081 0.138102i −0.488675 0.872466i \(-0.662520\pi\)
0.678756 + 0.734364i \(0.262520\pi\)
\(720\) 0 0
\(721\) −17.6247 12.8051i −0.656376 0.476885i
\(722\) 1.50244 + 9.48601i 0.0559149 + 0.353033i
\(723\) 1.40987 + 2.31427i 0.0524335 + 0.0860688i
\(724\) 1.97084i 0.0732459i
\(725\) 0 0
\(726\) −11.0699 + 0.842053i −0.410841 + 0.0312515i
\(727\) −7.14311 14.0192i −0.264923 0.519942i 0.719775 0.694207i \(-0.244245\pi\)
−0.984699 + 0.174266i \(0.944245\pi\)
\(728\) −37.4399 + 5.92990i −1.38762 + 0.219777i
\(729\) 4.64222 26.5979i 0.171934 0.985108i
\(730\) 0 0
\(731\) −3.57583 4.92171i −0.132257 0.182036i
\(732\) −1.08265 0.929588i −0.0400160 0.0343586i
\(733\) 22.0161 + 3.48700i 0.813182 + 0.128795i 0.549155 0.835720i \(-0.314949\pi\)
0.264026 + 0.964516i \(0.414949\pi\)
\(734\) −9.52549 29.3164i −0.351592 1.08209i
\(735\) 0 0
\(736\) 0.371416 1.14310i 0.0136906 0.0421353i
\(737\) 3.45796 6.78662i 0.127375 0.249988i
\(738\) −9.09251 + 27.4931i −0.334700 + 1.01203i
\(739\) 34.2550 + 11.1301i 1.26009 + 0.409428i 0.861526 0.507713i \(-0.169509\pi\)
0.398563 + 0.917141i \(0.369509\pi\)
\(740\) 0 0
\(741\) 33.1167 13.6159i 1.21657 0.500193i
\(742\) −1.66285 + 10.4988i −0.0610452 + 0.385424i
\(743\) −21.4863 + 21.4863i −0.788255 + 0.788255i −0.981208 0.192953i \(-0.938194\pi\)
0.192953 + 0.981208i \(0.438194\pi\)
\(744\) −1.37698 1.62082i −0.0504827 0.0594221i
\(745\) 0 0
\(746\) 4.20934 5.79366i 0.154115 0.212121i
\(747\) −8.71240 27.2997i −0.318770 0.998845i
\(748\) 0.551226 0.280863i 0.0201548 0.0102694i
\(749\) −35.4294 −1.29456
\(750\) 0 0
\(751\) 44.7068 1.63137 0.815686 0.578494i \(-0.196360\pi\)
0.815686 + 0.578494i \(0.196360\pi\)
\(752\) −15.6686 + 7.98354i −0.571374 + 0.291130i
\(753\) −3.36366 14.1741i −0.122579 0.516532i
\(754\) −0.705420 + 0.970928i −0.0256899 + 0.0353591i
\(755\) 0 0
\(756\) −1.96154 1.70215i −0.0713406 0.0619065i
\(757\) 33.8318 33.8318i 1.22964 1.22964i 0.265539 0.964100i \(-0.414450\pi\)
0.964100 0.265539i \(-0.0855498\pi\)
\(758\) 1.62031 10.2302i 0.0588521 0.371578i
\(759\) −2.67900 6.51589i −0.0972416 0.236512i
\(760\) 0 0
\(761\) −1.37065 0.445350i −0.0496859 0.0161439i 0.284069 0.958804i \(-0.408316\pi\)
−0.333755 + 0.942660i \(0.608316\pi\)
\(762\) −27.0930 11.3055i −0.981476 0.409555i
\(763\) −11.0021 + 21.5929i −0.398303 + 0.781714i
\(764\) 0.676257 2.08131i 0.0244661 0.0752990i
\(765\) 0 0
\(766\) −4.69436 14.4477i −0.169614 0.522018i
\(767\) 15.9630 + 2.52830i 0.576392 + 0.0912915i
\(768\) −5.50072 + 6.40647i −0.198490 + 0.231173i
\(769\) 13.9798 + 19.2415i 0.504124 + 0.693867i 0.982915 0.184062i \(-0.0589248\pi\)
−0.478791 + 0.877929i \(0.658925\pi\)
\(770\) 0 0
\(771\) −22.1895 13.6778i −0.799134 0.492593i
\(772\) −2.53041 + 0.400778i −0.0910716 + 0.0144243i
\(773\) 1.97202 + 3.87030i 0.0709285 + 0.139205i 0.923748 0.383001i \(-0.125109\pi\)
−0.852820 + 0.522206i \(0.825109\pi\)
\(774\) −34.7793 + 5.32192i −1.25012 + 0.191293i
\(775\) 0 0
\(776\) 43.3696i 1.55688i
\(777\) −18.4204 + 11.2218i −0.660829 + 0.402580i
\(778\) 7.44686 + 47.0176i 0.266983 + 1.68566i
\(779\) 18.6162 + 13.5255i 0.666995 + 0.484601i
\(780\) 0 0
\(781\) 11.2504 8.17389i 0.402571 0.292485i
\(782\) 0.840661 + 0.840661i 0.0300620 + 0.0300620i
\(783\) 0.717325 0.0507876i 0.0256351 0.00181500i
\(784\) −4.43781 + 1.44193i −0.158493 + 0.0514975i
\(785\) 0 0
\(786\) −11.0737 2.68926i −0.394987 0.0959227i
\(787\) −32.5272 16.5734i −1.15947 0.590779i −0.234985 0.971999i \(-0.575504\pi\)
−0.924484 + 0.381220i \(0.875504\pi\)
\(788\) −1.39913 0.712893i −0.0498420 0.0253958i
\(789\) 3.15412 + 0.765978i 0.112290 + 0.0272695i
\(790\) 0 0
\(791\) −11.2288 + 3.64846i −0.399250 + 0.129724i
\(792\) −0.163896 + 31.2917i −0.00582380 + 1.11190i
\(793\) −16.5772 16.5772i −0.588675 0.588675i
\(794\) 12.3219 8.95235i 0.437286 0.317707i
\(795\) 0 0
\(796\) 2.75200 + 1.99945i 0.0975421 + 0.0708685i
\(797\) −3.74172 23.6243i −0.132539 0.836816i −0.960955 0.276703i \(-0.910758\pi\)
0.828417 0.560112i \(-0.189242\pi\)
\(798\) −18.9391 + 11.5378i −0.670437 + 0.408433i
\(799\) 3.10093i 0.109703i
\(800\) 0 0
\(801\) 5.34914 + 34.9572i 0.189003 + 1.23515i
\(802\) 9.84400 + 19.3199i 0.347604 + 0.682211i
\(803\) 46.3524 7.34149i 1.63574 0.259076i
\(804\) 0.588895 + 0.363000i 0.0207687 + 0.0128020i
\(805\) 0 0
\(806\) 2.34828 + 3.23213i 0.0827146 + 0.113847i
\(807\) −26.5015 + 30.8653i −0.932898 + 1.08651i
\(808\) 39.0009 + 6.17713i 1.37205 + 0.217311i
\(809\) 1.75262 + 5.39400i 0.0616187 + 0.189643i 0.977127 0.212656i \(-0.0682113\pi\)
−0.915508 + 0.402299i \(0.868211\pi\)
\(810\) 0 0
\(811\) 5.70569 17.5603i 0.200354 0.616625i −0.799518 0.600641i \(-0.794912\pi\)
0.999872 0.0159840i \(-0.00508808\pi\)
\(812\) 0.0314032 0.0616323i 0.00110204 0.00216287i
\(813\) 1.20469 + 0.502700i 0.0422504 + 0.0176305i
\(814\) −28.2614 9.18267i −0.990560 0.321853i
\(815\) 0 0
\(816\) −2.21624 5.39036i −0.0775839 0.188700i
\(817\) −4.37372 + 27.6146i −0.153017 + 0.966112i
\(818\) −17.3064 + 17.3064i −0.605104 + 0.605104i
\(819\) −30.0121 30.3282i −1.04871 1.05975i
\(820\) 0 0
\(821\) 15.0984 20.7812i 0.526938 0.725268i −0.459722 0.888063i \(-0.652051\pi\)
0.986660 + 0.162795i \(0.0520508\pi\)
\(822\) 4.92406 + 20.7494i 0.171746 + 0.723718i
\(823\) −1.75544 + 0.894443i −0.0611909 + 0.0311783i −0.484318 0.874892i \(-0.660932\pi\)
0.423127 + 0.906070i \(0.360932\pi\)
\(824\) −23.8400 −0.830507
\(825\) 0 0
\(826\) −10.0099 −0.348290
\(827\) 37.8448 19.2829i 1.31599 0.670532i 0.351885 0.936043i \(-0.385541\pi\)
0.964108 + 0.265511i \(0.0855407\pi\)
\(828\) 0.609574 0.194539i 0.0211841 0.00676069i
\(829\) −18.3344 + 25.2352i −0.636781 + 0.876453i −0.998439 0.0558574i \(-0.982211\pi\)
0.361658 + 0.932311i \(0.382211\pi\)
\(830\) 0 0
\(831\) 10.2905 + 12.1127i 0.356973 + 0.420185i
\(832\) −28.9843 + 28.9843i −1.00485 + 1.00485i
\(833\) 0.128718 0.812691i 0.00445980 0.0281581i
\(834\) −52.0934 + 21.4181i −1.80385 + 0.741650i
\(835\) 0 0
\(836\) −2.70405 0.878600i −0.0935216 0.0303870i
\(837\) 0.577112 2.32328i 0.0199479 0.0803043i
\(838\) 0.739427 1.45121i 0.0255431 0.0501311i
\(839\) 3.12345 9.61299i 0.107833 0.331877i −0.882552 0.470216i \(-0.844176\pi\)
0.990385 + 0.138338i \(0.0441762\pi\)
\(840\) 0 0
\(841\) −8.95557 27.5624i −0.308813 0.950428i
\(842\) −42.6492 6.75497i −1.46979 0.232792i
\(843\) −32.9766 28.3144i −1.13578 0.975200i
\(844\) 2.89209 + 3.98062i 0.0995499 + 0.137019i
\(845\) 0 0
\(846\) −15.9366 8.22553i −0.547912 0.282799i
\(847\) 10.3830 1.64450i 0.356763 0.0565058i
\(848\) 5.82858 + 11.4392i 0.200154 + 0.392825i
\(849\) 40.8301 3.10583i 1.40128 0.106592i
\(850\) 0 0
\(851\) 5.31419i 0.182168i
\(852\) 0.657101 + 1.07862i 0.0225119 + 0.0369529i
\(853\) 2.37400 + 14.9888i 0.0812842 + 0.513208i 0.994415 + 0.105541i \(0.0336575\pi\)
−0.913131 + 0.407667i \(0.866342\pi\)
\(854\) 11.7468 + 8.53457i 0.401968 + 0.292047i
\(855\) 0 0
\(856\) −31.3665 + 22.7891i −1.07208 + 0.778914i
\(857\) −26.4246 26.4246i −0.902648 0.902648i 0.0930163 0.995665i \(-0.470349\pi\)
−0.995665 + 0.0930163i \(0.970349\pi\)
\(858\) 4.76545 58.5888i 0.162690 2.00019i
\(859\) −42.0699 + 13.6693i −1.43541 + 0.466392i −0.920462 0.390832i \(-0.872187\pi\)
−0.514944 + 0.857224i \(0.672187\pi\)
\(860\) 0 0
\(861\) 6.47091 26.6457i 0.220528 0.908082i
\(862\) −35.3346 18.0039i −1.20350 0.613215i
\(863\) −48.4015 24.6618i −1.64760 0.839496i −0.996773 0.0802746i \(-0.974420\pi\)
−0.650832 0.759222i \(-0.725580\pi\)
\(864\) −5.98667 0.518517i −0.203671 0.0176403i
\(865\) 0 0
\(866\) 37.7888 12.2783i 1.28412 0.417235i
\(867\) −28.3236 2.30377i −0.961920 0.0782400i
\(868\) −0.162822 0.162822i −0.00552655 0.00552655i
\(869\) 2.79221 2.02866i 0.0947191 0.0688174i
\(870\) 0 0
\(871\) 9.19470 + 6.68034i 0.311551 + 0.226355i
\(872\) 4.14864 + 26.1935i 0.140491 + 0.887023i
\(873\) −39.6434 + 28.4866i −1.34173 + 0.964124i
\(874\) 5.46382i 0.184816i
\(875\) 0 0
\(876\) 0.323292 + 4.25008i 0.0109230 + 0.143597i
\(877\) −22.0243 43.2252i −0.743709 1.45961i −0.883007 0.469360i \(-0.844485\pi\)
0.139298 0.990250i \(-0.455515\pi\)
\(878\) 29.7538 4.71254i 1.00414 0.159041i
\(879\) 22.4878 36.4820i 0.758495 1.23051i
\(880\) 0 0
\(881\) −31.2390 42.9968i −1.05247 1.44860i −0.886649 0.462443i \(-0.846973\pi\)
−0.165820 0.986156i \(-0.553027\pi\)
\(882\) −3.83522 2.81726i −0.129139 0.0948620i
\(883\) 9.36055 + 1.48257i 0.315008 + 0.0498923i 0.311936 0.950103i \(-0.399022\pi\)
0.00307116 + 0.999995i \(0.499022\pi\)
\(884\) 0.285258 + 0.877934i 0.00959427 + 0.0295281i
\(885\) 0 0
\(886\) 7.79887 24.0025i 0.262008 0.806379i
\(887\) −12.2915 + 24.1235i −0.412709 + 0.809986i 0.587291 + 0.809376i \(0.300194\pi\)
−1.00000 0.000610667i \(0.999806\pi\)
\(888\) −9.08988 + 21.7834i −0.305036 + 0.731003i
\(889\) 26.4380 + 8.59022i 0.886702 + 0.288107i
\(890\) 0 0
\(891\) −28.7108 + 20.4036i −0.961849 + 0.683546i
\(892\) −0.0762202 + 0.481236i −0.00255204 + 0.0161130i
\(893\) −10.0772 + 10.0772i −0.337219 + 0.337219i
\(894\) −11.0115 + 9.35492i −0.368279 + 0.312875i
\(895\) 0 0
\(896\) 18.2333 25.0960i 0.609131 0.838397i
\(897\) 10.2282 2.42726i 0.341510 0.0810439i
\(898\) 31.2169 15.9058i 1.04172 0.530784i
\(899\) 0.0637590 0.00212648
\(900\) 0 0
\(901\) −2.26391 −0.0754218
\(902\) 33.6588 17.1500i 1.12072 0.571033i
\(903\) 32.4158 7.69263i 1.07873 0.255995i
\(904\) −7.59433 + 10.4527i −0.252584 + 0.347652i
\(905\) 0 0
\(906\) 28.7799 24.4503i 0.956150 0.812308i
\(907\) 5.89173 5.89173i 0.195632 0.195632i −0.602493 0.798124i \(-0.705826\pi\)
0.798124 + 0.602493i \(0.205826\pi\)
\(908\) −0.390657 + 2.46651i −0.0129644 + 0.0818541i
\(909\) 19.9706 + 39.7073i 0.662384 + 1.31701i
\(910\) 0 0
\(911\) −48.7073 15.8260i −1.61374 0.524337i −0.643290 0.765623i \(-0.722431\pi\)
−0.970454 + 0.241286i \(0.922431\pi\)
\(912\) −10.3150 + 24.7193i −0.341564 + 0.818538i
\(913\) −16.9715 + 33.3085i −0.561676 + 1.10235i
\(914\) −1.18733 + 3.65423i −0.0392735 + 0.120871i
\(915\) 0 0
\(916\) −0.919787 2.83081i −0.0303906 0.0935327i
\(917\) 10.6577 + 1.68802i 0.351949 + 0.0557433i
\(918\) 3.14536 5.04339i 0.103812 0.166457i
\(919\) −9.10877 12.5372i −0.300471 0.413562i 0.631909 0.775042i \(-0.282272\pi\)
−0.932380 + 0.361480i \(0.882272\pi\)
\(920\) 0 0
\(921\) 5.14336 8.34407i 0.169479 0.274946i
\(922\) 38.4293 6.08661i 1.26560 0.200452i
\(923\) 9.42028 + 18.4883i 0.310072 + 0.608551i
\(924\) 0.256974 + 3.37825i 0.00845383 + 0.111136i
\(925\) 0 0
\(926\) 31.8466i 1.04654i
\(927\) −15.6589 21.7917i −0.514305 0.715734i
\(928\) −0.0250368 0.158076i −0.000821874 0.00518911i
\(929\) −33.7506 24.5213i −1.10732 0.804517i −0.125083 0.992146i \(-0.539920\pi\)
−0.982240 + 0.187629i \(0.939920\pi\)
\(930\) 0 0
\(931\) −3.05931 + 2.22272i −0.100265 + 0.0728467i
\(932\) 3.14437 + 3.14437i 0.102997 + 0.102997i
\(933\) 59.4273 + 4.83366i 1.94556 + 0.158247i
\(934\) 41.7570 13.5677i 1.36633 0.443947i
\(935\) 0 0
\(936\) −46.0782 7.54568i −1.50611 0.246638i
\(937\) −0.722614 0.368190i −0.0236068 0.0120282i 0.442147 0.896942i \(-0.354217\pi\)
−0.465754 + 0.884914i \(0.654217\pi\)
\(938\) −6.27186 3.19567i −0.204784 0.104342i
\(939\) −7.98119 + 32.8647i −0.260456 + 1.07250i
\(940\) 0 0
\(941\) 16.0740 5.22276i 0.523998 0.170257i −0.0350611 0.999385i \(-0.511163\pi\)
0.559059 + 0.829128i \(0.311163\pi\)
\(942\) −2.18178 + 26.8239i −0.0710863 + 0.873969i
\(943\) 4.77697 + 4.77697i 0.155560 + 0.155560i
\(944\) −9.78102 + 7.10633i −0.318345 + 0.231291i
\(945\) 0 0
\(946\) 37.1330 + 26.9787i 1.20730 + 0.877153i
\(947\) 4.90398 + 30.9625i 0.159358 + 1.00615i 0.929647 + 0.368452i \(0.120112\pi\)
−0.770289 + 0.637695i \(0.779888\pi\)
\(948\) 0.163084 + 0.267700i 0.00529672 + 0.00869450i
\(949\) 70.0260i 2.27314i
\(950\) 0 0
\(951\) 5.07016 0.385673i 0.164411 0.0125063i
\(952\) 2.27005 + 4.45523i 0.0735729 + 0.144395i
\(953\) 25.1408 3.98191i 0.814391 0.128987i 0.264674 0.964338i \(-0.414736\pi\)
0.549717 + 0.835351i \(0.314736\pi\)
\(954\) −6.00524 + 11.6349i −0.194427 + 0.376694i
\(955\) 0 0
\(956\) −1.01932 1.40298i −0.0329672 0.0453755i
\(957\) −0.711752 0.611124i −0.0230077 0.0197548i
\(958\) −44.3177 7.01924i −1.43184 0.226781i
\(959\) −6.24011 19.2051i −0.201504 0.620165i
\(960\) 0 0
\(961\) −9.51394 + 29.2809i −0.306901 + 0.944545i
\(962\) 20.1299 39.5071i 0.649013 1.27376i
\(963\) −41.4336 13.7029i −1.33518 0.441570i
\(964\) 0.305361 + 0.0992179i 0.00983502 + 0.00319559i
\(965\) 0 0
\(966\) −6.02167 + 2.47580i −0.193744 + 0.0796576i
\(967\) −8.00363 + 50.5329i −0.257379 + 1.62503i 0.432869 + 0.901457i \(0.357501\pi\)
−0.690249 + 0.723572i \(0.742499\pi\)
\(968\) 8.13450 8.13450i 0.261453 0.261453i
\(969\) −3.05806 3.59958i −0.0982392 0.115635i
\(970\) 0 0
\(971\) 18.5870 25.5828i 0.596485 0.820991i −0.398896 0.916996i \(-0.630607\pi\)
0.995381 + 0.0960053i \(0.0306066\pi\)
\(972\) −1.63563 2.74927i −0.0524627 0.0881827i
\(973\) 47.5211 24.2132i 1.52346 0.776240i
\(974\) 22.3649 0.716618
\(975\) 0 0
\(976\) 17.5371 0.561349
\(977\) −39.7795 + 20.2687i −1.27266 + 0.648452i −0.954111 0.299454i \(-0.903195\pi\)
−0.318549 + 0.947906i \(0.603195\pi\)
\(978\) −5.08000 21.4065i −0.162441 0.684506i
\(979\) 27.1166 37.3229i 0.866652 1.19284i
\(980\) 0 0
\(981\) −21.2180 + 20.9969i −0.677439 + 0.670380i
\(982\) 35.2835 35.2835i 1.12594 1.12594i
\(983\) 7.45579 47.0740i 0.237803 1.50143i −0.522938 0.852371i \(-0.675164\pi\)
0.760740 0.649056i \(-0.224836\pi\)
\(984\) −11.4103 27.7523i −0.363747 0.884710i
\(985\) 0 0
\(986\) 0.150560 + 0.0489200i 0.00479481 + 0.00155793i
\(987\) 15.6722 + 6.53979i 0.498853 + 0.208164i
\(988\) 1.92603 3.78004i 0.0612751 0.120259i
\(989\) −2.53650 + 7.80654i −0.0806559 + 0.248233i
\(990\) 0 0
\(991\) 1.87960 + 5.78480i 0.0597073 + 0.183760i 0.976462 0.215691i \(-0.0692005\pi\)
−0.916754 + 0.399452i \(0.869201\pi\)
\(992\) −0.526221 0.0833452i −0.0167075 0.00264621i
\(993\) 4.55559 5.30571i 0.144567 0.168372i
\(994\) −7.55391 10.3971i −0.239595 0.329775i
\(995\) 0 0
\(996\) −2.89028 1.78159i −0.0915819 0.0564519i
\(997\) 24.4690 3.87551i 0.774942 0.122739i 0.243577 0.969882i \(-0.421679\pi\)
0.531365 + 0.847143i \(0.321679\pi\)
\(998\) 21.7973 + 42.7795i 0.689980 + 1.35416i
\(999\) −25.8823 + 5.99913i −0.818880 + 0.189804i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.2.l.b.368.3 64
3.2 odd 2 inner 375.2.l.b.368.6 64
5.2 odd 4 375.2.l.c.257.3 64
5.3 odd 4 75.2.l.a.47.6 yes 64
5.4 even 2 375.2.l.a.368.6 64
15.2 even 4 375.2.l.c.257.6 64
15.8 even 4 75.2.l.a.47.3 yes 64
15.14 odd 2 375.2.l.a.368.3 64
25.6 even 5 375.2.l.c.143.6 64
25.8 odd 20 375.2.l.a.107.3 64
25.17 odd 20 inner 375.2.l.b.107.6 64
25.19 even 10 75.2.l.a.8.3 64
75.8 even 20 375.2.l.a.107.6 64
75.17 even 20 inner 375.2.l.b.107.3 64
75.44 odd 10 75.2.l.a.8.6 yes 64
75.56 odd 10 375.2.l.c.143.3 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.l.a.8.3 64 25.19 even 10
75.2.l.a.8.6 yes 64 75.44 odd 10
75.2.l.a.47.3 yes 64 15.8 even 4
75.2.l.a.47.6 yes 64 5.3 odd 4
375.2.l.a.107.3 64 25.8 odd 20
375.2.l.a.107.6 64 75.8 even 20
375.2.l.a.368.3 64 15.14 odd 2
375.2.l.a.368.6 64 5.4 even 2
375.2.l.b.107.3 64 75.17 even 20 inner
375.2.l.b.107.6 64 25.17 odd 20 inner
375.2.l.b.368.3 64 1.1 even 1 trivial
375.2.l.b.368.6 64 3.2 odd 2 inner
375.2.l.c.143.3 64 75.56 odd 10
375.2.l.c.143.6 64 25.6 even 5
375.2.l.c.257.3 64 5.2 odd 4
375.2.l.c.257.6 64 15.2 even 4