Properties

Label 375.2.l.b.107.6
Level $375$
Weight $2$
Character 375.107
Analytic conductor $2.994$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,2,Mod(32,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.l (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,20,0,-6,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 107.6
Character \(\chi\) \(=\) 375.107
Dual form 375.2.l.b.368.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.32314 + 0.674175i) q^{2} +(-1.72635 - 0.140417i) q^{3} +(0.120624 + 0.166024i) q^{4} +(-2.18954 - 1.34965i) q^{6} +(1.72218 + 1.72218i) q^{7} +(-0.416937 - 2.63243i) q^{8} +(2.96057 + 0.484816i) q^{9} +(3.72206 - 1.20937i) q^{11} +(-0.184926 - 0.303553i) q^{12} +(2.65113 + 5.20313i) q^{13} +(1.11764 + 3.43974i) q^{14} +(1.34989 - 4.15452i) q^{16} +(0.760813 - 0.120501i) q^{17} +(3.59040 + 2.63742i) q^{18} +(2.08083 - 2.86402i) q^{19} +(-2.73126 - 3.21491i) q^{21} +(5.74013 + 0.909148i) q^{22} +(-0.471845 + 0.926047i) q^{23} +(0.350141 + 4.60305i) q^{24} +8.67180i q^{26} +(-5.04290 - 1.25268i) q^{27} +(-0.0781880 + 0.493660i) q^{28} +(-0.111964 + 0.0813465i) q^{29} +(0.372717 + 0.270795i) q^{31} +(0.817733 - 0.817733i) q^{32} +(-6.59538 + 1.56516i) q^{33} +(1.08790 + 0.353481i) q^{34} +(0.276623 + 0.550006i) q^{36} +(-4.55581 + 2.32130i) q^{37} +(4.68409 - 2.38666i) q^{38} +(-3.84616 - 9.35468i) q^{39} +(-6.18190 - 2.00862i) q^{41} +(-1.44644 - 6.09513i) q^{42} +(5.58451 - 5.58451i) q^{43} +(0.649753 + 0.472073i) q^{44} +(-1.24864 + 0.907186i) q^{46} +(-0.629748 + 3.97607i) q^{47} +(-2.91374 + 6.98261i) q^{48} -1.06819i q^{49} +(-1.33035 + 0.101196i) q^{51} +(-0.544057 + 1.06777i) q^{52} +(-2.90283 - 0.459763i) q^{53} +(-5.82795 - 5.05726i) q^{54} +(3.81549 - 5.25157i) q^{56} +(-3.99440 + 4.65212i) q^{57} +(-0.202986 + 0.0321498i) q^{58} +(-0.855253 + 2.63220i) q^{59} +(1.24058 + 3.81812i) q^{61} +(0.310595 + 0.609576i) q^{62} +(4.26369 + 5.93357i) q^{63} +(-6.67577 + 2.16909i) q^{64} +(-9.78182 - 2.37552i) q^{66} +(-0.304459 - 1.92228i) q^{67} +(0.111778 + 0.111778i) q^{68} +(0.944601 - 1.53243i) q^{69} +(2.08859 + 2.87469i) q^{71} +(0.0418786 - 7.99563i) q^{72} +(-10.6846 - 5.44405i) q^{73} -7.59295 q^{74} +0.726495 q^{76} +(8.49280 + 4.32730i) q^{77} +(1.21766 - 14.9706i) q^{78} +(-0.518361 - 0.713462i) q^{79} +(8.52991 + 2.87066i) q^{81} +(-6.82537 - 6.82537i) q^{82} +(-1.49428 - 9.43448i) q^{83} +(0.204298 - 0.841250i) q^{84} +(11.1540 - 3.62417i) q^{86} +(0.204711 - 0.124711i) q^{87} +(-4.73545 - 9.29383i) q^{88} +(3.64270 + 11.2111i) q^{89} +(-4.39501 + 13.5264i) q^{91} +(-0.210662 + 0.0333656i) q^{92} +(-0.605416 - 0.519822i) q^{93} +(-3.51381 + 4.83635i) q^{94} +(-1.52652 + 1.29687i) q^{96} +(-16.0719 - 2.54554i) q^{97} +(0.720145 - 1.41336i) q^{98} +(11.6057 - 1.77590i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 20 q^{4} - 6 q^{6} + 20 q^{7} + 10 q^{9} + 40 q^{12} - 8 q^{16} + 10 q^{18} - 6 q^{21} - 30 q^{27} - 80 q^{28} - 12 q^{31} - 50 q^{33} - 20 q^{34} - 22 q^{36} - 120 q^{37} - 30 q^{39} + 60 q^{42}+ \cdots + 42 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{13}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.32314 + 0.674175i 0.935603 + 0.476714i 0.854187 0.519967i \(-0.174056\pi\)
0.0814164 + 0.996680i \(0.474056\pi\)
\(3\) −1.72635 0.140417i −0.996708 0.0810696i
\(4\) 0.120624 + 0.166024i 0.0603118 + 0.0830121i
\(5\) 0 0
\(6\) −2.18954 1.34965i −0.893876 0.550993i
\(7\) 1.72218 + 1.72218i 0.650923 + 0.650923i 0.953215 0.302292i \(-0.0977518\pi\)
−0.302292 + 0.953215i \(0.597752\pi\)
\(8\) −0.416937 2.63243i −0.147409 0.930706i
\(9\) 2.96057 + 0.484816i 0.986855 + 0.161605i
\(10\) 0 0
\(11\) 3.72206 1.20937i 1.12224 0.364638i 0.311619 0.950207i \(-0.399129\pi\)
0.810623 + 0.585569i \(0.199129\pi\)
\(12\) −0.184926 0.303553i −0.0533836 0.0876283i
\(13\) 2.65113 + 5.20313i 0.735290 + 1.44309i 0.890394 + 0.455190i \(0.150429\pi\)
−0.155104 + 0.987898i \(0.549571\pi\)
\(14\) 1.11764 + 3.43974i 0.298702 + 0.919309i
\(15\) 0 0
\(16\) 1.34989 4.15452i 0.337471 1.03863i
\(17\) 0.760813 0.120501i 0.184524 0.0292258i −0.0634883 0.997983i \(-0.520223\pi\)
0.248013 + 0.968757i \(0.420223\pi\)
\(18\) 3.59040 + 2.63742i 0.846265 + 0.621646i
\(19\) 2.08083 2.86402i 0.477376 0.657051i −0.500622 0.865666i \(-0.666895\pi\)
0.977998 + 0.208614i \(0.0668954\pi\)
\(20\) 0 0
\(21\) −2.73126 3.21491i −0.596011 0.701551i
\(22\) 5.74013 + 0.909148i 1.22380 + 0.193831i
\(23\) −0.471845 + 0.926047i −0.0983864 + 0.193094i −0.934953 0.354770i \(-0.884559\pi\)
0.836567 + 0.547864i \(0.184559\pi\)
\(24\) 0.350141 + 4.60305i 0.0714722 + 0.939593i
\(25\) 0 0
\(26\) 8.67180i 1.70068i
\(27\) −5.04290 1.25268i −0.970506 0.241077i
\(28\) −0.0781880 + 0.493660i −0.0147761 + 0.0932929i
\(29\) −0.111964 + 0.0813465i −0.0207912 + 0.0151057i −0.598132 0.801397i \(-0.704090\pi\)
0.577341 + 0.816503i \(0.304090\pi\)
\(30\) 0 0
\(31\) 0.372717 + 0.270795i 0.0669420 + 0.0486362i 0.620753 0.784006i \(-0.286827\pi\)
−0.553811 + 0.832642i \(0.686827\pi\)
\(32\) 0.817733 0.817733i 0.144556 0.144556i
\(33\) −6.59538 + 1.56516i −1.14811 + 0.272459i
\(34\) 1.08790 + 0.353481i 0.186574 + 0.0606215i
\(35\) 0 0
\(36\) 0.276623 + 0.550006i 0.0461039 + 0.0916677i
\(37\) −4.55581 + 2.32130i −0.748970 + 0.381620i −0.786431 0.617679i \(-0.788073\pi\)
0.0374602 + 0.999298i \(0.488073\pi\)
\(38\) 4.68409 2.38666i 0.759859 0.387168i
\(39\) −3.84616 9.35468i −0.615879 1.49795i
\(40\) 0 0
\(41\) −6.18190 2.00862i −0.965450 0.313694i −0.216472 0.976289i \(-0.569455\pi\)
−0.748978 + 0.662595i \(0.769455\pi\)
\(42\) −1.44644 6.09513i −0.223191 0.940499i
\(43\) 5.58451 5.58451i 0.851630 0.851630i −0.138704 0.990334i \(-0.544294\pi\)
0.990334 + 0.138704i \(0.0442938\pi\)
\(44\) 0.649753 + 0.472073i 0.0979539 + 0.0711677i
\(45\) 0 0
\(46\) −1.24864 + 0.907186i −0.184101 + 0.133757i
\(47\) −0.629748 + 3.97607i −0.0918582 + 0.579970i 0.898230 + 0.439525i \(0.144853\pi\)
−0.990089 + 0.140445i \(0.955147\pi\)
\(48\) −2.91374 + 6.98261i −0.420562 + 1.00785i
\(49\) 1.06819i 0.152598i
\(50\) 0 0
\(51\) −1.33035 + 0.101196i −0.186286 + 0.0141703i
\(52\) −0.544057 + 1.06777i −0.0754471 + 0.148073i
\(53\) −2.90283 0.459763i −0.398734 0.0631533i −0.0461526 0.998934i \(-0.514696\pi\)
−0.352581 + 0.935781i \(0.614696\pi\)
\(54\) −5.82795 5.05726i −0.793083 0.688206i
\(55\) 0 0
\(56\) 3.81549 5.25157i 0.509866 0.701770i
\(57\) −3.99440 + 4.65212i −0.529071 + 0.616188i
\(58\) −0.202986 + 0.0321498i −0.0266533 + 0.00422147i
\(59\) −0.855253 + 2.63220i −0.111344 + 0.342683i −0.991167 0.132619i \(-0.957661\pi\)
0.879823 + 0.475302i \(0.157661\pi\)
\(60\) 0 0
\(61\) 1.24058 + 3.81812i 0.158840 + 0.488860i 0.998530 0.0542065i \(-0.0172629\pi\)
−0.839689 + 0.543067i \(0.817263\pi\)
\(62\) 0.310595 + 0.609576i 0.0394456 + 0.0774163i
\(63\) 4.26369 + 5.93357i 0.537174 + 0.747560i
\(64\) −6.67577 + 2.16909i −0.834471 + 0.271136i
\(65\) 0 0
\(66\) −9.78182 2.37552i −1.20406 0.292406i
\(67\) −0.304459 1.92228i −0.0371956 0.234844i 0.962086 0.272747i \(-0.0879322\pi\)
−0.999281 + 0.0379032i \(0.987932\pi\)
\(68\) 0.111778 + 0.111778i 0.0135551 + 0.0135551i
\(69\) 0.944601 1.53243i 0.113717 0.184482i
\(70\) 0 0
\(71\) 2.08859 + 2.87469i 0.247870 + 0.341163i 0.914764 0.403989i \(-0.132377\pi\)
−0.666894 + 0.745152i \(0.732377\pi\)
\(72\) 0.0418786 7.99563i 0.00493545 0.942294i
\(73\) −10.6846 5.44405i −1.25053 0.637178i −0.301834 0.953360i \(-0.597599\pi\)
−0.948698 + 0.316182i \(0.897599\pi\)
\(74\) −7.59295 −0.882662
\(75\) 0 0
\(76\) 0.726495 0.0833347
\(77\) 8.49280 + 4.32730i 0.967845 + 0.493142i
\(78\) 1.21766 14.9706i 0.137873 1.69508i
\(79\) −0.518361 0.713462i −0.0583201 0.0802708i 0.778861 0.627197i \(-0.215798\pi\)
−0.837181 + 0.546926i \(0.815798\pi\)
\(80\) 0 0
\(81\) 8.52991 + 2.87066i 0.947767 + 0.318962i
\(82\) −6.82537 6.82537i −0.753736 0.753736i
\(83\) −1.49428 9.43448i −0.164018 1.03557i −0.923096 0.384569i \(-0.874350\pi\)
0.759078 0.651000i \(-0.225650\pi\)
\(84\) 0.204298 0.841250i 0.0222907 0.0917879i
\(85\) 0 0
\(86\) 11.1540 3.62417i 1.20277 0.390804i
\(87\) 0.204711 0.124711i 0.0219473 0.0133704i
\(88\) −4.73545 9.29383i −0.504800 0.990726i
\(89\) 3.64270 + 11.2111i 0.386125 + 1.18837i 0.935661 + 0.352901i \(0.114805\pi\)
−0.549535 + 0.835470i \(0.685195\pi\)
\(90\) 0 0
\(91\) −4.39501 + 13.5264i −0.460722 + 1.41796i
\(92\) −0.210662 + 0.0333656i −0.0219630 + 0.00347860i
\(93\) −0.605416 0.519822i −0.0627787 0.0539030i
\(94\) −3.51381 + 4.83635i −0.362422 + 0.498831i
\(95\) 0 0
\(96\) −1.52652 + 1.29687i −0.155799 + 0.132361i
\(97\) −16.0719 2.54554i −1.63186 0.258461i −0.727774 0.685817i \(-0.759445\pi\)
−0.904083 + 0.427356i \(0.859445\pi\)
\(98\) 0.720145 1.41336i 0.0727456 0.142771i
\(99\) 11.6057 1.77590i 1.16642 0.178485i
\(100\) 0 0
\(101\) 14.8155i 1.47420i 0.675784 + 0.737100i \(0.263805\pi\)
−0.675784 + 0.737100i \(0.736195\pi\)
\(102\) −1.82847 0.762992i −0.181045 0.0755474i
\(103\) −1.39927 + 8.83465i −0.137874 + 0.870504i 0.817677 + 0.575678i \(0.195262\pi\)
−0.955551 + 0.294826i \(0.904738\pi\)
\(104\) 12.5915 9.14829i 1.23470 0.897063i
\(105\) 0 0
\(106\) −3.53089 2.56534i −0.342951 0.249168i
\(107\) 10.2862 10.2862i 0.994405 0.994405i −0.00557906 0.999984i \(-0.501776\pi\)
0.999984 + 0.00557906i \(0.00177588\pi\)
\(108\) −0.400318 0.988345i −0.0385206 0.0951036i
\(109\) −9.46329 3.07481i −0.906419 0.294513i −0.181535 0.983384i \(-0.558107\pi\)
−0.724884 + 0.688871i \(0.758107\pi\)
\(110\) 0 0
\(111\) 8.19087 3.36767i 0.777443 0.319645i
\(112\) 9.47958 4.83009i 0.895736 0.456400i
\(113\) 4.31931 2.20080i 0.406326 0.207034i −0.238868 0.971052i \(-0.576776\pi\)
0.645194 + 0.764018i \(0.276776\pi\)
\(114\) −8.42150 + 3.46249i −0.788746 + 0.324292i
\(115\) 0 0
\(116\) −0.0270110 0.00877640i −0.00250791 0.000814868i
\(117\) 5.32627 + 16.6895i 0.492414 + 1.54295i
\(118\) −2.90618 + 2.90618i −0.267536 + 0.267536i
\(119\) 1.51778 + 1.10273i 0.139135 + 0.101087i
\(120\) 0 0
\(121\) 3.49193 2.53704i 0.317449 0.230640i
\(122\) −0.932613 + 5.88829i −0.0844349 + 0.533101i
\(123\) 10.3901 + 4.33562i 0.936841 + 0.390930i
\(124\) 0.0945443i 0.00849033i
\(125\) 0 0
\(126\) 1.64120 + 10.7254i 0.146210 + 0.955497i
\(127\) 5.18173 10.1697i 0.459804 0.902417i −0.538410 0.842683i \(-0.680975\pi\)
0.998214 0.0597340i \(-0.0190253\pi\)
\(128\) −12.5798 1.99244i −1.11190 0.176108i
\(129\) −10.4250 + 8.85666i −0.917868 + 0.779785i
\(130\) 0 0
\(131\) −2.60417 + 3.58434i −0.227528 + 0.313165i −0.907483 0.420088i \(-0.861999\pi\)
0.679956 + 0.733253i \(0.261999\pi\)
\(132\) −1.05541 0.906199i −0.0918619 0.0788745i
\(133\) 8.51593 1.34879i 0.738425 0.116955i
\(134\) 0.893109 2.74871i 0.0771529 0.237452i
\(135\) 0 0
\(136\) −0.634422 1.95255i −0.0544012 0.167430i
\(137\) −3.76412 7.38749i −0.321590 0.631156i 0.672453 0.740139i \(-0.265241\pi\)
−0.994044 + 0.108983i \(0.965241\pi\)
\(138\) 2.28296 1.39079i 0.194339 0.118392i
\(139\) 20.8266 6.76697i 1.76649 0.573967i 0.768649 0.639671i \(-0.220929\pi\)
0.997839 + 0.0657043i \(0.0209294\pi\)
\(140\) 0 0
\(141\) 1.64547 6.77566i 0.138574 0.570614i
\(142\) 0.825452 + 5.21170i 0.0692704 + 0.437356i
\(143\) 16.1601 + 16.1601i 1.35138 + 1.35138i
\(144\) 6.01060 11.6453i 0.500884 0.970440i
\(145\) 0 0
\(146\) −10.4669 14.4065i −0.866251 1.19229i
\(147\) −0.149991 + 1.84406i −0.0123711 + 0.152096i
\(148\) −0.934931 0.476371i −0.0768508 0.0391575i
\(149\) −5.61752 −0.460205 −0.230103 0.973166i \(-0.573906\pi\)
−0.230103 + 0.973166i \(0.573906\pi\)
\(150\) 0 0
\(151\) −14.6821 −1.19482 −0.597408 0.801938i \(-0.703803\pi\)
−0.597408 + 0.801938i \(0.703803\pi\)
\(152\) −8.40692 4.28354i −0.681891 0.347441i
\(153\) 2.31086 + 0.0121036i 0.186822 + 0.000978515i
\(154\) 8.31983 + 11.4513i 0.670431 + 0.922769i
\(155\) 0 0
\(156\) 1.08917 1.76695i 0.0872030 0.141469i
\(157\) 7.39864 + 7.39864i 0.590476 + 0.590476i 0.937760 0.347284i \(-0.112896\pi\)
−0.347284 + 0.937760i \(0.612896\pi\)
\(158\) −0.204867 1.29348i −0.0162983 0.102904i
\(159\) 4.94674 + 1.20132i 0.392302 + 0.0952706i
\(160\) 0 0
\(161\) −2.40742 + 0.782219i −0.189731 + 0.0616475i
\(162\) 9.35095 + 9.54894i 0.734680 + 0.750236i
\(163\) −3.88333 7.62146i −0.304166 0.596959i 0.687442 0.726239i \(-0.258733\pi\)
−0.991608 + 0.129280i \(0.958733\pi\)
\(164\) −0.412204 1.26863i −0.0321877 0.0990635i
\(165\) 0 0
\(166\) 4.38335 13.4906i 0.340214 1.04707i
\(167\) −17.2815 + 2.73713i −1.33729 + 0.211805i −0.783779 0.621039i \(-0.786711\pi\)
−0.553507 + 0.832845i \(0.686711\pi\)
\(168\) −7.32427 + 8.53028i −0.565080 + 0.658126i
\(169\) −12.4029 + 17.0711i −0.954066 + 1.31316i
\(170\) 0 0
\(171\) 7.54897 7.47030i 0.577284 0.571268i
\(172\) 1.60079 + 0.253540i 0.122059 + 0.0193322i
\(173\) −7.59919 + 14.9142i −0.577755 + 1.13391i 0.398476 + 0.917179i \(0.369539\pi\)
−0.976232 + 0.216730i \(0.930461\pi\)
\(174\) 0.354939 0.0269992i 0.0269078 0.00204680i
\(175\) 0 0
\(176\) 17.0959i 1.28865i
\(177\) 1.84607 4.42400i 0.138759 0.332528i
\(178\) −2.73841 + 17.2897i −0.205253 + 1.29591i
\(179\) −7.83739 + 5.69420i −0.585794 + 0.425604i −0.840808 0.541333i \(-0.817920\pi\)
0.255014 + 0.966937i \(0.417920\pi\)
\(180\) 0 0
\(181\) 7.76955 + 5.64491i 0.577506 + 0.419583i 0.837824 0.545940i \(-0.183827\pi\)
−0.260318 + 0.965523i \(0.583827\pi\)
\(182\) −14.9344 + 14.9344i −1.10701 + 1.10701i
\(183\) −1.60555 6.76561i −0.118686 0.500129i
\(184\) 2.63449 + 0.855997i 0.194217 + 0.0631049i
\(185\) 0 0
\(186\) −0.450600 1.09595i −0.0330396 0.0803593i
\(187\) 2.68606 1.36862i 0.196424 0.100083i
\(188\) −0.736087 + 0.375055i −0.0536847 + 0.0273537i
\(189\) −6.52745 10.8421i −0.474802 0.788648i
\(190\) 0 0
\(191\) −10.1420 3.29532i −0.733847 0.238441i −0.0818306 0.996646i \(-0.526077\pi\)
−0.652016 + 0.758205i \(0.726077\pi\)
\(192\) 11.8293 2.80722i 0.853705 0.202593i
\(193\) −8.82760 + 8.82760i −0.635425 + 0.635425i −0.949423 0.313999i \(-0.898331\pi\)
0.313999 + 0.949423i \(0.398331\pi\)
\(194\) −19.5493 14.2034i −1.40356 1.01975i
\(195\) 0 0
\(196\) 0.177345 0.128849i 0.0126675 0.00920348i
\(197\) 1.19701 7.55759i 0.0852831 0.538456i −0.907645 0.419739i \(-0.862122\pi\)
0.992928 0.118718i \(-0.0378783\pi\)
\(198\) 16.5533 + 5.47450i 1.17639 + 0.389056i
\(199\) 16.5759i 1.17503i −0.809212 0.587517i \(-0.800105\pi\)
0.809212 0.587517i \(-0.199895\pi\)
\(200\) 0 0
\(201\) 0.255683 + 3.36128i 0.0180345 + 0.237086i
\(202\) −9.98825 + 19.6030i −0.702771 + 1.37927i
\(203\) −0.332915 0.0527286i −0.0233661 0.00370082i
\(204\) −0.177273 0.208664i −0.0124116 0.0146094i
\(205\) 0 0
\(206\) −7.80753 + 10.7461i −0.543976 + 0.748719i
\(207\) −1.84589 + 2.51287i −0.128298 + 0.174656i
\(208\) 25.1952 3.99053i 1.74697 0.276693i
\(209\) 4.28132 13.1765i 0.296145 0.911440i
\(210\) 0 0
\(211\) −7.40904 22.8027i −0.510059 1.56980i −0.792096 0.610397i \(-0.791010\pi\)
0.282036 0.959404i \(-0.408990\pi\)
\(212\) −0.273818 0.537398i −0.0188059 0.0369086i
\(213\) −3.20197 5.25599i −0.219396 0.360135i
\(214\) 20.5448 6.67542i 1.40442 0.456322i
\(215\) 0 0
\(216\) −1.19502 + 13.7974i −0.0813106 + 0.938793i
\(217\) 0.175529 + 1.10824i 0.0119157 + 0.0752325i
\(218\) −10.4483 10.4483i −0.707650 0.707650i
\(219\) 17.6808 + 10.8986i 1.19476 + 0.736461i
\(220\) 0 0
\(221\) 2.64399 + 3.63914i 0.177854 + 0.244795i
\(222\) 13.1081 + 1.06618i 0.879757 + 0.0715570i
\(223\) −2.11546 1.07788i −0.141662 0.0721802i 0.381723 0.924277i \(-0.375331\pi\)
−0.523385 + 0.852097i \(0.675331\pi\)
\(224\) 2.81657 0.188190
\(225\) 0 0
\(226\) 7.19878 0.478856
\(227\) 10.8425 + 5.52455i 0.719644 + 0.366677i 0.775146 0.631782i \(-0.217676\pi\)
−0.0555024 + 0.998459i \(0.517676\pi\)
\(228\) −1.25418 0.102012i −0.0830604 0.00675590i
\(229\) 8.52530 + 11.7341i 0.563368 + 0.775409i 0.991750 0.128188i \(-0.0409162\pi\)
−0.428382 + 0.903598i \(0.640916\pi\)
\(230\) 0 0
\(231\) −14.0539 8.66296i −0.924680 0.569981i
\(232\) 0.260821 + 0.260821i 0.0171237 + 0.0171237i
\(233\) 3.38975 + 21.4020i 0.222070 + 1.40209i 0.806780 + 0.590852i \(0.201208\pi\)
−0.584710 + 0.811242i \(0.698792\pi\)
\(234\) −4.20423 + 25.6734i −0.274839 + 1.67833i
\(235\) 0 0
\(236\) −0.540172 + 0.175513i −0.0351622 + 0.0114249i
\(237\) 0.794690 + 1.30447i 0.0516206 + 0.0847345i
\(238\) 1.26481 + 2.48232i 0.0819853 + 0.160905i
\(239\) −2.61133 8.03683i −0.168913 0.519859i 0.830391 0.557182i \(-0.188117\pi\)
−0.999303 + 0.0373221i \(0.988117\pi\)
\(240\) 0 0
\(241\) 0.483477 1.48799i 0.0311435 0.0958498i −0.934277 0.356549i \(-0.883953\pi\)
0.965420 + 0.260699i \(0.0839532\pi\)
\(242\) 6.33073 1.00269i 0.406955 0.0644553i
\(243\) −14.3225 6.15351i −0.918790 0.394748i
\(244\) −0.484257 + 0.666523i −0.0310014 + 0.0426698i
\(245\) 0 0
\(246\) 10.8246 + 12.7414i 0.690150 + 0.812360i
\(247\) 20.4184 + 3.23396i 1.29919 + 0.205772i
\(248\) 0.557450 1.09406i 0.0353981 0.0694727i
\(249\) 1.25488 + 16.4970i 0.0795250 + 1.04546i
\(250\) 0 0
\(251\) 8.41068i 0.530878i −0.964128 0.265439i \(-0.914483\pi\)
0.964128 0.265439i \(-0.0855168\pi\)
\(252\) −0.470815 + 1.42361i −0.0296586 + 0.0896787i
\(253\) −0.636299 + 4.01743i −0.0400038 + 0.252574i
\(254\) 13.7123 9.96260i 0.860389 0.625109i
\(255\) 0 0
\(256\) −3.94407 2.86553i −0.246504 0.179096i
\(257\) 10.6415 10.6415i 0.663801 0.663801i −0.292473 0.956274i \(-0.594478\pi\)
0.956274 + 0.292473i \(0.0944781\pi\)
\(258\) −19.7647 + 4.69036i −1.23049 + 0.292009i
\(259\) −11.8436 3.84823i −0.735927 0.239117i
\(260\) 0 0
\(261\) −0.370914 + 0.186550i −0.0229590 + 0.0115471i
\(262\) −5.86216 + 2.98692i −0.362165 + 0.184532i
\(263\) −1.66971 + 0.850760i −0.102959 + 0.0524601i −0.504711 0.863288i \(-0.668401\pi\)
0.401753 + 0.915748i \(0.368401\pi\)
\(264\) 6.87003 + 16.7093i 0.422821 + 1.02839i
\(265\) 0 0
\(266\) 12.1771 + 3.95658i 0.746627 + 0.242594i
\(267\) −4.71435 19.8657i −0.288514 1.21576i
\(268\) 0.282420 0.282420i 0.0172515 0.0172515i
\(269\) 19.0018 + 13.8056i 1.15856 + 0.841745i 0.989596 0.143877i \(-0.0459571\pi\)
0.168966 + 0.985622i \(0.445957\pi\)
\(270\) 0 0
\(271\) 0.609720 0.442988i 0.0370379 0.0269096i −0.569112 0.822260i \(-0.692713\pi\)
0.606150 + 0.795350i \(0.292713\pi\)
\(272\) 0.526387 3.32348i 0.0319169 0.201515i
\(273\) 9.48666 22.7342i 0.574159 1.37594i
\(274\) 12.3124i 0.743818i
\(275\) 0 0
\(276\) 0.368361 0.0280202i 0.0221727 0.00168662i
\(277\) 4.16594 8.17612i 0.250307 0.491255i −0.731327 0.682027i \(-0.761099\pi\)
0.981635 + 0.190771i \(0.0610989\pi\)
\(278\) 32.1187 + 5.08710i 1.92635 + 0.305104i
\(279\) 0.972168 + 0.982405i 0.0582022 + 0.0588151i
\(280\) 0 0
\(281\) 14.7500 20.3017i 0.879913 1.21110i −0.0965320 0.995330i \(-0.530775\pi\)
0.976445 0.215766i \(-0.0692250\pi\)
\(282\) 6.74518 7.85583i 0.401669 0.467808i
\(283\) 23.3503 3.69832i 1.38803 0.219843i 0.582709 0.812681i \(-0.301993\pi\)
0.805322 + 0.592838i \(0.201993\pi\)
\(284\) −0.225336 + 0.693512i −0.0133712 + 0.0411524i
\(285\) 0 0
\(286\) 10.4874 + 32.2769i 0.620133 + 1.90857i
\(287\) −7.18714 14.1056i −0.424243 0.832624i
\(288\) 2.81740 2.02450i 0.166017 0.119295i
\(289\) −15.6036 + 5.06993i −0.917861 + 0.298231i
\(290\) 0 0
\(291\) 27.3883 + 6.65127i 1.60553 + 0.389904i
\(292\) −0.384966 2.43058i −0.0225284 0.142239i
\(293\) −17.4959 17.4959i −1.02212 1.02212i −0.999750 0.0223711i \(-0.992878\pi\)
−0.0223711 0.999750i \(-0.507122\pi\)
\(294\) −1.44168 + 2.33884i −0.0840806 + 0.136404i
\(295\) 0 0
\(296\) 8.01016 + 11.0250i 0.465581 + 0.640817i
\(297\) −20.2849 + 1.43620i −1.17705 + 0.0833366i
\(298\) −7.43278 3.78719i −0.430569 0.219386i
\(299\) −6.06926 −0.350994
\(300\) 0 0
\(301\) 19.2351 1.10869
\(302\) −19.4266 9.89833i −1.11787 0.569585i
\(303\) 2.08035 25.5768i 0.119513 1.46935i
\(304\) −9.08974 12.5110i −0.521333 0.717553i
\(305\) 0 0
\(306\) 3.04944 + 1.57394i 0.174325 + 0.0899760i
\(307\) 4.00162 + 4.00162i 0.228384 + 0.228384i 0.812017 0.583633i \(-0.198369\pi\)
−0.583633 + 0.812017i \(0.698369\pi\)
\(308\) 0.305997 + 1.93199i 0.0174358 + 0.110085i
\(309\) 3.65616 15.0552i 0.207992 0.856461i
\(310\) 0 0
\(311\) −32.7389 + 10.6375i −1.85645 + 0.603198i −0.860923 + 0.508735i \(0.830113\pi\)
−0.995528 + 0.0944627i \(0.969887\pi\)
\(312\) −23.0220 + 14.0251i −1.30336 + 0.794014i
\(313\) −8.86459 17.3977i −0.501056 0.983378i −0.993586 0.113082i \(-0.963928\pi\)
0.492530 0.870296i \(-0.336072\pi\)
\(314\) 4.80148 + 14.7774i 0.270963 + 0.833939i
\(315\) 0 0
\(316\) 0.0559255 0.172121i 0.00314605 0.00968256i
\(317\) −2.89957 + 0.459247i −0.162856 + 0.0257939i −0.237330 0.971429i \(-0.576272\pi\)
0.0744738 + 0.997223i \(0.476272\pi\)
\(318\) 5.73534 + 4.92448i 0.321622 + 0.276151i
\(319\) −0.318358 + 0.438182i −0.0178246 + 0.0245335i
\(320\) 0 0
\(321\) −19.2019 + 16.3132i −1.07175 + 0.910516i
\(322\) −3.71271 0.588036i −0.206901 0.0327700i
\(323\) 1.23801 2.42973i 0.0688846 0.135194i
\(324\) 0.552309 + 1.76244i 0.0306838 + 0.0979134i
\(325\) 0 0
\(326\) 12.7023i 0.703516i
\(327\) 15.9052 + 6.63700i 0.879559 + 0.367027i
\(328\) −2.71010 + 17.1109i −0.149640 + 0.944792i
\(329\) −7.93206 + 5.76298i −0.437308 + 0.317723i
\(330\) 0 0
\(331\) 3.26639 + 2.37317i 0.179537 + 0.130441i 0.673924 0.738800i \(-0.264607\pi\)
−0.494387 + 0.869242i \(0.664607\pi\)
\(332\) 1.38611 1.38611i 0.0760725 0.0760725i
\(333\) −14.6132 + 4.66363i −0.800797 + 0.255566i
\(334\) −24.7112 8.02917i −1.35214 0.439337i
\(335\) 0 0
\(336\) −17.0433 + 7.00733i −0.929788 + 0.382281i
\(337\) −9.50552 + 4.84331i −0.517799 + 0.263832i −0.693302 0.720647i \(-0.743845\pi\)
0.175503 + 0.984479i \(0.443845\pi\)
\(338\) −27.9196 + 14.2258i −1.51863 + 0.773779i
\(339\) −7.76566 + 3.19284i −0.421773 + 0.173411i
\(340\) 0 0
\(341\) 1.71476 + 0.557161i 0.0928597 + 0.0301719i
\(342\) 15.0246 4.79495i 0.812440 0.259281i
\(343\) 13.8949 13.8949i 0.750253 0.750253i
\(344\) −17.0292 12.3725i −0.918155 0.667079i
\(345\) 0 0
\(346\) −20.1096 + 14.6105i −1.08110 + 0.785465i
\(347\) −3.88435 + 24.5248i −0.208523 + 1.31656i 0.632077 + 0.774905i \(0.282202\pi\)
−0.840600 + 0.541656i \(0.817798\pi\)
\(348\) 0.0453980 + 0.0189439i 0.00243359 + 0.00101550i
\(349\) 3.68396i 0.197198i −0.995127 0.0985990i \(-0.968564\pi\)
0.995127 0.0985990i \(-0.0314361\pi\)
\(350\) 0 0
\(351\) −6.85152 29.5598i −0.365707 1.57779i
\(352\) 2.05471 4.03259i 0.109516 0.214938i
\(353\) −0.544691 0.0862706i −0.0289910 0.00459172i 0.141922 0.989878i \(-0.454672\pi\)
−0.170913 + 0.985286i \(0.554672\pi\)
\(354\) 5.42516 4.60901i 0.288344 0.244966i
\(355\) 0 0
\(356\) −1.42191 + 1.95710i −0.0753613 + 0.103726i
\(357\) −2.46538 2.11683i −0.130482 0.112034i
\(358\) −14.2089 + 2.25046i −0.750962 + 0.118941i
\(359\) 0.0579467 0.178342i 0.00305831 0.00941251i −0.949516 0.313719i \(-0.898425\pi\)
0.952574 + 0.304307i \(0.0984249\pi\)
\(360\) 0 0
\(361\) 1.99857 + 6.15098i 0.105188 + 0.323736i
\(362\) 6.47457 + 12.7071i 0.340296 + 0.667868i
\(363\) −6.38454 + 3.88949i −0.335101 + 0.204145i
\(364\) −2.77586 + 0.901931i −0.145495 + 0.0472741i
\(365\) 0 0
\(366\) 2.43683 10.0343i 0.127375 0.524501i
\(367\) −3.24722 20.5021i −0.169503 1.07020i −0.914929 0.403614i \(-0.867754\pi\)
0.745426 0.666589i \(-0.232246\pi\)
\(368\) 3.21034 + 3.21034i 0.167351 + 0.167351i
\(369\) −17.3281 8.94374i −0.902065 0.465592i
\(370\) 0 0
\(371\) −4.20740 5.79099i −0.218437 0.300653i
\(372\) 0.0132756 0.163217i 0.000688308 0.00846239i
\(373\) −4.29685 2.18936i −0.222483 0.113361i 0.339197 0.940715i \(-0.389845\pi\)
−0.561680 + 0.827355i \(0.689845\pi\)
\(374\) 4.47672 0.231486
\(375\) 0 0
\(376\) 10.7293 0.553322
\(377\) −0.720086 0.366902i −0.0370863 0.0188964i
\(378\) −1.32726 18.7463i −0.0682670 0.964205i
\(379\) −4.09975 5.64282i −0.210590 0.289852i 0.690635 0.723203i \(-0.257331\pi\)
−0.901225 + 0.433351i \(0.857331\pi\)
\(380\) 0 0
\(381\) −10.3735 + 16.8289i −0.531450 + 0.862171i
\(382\) −11.1976 11.1976i −0.572921 0.572921i
\(383\) 1.60030 + 10.1039i 0.0817714 + 0.516284i 0.994243 + 0.107145i \(0.0341709\pi\)
−0.912472 + 0.409139i \(0.865829\pi\)
\(384\) 21.4373 + 5.20605i 1.09397 + 0.265670i
\(385\) 0 0
\(386\) −17.6315 + 5.72883i −0.897421 + 0.291590i
\(387\) 19.2408 13.8258i 0.978063 0.702807i
\(388\) −1.51603 2.97538i −0.0769650 0.151052i
\(389\) −9.90598 30.4875i −0.502253 1.54578i −0.805340 0.592813i \(-0.798017\pi\)
0.303087 0.952963i \(-0.401983\pi\)
\(390\) 0 0
\(391\) −0.247396 + 0.761407i −0.0125114 + 0.0385060i
\(392\) −2.81193 + 0.445366i −0.142024 + 0.0224944i
\(393\) 4.99901 5.82215i 0.252167 0.293688i
\(394\) 6.67895 9.19278i 0.336481 0.463126i
\(395\) 0 0
\(396\) 1.69477 + 1.71261i 0.0851652 + 0.0860621i
\(397\) −10.1301 1.60445i −0.508414 0.0805249i −0.103043 0.994677i \(-0.532858\pi\)
−0.405371 + 0.914152i \(0.632858\pi\)
\(398\) 11.1751 21.9323i 0.560155 1.09937i
\(399\) −14.8909 + 1.13271i −0.745476 + 0.0567063i
\(400\) 0 0
\(401\) 14.6016i 0.729167i −0.931171 0.364584i \(-0.881211\pi\)
0.931171 0.364584i \(-0.118789\pi\)
\(402\) −1.92778 + 4.61982i −0.0961490 + 0.230416i
\(403\) −0.420860 + 2.65721i −0.0209645 + 0.132365i
\(404\) −2.45974 + 1.78710i −0.122376 + 0.0889117i
\(405\) 0 0
\(406\) −0.404946 0.294210i −0.0200971 0.0146014i
\(407\) −14.1497 + 14.1497i −0.701373 + 0.701373i
\(408\) 0.821063 + 3.45987i 0.0406487 + 0.171289i
\(409\) 15.6748 + 5.09306i 0.775070 + 0.251835i 0.669734 0.742601i \(-0.266408\pi\)
0.105336 + 0.994437i \(0.466408\pi\)
\(410\) 0 0
\(411\) 5.46085 + 13.2819i 0.269364 + 0.655150i
\(412\) −1.63555 + 0.833355i −0.0805778 + 0.0410564i
\(413\) −6.00602 + 3.06022i −0.295537 + 0.150584i
\(414\) −4.13649 + 2.08043i −0.203297 + 0.102247i
\(415\) 0 0
\(416\) 6.42268 + 2.08686i 0.314898 + 0.102317i
\(417\) −36.9042 + 8.75775i −1.80720 + 0.428869i
\(418\) 14.5481 14.5481i 0.711570 0.711570i
\(419\) 0.887321 + 0.644676i 0.0433484 + 0.0314945i 0.609248 0.792979i \(-0.291471\pi\)
−0.565900 + 0.824474i \(0.691471\pi\)
\(420\) 0 0
\(421\) 23.5246 17.0916i 1.14652 0.832996i 0.158506 0.987358i \(-0.449332\pi\)
0.988014 + 0.154362i \(0.0493324\pi\)
\(422\) 5.56977 35.1662i 0.271132 1.71186i
\(423\) −3.79208 + 11.4661i −0.184377 + 0.557502i
\(424\) 7.83319i 0.380414i
\(425\) 0 0
\(426\) −0.693210 9.11312i −0.0335861 0.441532i
\(427\) −4.43899 + 8.71201i −0.214818 + 0.421603i
\(428\) 2.94852 + 0.467000i 0.142522 + 0.0225733i
\(429\) −25.6289 30.1672i −1.23737 1.45649i
\(430\) 0 0
\(431\) −15.6969 + 21.6049i −0.756091 + 1.04067i 0.241439 + 0.970416i \(0.422381\pi\)
−0.997529 + 0.0702534i \(0.977619\pi\)
\(432\) −12.0116 + 19.2598i −0.577908 + 0.926640i
\(433\) −26.4272 + 4.18566i −1.27001 + 0.201150i −0.754823 0.655928i \(-0.772277\pi\)
−0.515187 + 0.857078i \(0.672277\pi\)
\(434\) −0.514901 + 1.58470i −0.0247160 + 0.0760681i
\(435\) 0 0
\(436\) −0.631004 1.94203i −0.0302196 0.0930064i
\(437\) 1.67039 + 3.27832i 0.0799055 + 0.156823i
\(438\) 16.0467 + 26.3404i 0.766741 + 1.25859i
\(439\) −19.2932 + 6.26873i −0.920812 + 0.299190i −0.730800 0.682592i \(-0.760853\pi\)
−0.190012 + 0.981782i \(0.560853\pi\)
\(440\) 0 0
\(441\) 0.517875 3.16244i 0.0246607 0.150592i
\(442\) 1.04496 + 6.59762i 0.0497037 + 0.313817i
\(443\) 12.0174 + 12.0174i 0.570962 + 0.570962i 0.932397 0.361435i \(-0.117713\pi\)
−0.361435 + 0.932397i \(0.617713\pi\)
\(444\) 1.54713 + 0.953663i 0.0734234 + 0.0452588i
\(445\) 0 0
\(446\) −2.07237 2.85238i −0.0981298 0.135064i
\(447\) 9.69781 + 0.788793i 0.458691 + 0.0373086i
\(448\) −15.2324 7.76132i −0.719665 0.366688i
\(449\) 23.5930 1.11342 0.556711 0.830706i \(-0.312063\pi\)
0.556711 + 0.830706i \(0.312063\pi\)
\(450\) 0 0
\(451\) −25.4385 −1.19785
\(452\) 0.886396 + 0.451642i 0.0416926 + 0.0212434i
\(453\) 25.3465 + 2.06162i 1.19088 + 0.0968632i
\(454\) 10.6217 + 14.6195i 0.498501 + 0.686128i
\(455\) 0 0
\(456\) 13.9118 + 8.57536i 0.651480 + 0.401578i
\(457\) 1.82957 + 1.82957i 0.0855837 + 0.0855837i 0.748603 0.663019i \(-0.230725\pi\)
−0.663019 + 0.748603i \(0.730725\pi\)
\(458\) 3.36937 + 21.2734i 0.157441 + 0.994040i
\(459\) −3.98765 0.345378i −0.186128 0.0161209i
\(460\) 0 0
\(461\) 24.9186 8.09654i 1.16057 0.377094i 0.335458 0.942055i \(-0.391109\pi\)
0.825117 + 0.564962i \(0.191109\pi\)
\(462\) −12.7550 20.9371i −0.593416 0.974084i
\(463\) 9.73607 + 19.1081i 0.452474 + 0.888030i 0.998729 + 0.0504107i \(0.0160530\pi\)
−0.546255 + 0.837619i \(0.683947\pi\)
\(464\) 0.186817 + 0.574964i 0.00867277 + 0.0266920i
\(465\) 0 0
\(466\) −9.94359 + 30.6032i −0.460628 + 1.41767i
\(467\) 29.2023 4.62519i 1.35132 0.214028i 0.561556 0.827439i \(-0.310203\pi\)
0.789764 + 0.613411i \(0.210203\pi\)
\(468\) −2.12839 + 2.89744i −0.0983848 + 0.133934i
\(469\) 2.78618 3.83484i 0.128654 0.177077i
\(470\) 0 0
\(471\) −11.7338 13.8115i −0.540663 0.636402i
\(472\) 7.28567 + 1.15394i 0.335350 + 0.0531142i
\(473\) 14.0321 27.5396i 0.645197 1.26627i
\(474\) 0.172046 + 2.26176i 0.00790233 + 0.103886i
\(475\) 0 0
\(476\) 0.385004i 0.0176467i
\(477\) −8.37111 2.76850i −0.383287 0.126761i
\(478\) 1.96307 12.3944i 0.0897889 0.566905i
\(479\) −24.4450 + 17.7603i −1.11692 + 0.811489i −0.983739 0.179603i \(-0.942519\pi\)
−0.133180 + 0.991092i \(0.542519\pi\)
\(480\) 0 0
\(481\) −24.1560 17.5504i −1.10142 0.800229i
\(482\) 1.64287 1.64287i 0.0748309 0.0748309i
\(483\) 4.26589 1.01234i 0.194105 0.0460631i
\(484\) 0.842420 + 0.273719i 0.0382918 + 0.0124418i
\(485\) 0 0
\(486\) −14.8022 17.7978i −0.671441 0.807326i
\(487\) −13.4191 + 6.83736i −0.608076 + 0.309830i −0.730780 0.682613i \(-0.760843\pi\)
0.122704 + 0.992443i \(0.460843\pi\)
\(488\) 9.53371 4.85767i 0.431571 0.219896i
\(489\) 5.63380 + 13.7026i 0.254769 + 0.619653i
\(490\) 0 0
\(491\) 31.9571 + 10.3835i 1.44220 + 0.468601i 0.922584 0.385797i \(-0.126073\pi\)
0.519621 + 0.854397i \(0.326073\pi\)
\(492\) 0.533470 + 2.24798i 0.0240507 + 0.101347i
\(493\) −0.0753812 + 0.0753812i −0.00339500 + 0.00339500i
\(494\) 24.8362 + 18.0446i 1.11743 + 0.811863i
\(495\) 0 0
\(496\) 1.62815 1.18292i 0.0731060 0.0531146i
\(497\) −1.35382 + 8.54766i −0.0607270 + 0.383415i
\(498\) −9.46149 + 22.6739i −0.423980 + 1.01604i
\(499\) 32.3318i 1.44737i 0.690131 + 0.723684i \(0.257553\pi\)
−0.690131 + 0.723684i \(0.742447\pi\)
\(500\) 0 0
\(501\) 30.2183 2.29862i 1.35006 0.102695i
\(502\) 5.67027 11.1285i 0.253077 0.496691i
\(503\) −0.646326 0.102368i −0.0288182 0.00456436i 0.142009 0.989865i \(-0.454644\pi\)
−0.170827 + 0.985301i \(0.554644\pi\)
\(504\) 13.8420 13.6978i 0.616574 0.610149i
\(505\) 0 0
\(506\) −3.55037 + 4.88666i −0.157833 + 0.217238i
\(507\) 23.8087 27.7291i 1.05738 1.23149i
\(508\) 2.31346 0.366416i 0.102643 0.0162571i
\(509\) −7.29902 + 22.4641i −0.323523 + 0.995703i 0.648579 + 0.761147i \(0.275364\pi\)
−0.972103 + 0.234556i \(0.924636\pi\)
\(510\) 0 0
\(511\) −9.02509 27.7764i −0.399247 1.22875i
\(512\) 8.27787 + 16.2462i 0.365834 + 0.717989i
\(513\) −14.0811 + 11.8364i −0.621696 + 0.522588i
\(514\) 21.2545 6.90601i 0.937497 0.304611i
\(515\) 0 0
\(516\) −2.72792 0.662476i −0.120090 0.0291639i
\(517\) 2.46458 + 15.5608i 0.108392 + 0.684361i
\(518\) −13.0764 13.0764i −0.574545 0.574545i
\(519\) 15.2131 24.6801i 0.667779 1.08334i
\(520\) 0 0
\(521\) 20.7338 + 28.5376i 0.908365 + 1.25026i 0.967722 + 0.252020i \(0.0810948\pi\)
−0.0593574 + 0.998237i \(0.518905\pi\)
\(522\) −0.616540 0.00322924i −0.0269852 0.000141340i
\(523\) 2.26510 + 1.15413i 0.0990460 + 0.0504664i 0.502812 0.864396i \(-0.332299\pi\)
−0.403766 + 0.914862i \(0.632299\pi\)
\(524\) −0.909212 −0.0397191
\(525\) 0 0
\(526\) −2.78282 −0.121337
\(527\) 0.316199 + 0.161111i 0.0137738 + 0.00701813i
\(528\) −2.40054 + 29.5134i −0.104470 + 1.28441i
\(529\) 12.8841 + 17.7335i 0.560180 + 0.771021i
\(530\) 0 0
\(531\) −3.80816 + 7.37815i −0.165260 + 0.320185i
\(532\) 1.25116 + 1.25116i 0.0542445 + 0.0542445i
\(533\) −5.93788 37.4903i −0.257198 1.62389i
\(534\) 7.15521 29.4635i 0.309636 1.27501i
\(535\) 0 0
\(536\) −4.93333 + 1.60294i −0.213087 + 0.0692363i
\(537\) 14.3296 8.72967i 0.618369 0.376713i
\(538\) 15.8347 + 31.0774i 0.682683 + 1.33984i
\(539\) −1.29183 3.97585i −0.0556432 0.171252i
\(540\) 0 0
\(541\) 3.34503 10.2949i 0.143814 0.442614i −0.853043 0.521841i \(-0.825245\pi\)
0.996857 + 0.0792273i \(0.0252453\pi\)
\(542\) 1.10540 0.175078i 0.0474809 0.00752024i
\(543\) −12.6203 10.8361i −0.541590 0.465020i
\(544\) 0.523604 0.720680i 0.0224494 0.0308989i
\(545\) 0 0
\(546\) 27.8790 23.6850i 1.19311 1.01362i
\(547\) 22.7658 + 3.60575i 0.973396 + 0.154171i 0.622821 0.782364i \(-0.285986\pi\)
0.350574 + 0.936535i \(0.385986\pi\)
\(548\) 0.772462 1.51604i 0.0329979 0.0647621i
\(549\) 1.82174 + 11.9053i 0.0777500 + 0.508104i
\(550\) 0 0
\(551\) 0.489935i 0.0208719i
\(552\) −4.42785 1.84768i −0.188462 0.0786423i
\(553\) 0.336000 2.12142i 0.0142882 0.0902120i
\(554\) 11.0243 8.00960i 0.468376 0.340295i
\(555\) 0 0
\(556\) 3.63566 + 2.64146i 0.154186 + 0.112023i
\(557\) 6.52436 6.52436i 0.276446 0.276446i −0.555242 0.831689i \(-0.687375\pi\)
0.831689 + 0.555242i \(0.187375\pi\)
\(558\) 0.624004 + 1.95527i 0.0264162 + 0.0827733i
\(559\) 43.8621 + 14.2517i 1.85517 + 0.602782i
\(560\) 0 0
\(561\) −4.82925 + 1.98554i −0.203891 + 0.0838296i
\(562\) 33.2033 16.9179i 1.40060 0.713639i
\(563\) 9.63388 4.90871i 0.406020 0.206877i −0.239040 0.971010i \(-0.576833\pi\)
0.645059 + 0.764132i \(0.276833\pi\)
\(564\) 1.32341 0.544117i 0.0557255 0.0229115i
\(565\) 0 0
\(566\) 33.3891 + 10.8488i 1.40345 + 0.456008i
\(567\) 9.74624 + 19.6338i 0.409304 + 0.824544i
\(568\) 6.69663 6.69663i 0.280984 0.280984i
\(569\) 15.4318 + 11.2119i 0.646937 + 0.470027i 0.862226 0.506523i \(-0.169070\pi\)
−0.215290 + 0.976550i \(0.569070\pi\)
\(570\) 0 0
\(571\) −7.63086 + 5.54414i −0.319342 + 0.232015i −0.735894 0.677096i \(-0.763238\pi\)
0.416553 + 0.909111i \(0.363238\pi\)
\(572\) −0.733679 + 4.63227i −0.0306767 + 0.193685i
\(573\) 17.0459 + 7.11298i 0.712101 + 0.297149i
\(574\) 23.5090i 0.981248i
\(575\) 0 0
\(576\) −20.8157 + 3.18521i −0.867319 + 0.132717i
\(577\) 3.02469 5.93629i 0.125920 0.247131i −0.819437 0.573169i \(-0.805714\pi\)
0.945357 + 0.326038i \(0.105714\pi\)
\(578\) −24.0639 3.81134i −1.00092 0.158531i
\(579\) 16.4791 14.0000i 0.684847 0.581820i
\(580\) 0 0
\(581\) 13.6745 18.8213i 0.567313 0.780839i
\(582\) 31.7546 + 27.2651i 1.31627 + 1.13017i
\(583\) −11.3605 + 1.79933i −0.470504 + 0.0745205i
\(584\) −9.87633 + 30.3962i −0.408685 + 1.25780i
\(585\) 0 0
\(586\) −11.3543 34.9448i −0.469040 1.44356i
\(587\) 7.27726 + 14.2824i 0.300365 + 0.589499i 0.991024 0.133681i \(-0.0426798\pi\)
−0.690660 + 0.723180i \(0.742680\pi\)
\(588\) −0.324252 + 0.197536i −0.0133719 + 0.00814624i
\(589\) 1.55112 0.503991i 0.0639129 0.0207666i
\(590\) 0 0
\(591\) −3.12766 + 12.8790i −0.128655 + 0.529770i
\(592\) 3.49407 + 22.0607i 0.143605 + 0.906689i
\(593\) −19.4509 19.4509i −0.798754 0.798754i 0.184145 0.982899i \(-0.441048\pi\)
−0.982899 + 0.184145i \(0.941048\pi\)
\(594\) −27.8080 11.7753i −1.14098 0.483145i
\(595\) 0 0
\(596\) −0.677606 0.932645i −0.0277558 0.0382026i
\(597\) −2.32753 + 28.6158i −0.0952595 + 1.17117i
\(598\) −8.03050 4.09174i −0.328391 0.167324i
\(599\) 8.83948 0.361171 0.180586 0.983559i \(-0.442201\pi\)
0.180586 + 0.983559i \(0.442201\pi\)
\(600\) 0 0
\(601\) −18.4292 −0.751744 −0.375872 0.926672i \(-0.622657\pi\)
−0.375872 + 0.926672i \(0.622657\pi\)
\(602\) 25.4507 + 12.9678i 1.03729 + 0.528528i
\(603\) 0.0305810 5.83864i 0.00124535 0.237768i
\(604\) −1.77101 2.43759i −0.0720615 0.0991842i
\(605\) 0 0
\(606\) 19.9958 32.4392i 0.812274 1.31775i
\(607\) −11.7369 11.7369i −0.476386 0.476386i 0.427588 0.903974i \(-0.359363\pi\)
−0.903974 + 0.427588i \(0.859363\pi\)
\(608\) −0.640439 4.04357i −0.0259732 0.163988i
\(609\) 0.567324 + 0.137775i 0.0229891 + 0.00558292i
\(610\) 0 0
\(611\) −22.3576 + 7.26441i −0.904490 + 0.293887i
\(612\) 0.276735 + 0.385119i 0.0111863 + 0.0155675i
\(613\) 6.54078 + 12.8370i 0.264180 + 0.518482i 0.984549 0.175109i \(-0.0560277\pi\)
−0.720369 + 0.693591i \(0.756028\pi\)
\(614\) 2.59692 + 7.99250i 0.104803 + 0.322551i
\(615\) 0 0
\(616\) 7.85037 24.1610i 0.316300 0.973473i
\(617\) 13.5321 2.14327i 0.544782 0.0862849i 0.122023 0.992527i \(-0.461062\pi\)
0.422759 + 0.906242i \(0.361062\pi\)
\(618\) 14.9875 17.4553i 0.602884 0.702155i
\(619\) 5.41760 7.45669i 0.217752 0.299710i −0.686141 0.727468i \(-0.740697\pi\)
0.903893 + 0.427759i \(0.140697\pi\)
\(620\) 0 0
\(621\) 3.53950 4.07889i 0.142035 0.163680i
\(622\) −50.4897 7.99679i −2.02445 0.320642i
\(623\) −13.0341 + 25.5809i −0.522201 + 1.02488i
\(624\) −44.0561 + 3.35122i −1.76365 + 0.134156i
\(625\) 0 0
\(626\) 28.9960i 1.15891i
\(627\) −9.24125 + 22.1461i −0.369060 + 0.884432i
\(628\) −0.335903 + 2.12081i −0.0134040 + 0.0846294i
\(629\) −3.18640 + 2.31506i −0.127050 + 0.0923073i
\(630\) 0 0
\(631\) 32.6151 + 23.6962i 1.29839 + 0.943333i 0.999938 0.0110933i \(-0.00353119\pi\)
0.298448 + 0.954426i \(0.403531\pi\)
\(632\) −1.66202 + 1.66202i −0.0661115 + 0.0661115i
\(633\) 9.58872 + 40.4057i 0.381117 + 1.60598i
\(634\) −4.14616 1.34717i −0.164665 0.0535029i
\(635\) 0 0
\(636\) 0.397246 + 0.966186i 0.0157518 + 0.0383117i
\(637\) 5.55791 2.83190i 0.220213 0.112204i
\(638\) −0.716643 + 0.365148i −0.0283722 + 0.0144563i
\(639\) 4.78970 + 9.52330i 0.189478 + 0.376736i
\(640\) 0 0
\(641\) −41.3915 13.4489i −1.63487 0.531201i −0.659484 0.751718i \(-0.729225\pi\)
−0.975383 + 0.220518i \(0.929225\pi\)
\(642\) −36.4049 + 8.63927i −1.43679 + 0.340965i
\(643\) −19.6168 + 19.6168i −0.773612 + 0.773612i −0.978736 0.205124i \(-0.934240\pi\)
0.205124 + 0.978736i \(0.434240\pi\)
\(644\) −0.420259 0.305336i −0.0165605 0.0120319i
\(645\) 0 0
\(646\) 3.27612 2.38024i 0.128897 0.0936494i
\(647\) 4.20028 26.5196i 0.165130 1.04259i −0.756350 0.654167i \(-0.773019\pi\)
0.921481 0.388425i \(-0.126981\pi\)
\(648\) 4.00040 23.6513i 0.157150 0.929111i
\(649\) 10.8315i 0.425173i
\(650\) 0 0
\(651\) −0.147408 1.93786i −0.00577737 0.0759508i
\(652\) 0.796926 1.56406i 0.0312100 0.0612531i
\(653\) 20.1993 + 3.19926i 0.790460 + 0.125197i 0.538594 0.842566i \(-0.318956\pi\)
0.251866 + 0.967762i \(0.418956\pi\)
\(654\) 16.5703 + 19.5046i 0.647952 + 0.762689i
\(655\) 0 0
\(656\) −16.6897 + 22.9714i −0.651623 + 0.896883i
\(657\) −28.9930 21.2975i −1.13112 0.830896i
\(658\) −14.3805 + 2.27765i −0.560610 + 0.0887919i
\(659\) 2.65726 8.17820i 0.103512 0.318578i −0.885866 0.463941i \(-0.846435\pi\)
0.989378 + 0.145363i \(0.0464351\pi\)
\(660\) 0 0
\(661\) 12.9264 + 39.7835i 0.502781 + 1.54740i 0.804470 + 0.593993i \(0.202449\pi\)
−0.301689 + 0.953406i \(0.597551\pi\)
\(662\) 2.72197 + 5.34217i 0.105792 + 0.207629i
\(663\) −4.05346 6.65370i −0.157423 0.258408i
\(664\) −24.2126 + 7.86716i −0.939632 + 0.305305i
\(665\) 0 0
\(666\) −22.4794 3.68118i −0.871060 0.142643i
\(667\) −0.0225011 0.142067i −0.000871248 0.00550084i
\(668\) −2.53899 2.53899i −0.0982366 0.0982366i
\(669\) 3.50067 + 2.15784i 0.135344 + 0.0834271i
\(670\) 0 0
\(671\) 9.23504 + 12.7109i 0.356515 + 0.490700i
\(672\) −4.86238 0.395493i −0.187570 0.0152565i
\(673\) 20.5969 + 10.4947i 0.793954 + 0.404540i 0.803418 0.595416i \(-0.203013\pi\)
−0.00946407 + 0.999955i \(0.503013\pi\)
\(674\) −15.8424 −0.610226
\(675\) 0 0
\(676\) −4.33029 −0.166550
\(677\) −18.1854 9.26592i −0.698921 0.356118i 0.0681543 0.997675i \(-0.478289\pi\)
−0.767076 + 0.641557i \(0.778289\pi\)
\(678\) −12.4276 1.01083i −0.477280 0.0388206i
\(679\) −23.2949 32.0627i −0.893976 1.23045i
\(680\) 0 0
\(681\) −17.9423 11.0598i −0.687549 0.423811i
\(682\) 1.89325 + 1.89325i 0.0724964 + 0.0724964i
\(683\) −0.339136 2.14122i −0.0129767 0.0819315i 0.980350 0.197266i \(-0.0632061\pi\)
−0.993327 + 0.115334i \(0.963206\pi\)
\(684\) 2.15084 + 0.352216i 0.0822393 + 0.0134673i
\(685\) 0 0
\(686\) 27.7525 9.01733i 1.05959 0.344283i
\(687\) −13.0700 21.4542i −0.498651 0.818529i
\(688\) −15.6625 30.7394i −0.597127 1.17193i
\(689\) −5.30356 16.3227i −0.202049 0.621844i
\(690\) 0 0
\(691\) 4.06682 12.5164i 0.154709 0.476146i −0.843422 0.537251i \(-0.819463\pi\)
0.998131 + 0.0611055i \(0.0194626\pi\)
\(692\) −3.39277 + 0.537362i −0.128974 + 0.0204274i
\(693\) 23.0456 + 16.9287i 0.875429 + 0.643068i
\(694\) −21.6736 + 29.8311i −0.822717 + 1.13237i
\(695\) 0 0
\(696\) −0.413645 0.486892i −0.0156792 0.0184556i
\(697\) −4.94531 0.783260i −0.187317 0.0296681i
\(698\) 2.48363 4.87441i 0.0940069 0.184499i
\(699\) −2.84669 37.4234i −0.107672 1.41548i
\(700\) 0 0
\(701\) 21.8766i 0.826268i 0.910670 + 0.413134i \(0.135566\pi\)
−0.910670 + 0.413134i \(0.864434\pi\)
\(702\) 10.8629 43.7310i 0.409996 1.65052i
\(703\) −2.83162 + 17.8782i −0.106797 + 0.674288i
\(704\) −22.2243 + 16.1469i −0.837612 + 0.608560i
\(705\) 0 0
\(706\) −0.662542 0.481365i −0.0249351 0.0181164i
\(707\) −25.5150 + 25.5150i −0.959591 + 0.959591i
\(708\) 0.957171 0.227147i 0.0359727 0.00853671i
\(709\) −24.3739 7.91956i −0.915381 0.297425i −0.186810 0.982396i \(-0.559815\pi\)
−0.728570 + 0.684971i \(0.759815\pi\)
\(710\) 0 0
\(711\) −1.18874 2.36356i −0.0445813 0.0886405i
\(712\) 27.9936 14.2635i 1.04911 0.534546i
\(713\) −0.426633 + 0.217380i −0.0159775 + 0.00814096i
\(714\) −1.83494 4.46296i −0.0686709 0.167022i
\(715\) 0 0
\(716\) −1.89075 0.614342i −0.0706606 0.0229590i
\(717\) 3.37956 + 14.2411i 0.126212 + 0.531842i
\(718\) 0.196905 0.196905i 0.00734844 0.00734844i
\(719\) −5.09685 3.70308i −0.190081 0.138102i 0.488675 0.872466i \(-0.337480\pi\)
−0.678756 + 0.734364i \(0.737480\pi\)
\(720\) 0 0
\(721\) −17.6247 + 12.8051i −0.656376 + 0.476885i
\(722\) −1.50244 + 9.48601i −0.0559149 + 0.353033i
\(723\) −1.04359 + 2.50090i −0.0388115 + 0.0930096i
\(724\) 1.97084i 0.0732459i
\(725\) 0 0
\(726\) −11.0699 + 0.842053i −0.410841 + 0.0312515i
\(727\) −7.14311 + 14.0192i −0.264923 + 0.519942i −0.984699 0.174266i \(-0.944245\pi\)
0.719775 + 0.694207i \(0.244245\pi\)
\(728\) 37.4399 + 5.92990i 1.38762 + 0.219777i
\(729\) 23.8616 + 12.6342i 0.883763 + 0.467934i
\(730\) 0 0
\(731\) 3.57583 4.92171i 0.132257 0.182036i
\(732\) 0.929588 1.08265i 0.0343586 0.0400160i
\(733\) 22.0161 3.48700i 0.813182 0.128795i 0.264026 0.964516i \(-0.414949\pi\)
0.549155 + 0.835720i \(0.314949\pi\)
\(734\) 9.52549 29.3164i 0.351592 1.08209i
\(735\) 0 0
\(736\) 0.371416 + 1.14310i 0.0136906 + 0.0421353i
\(737\) −3.45796 6.78662i −0.127375 0.249988i
\(738\) −16.8979 23.5160i −0.622021 0.865636i
\(739\) 34.2550 11.1301i 1.26009 0.409428i 0.398563 0.917141i \(-0.369509\pi\)
0.861526 + 0.507713i \(0.169509\pi\)
\(740\) 0 0
\(741\) −34.7952 8.45003i −1.27823 0.310420i
\(742\) −1.66285 10.4988i −0.0610452 0.385424i
\(743\) 21.4863 + 21.4863i 0.788255 + 0.788255i 0.981208 0.192953i \(-0.0618065\pi\)
−0.192953 + 0.981208i \(0.561806\pi\)
\(744\) −1.11598 + 1.81045i −0.0409137 + 0.0663743i
\(745\) 0 0
\(746\) −4.20934 5.79366i −0.154115 0.212121i
\(747\) 0.150090 28.6559i 0.00549152 1.04846i
\(748\) 0.551226 + 0.280863i 0.0201548 + 0.0102694i
\(749\) 35.4294 1.29456
\(750\) 0 0
\(751\) 44.7068 1.63137 0.815686 0.578494i \(-0.196360\pi\)
0.815686 + 0.578494i \(0.196360\pi\)
\(752\) 15.6686 + 7.98354i 0.571374 + 0.291130i
\(753\) −1.18100 + 14.5198i −0.0430380 + 0.529130i
\(754\) −0.705420 0.970928i −0.0256899 0.0353591i
\(755\) 0 0
\(756\) 1.01269 2.39153i 0.0368311 0.0869791i
\(757\) 33.8318 + 33.8318i 1.22964 + 1.22964i 0.964100 + 0.265539i \(0.0855498\pi\)
0.265539 + 0.964100i \(0.414450\pi\)
\(758\) −1.62031 10.2302i −0.0588521 0.371578i
\(759\) 1.66259 6.84615i 0.0603481 0.248499i
\(760\) 0 0
\(761\) 1.37065 0.445350i 0.0496859 0.0161439i −0.284069 0.958804i \(-0.591684\pi\)
0.333755 + 0.942660i \(0.391684\pi\)
\(762\) −25.0712 + 15.2735i −0.908234 + 0.553300i
\(763\) −11.0021 21.5929i −0.398303 0.781714i
\(764\) −0.676257 2.08131i −0.0244661 0.0752990i
\(765\) 0 0
\(766\) −4.69436 + 14.4477i −0.169614 + 0.522018i
\(767\) −15.9630 + 2.52830i −0.576392 + 0.0912915i
\(768\) 6.40647 + 5.50072i 0.231173 + 0.198490i
\(769\) 13.9798 19.2415i 0.504124 0.693867i −0.478791 0.877929i \(-0.658925\pi\)
0.982915 + 0.184062i \(0.0589248\pi\)
\(770\) 0 0
\(771\) −19.8653 + 16.8768i −0.715430 + 0.607802i
\(772\) −2.53041 0.400778i −0.0910716 0.0144243i
\(773\) −1.97202 + 3.87030i −0.0709285 + 0.139205i −0.923748 0.383001i \(-0.874891\pi\)
0.852820 + 0.522206i \(0.174891\pi\)
\(774\) 34.7793 5.32192i 1.25012 0.191293i
\(775\) 0 0
\(776\) 43.3696i 1.55688i
\(777\) 19.9059 + 8.30643i 0.714120 + 0.297991i
\(778\) 7.44686 47.0176i 0.266983 1.68566i
\(779\) −18.6162 + 13.5255i −0.666995 + 0.484601i
\(780\) 0 0
\(781\) 11.2504 + 8.17389i 0.402571 + 0.292485i
\(782\) −0.840661 + 0.840661i −0.0300620 + 0.0300620i
\(783\) 0.666523 0.269968i 0.0238196 0.00964785i
\(784\) −4.43781 1.44193i −0.158493 0.0514975i
\(785\) 0 0
\(786\) 10.5395 4.33332i 0.375933 0.154564i
\(787\) −32.5272 + 16.5734i −1.15947 + 0.590779i −0.924484 0.381220i \(-0.875504\pi\)
−0.234985 + 0.971999i \(0.575504\pi\)
\(788\) 1.39913 0.712893i 0.0498420 0.0253958i
\(789\) 3.00196 1.23425i 0.106873 0.0439406i
\(790\) 0 0
\(791\) 11.2288 + 3.64846i 0.399250 + 0.129724i
\(792\) −9.51380 29.8108i −0.338058 1.05928i
\(793\) −16.5772 + 16.5772i −0.588675 + 0.588675i
\(794\) −12.3219 8.95235i −0.437286 0.317707i
\(795\) 0 0
\(796\) 2.75200 1.99945i 0.0975421 0.0708685i
\(797\) 3.74172 23.6243i 0.132539 0.836816i −0.828417 0.560112i \(-0.810758\pi\)
0.960955 0.276703i \(-0.0892420\pi\)
\(798\) −20.4664 8.54031i −0.724502 0.302324i
\(799\) 3.10093i 0.109703i
\(800\) 0 0
\(801\) 5.34914 + 34.9572i 0.189003 + 1.23515i
\(802\) 9.84400 19.3199i 0.347604 0.682211i
\(803\) −46.3524 7.34149i −1.63574 0.259076i
\(804\) −0.527212 + 0.447899i −0.0185933 + 0.0157962i
\(805\) 0 0
\(806\) −2.34828 + 3.23213i −0.0827146 + 0.113847i
\(807\) −30.8653 26.5015i −1.08651 0.932898i
\(808\) 39.0009 6.17713i 1.37205 0.217311i
\(809\) −1.75262 + 5.39400i −0.0616187 + 0.189643i −0.977127 0.212656i \(-0.931789\pi\)
0.915508 + 0.402299i \(0.131789\pi\)
\(810\) 0 0
\(811\) 5.70569 + 17.5603i 0.200354 + 0.616625i 0.999872 + 0.0159840i \(0.00508808\pi\)
−0.799518 + 0.600641i \(0.794912\pi\)
\(812\) −0.0314032 0.0616323i −0.00110204 0.00216287i
\(813\) −1.11479 + 0.679137i −0.0390975 + 0.0238184i
\(814\) −28.2614 + 9.18267i −0.990560 + 0.321853i
\(815\) 0 0
\(816\) −1.37540 + 5.66357i −0.0481486 + 0.198265i
\(817\) −4.37372 27.6146i −0.153017 0.966112i
\(818\) 17.3064 + 17.3064i 0.605104 + 0.605104i
\(819\) −19.5696 + 37.9152i −0.683815 + 1.32486i
\(820\) 0 0
\(821\) −15.0984 20.7812i −0.526938 0.725268i 0.459722 0.888063i \(-0.347949\pi\)
−0.986660 + 0.162795i \(0.947949\pi\)
\(822\) −1.72886 + 21.2555i −0.0603010 + 0.741370i
\(823\) −1.75544 0.894443i −0.0611909 0.0311783i 0.423127 0.906070i \(-0.360932\pi\)
−0.484318 + 0.874892i \(0.660932\pi\)
\(824\) 23.8400 0.830507
\(825\) 0 0
\(826\) −10.0099 −0.348290
\(827\) −37.8448 19.2829i −1.31599 0.670532i −0.351885 0.936043i \(-0.614459\pi\)
−0.964108 + 0.265511i \(0.914459\pi\)
\(828\) −0.639855 0.00335136i −0.0222365 0.000116468i
\(829\) −18.3344 25.2352i −0.636781 0.876453i 0.361658 0.932311i \(-0.382211\pi\)
−0.998439 + 0.0558574i \(0.982211\pi\)
\(830\) 0 0
\(831\) −8.33993 + 13.5299i −0.289309 + 0.469346i
\(832\) −28.9843 28.9843i −1.00485 1.00485i
\(833\) −0.128718 0.812691i −0.00445980 0.0281581i
\(834\) −54.7337 13.2921i −1.89527 0.460268i
\(835\) 0 0
\(836\) 2.70405 0.878600i 0.0935216 0.0303870i
\(837\) −1.54036 1.83248i −0.0532425 0.0633399i
\(838\) 0.739427 + 1.45121i 0.0255431 + 0.0501311i
\(839\) −3.12345 9.61299i −0.107833 0.331877i 0.882552 0.470216i \(-0.155824\pi\)
−0.990385 + 0.138338i \(0.955824\pi\)
\(840\) 0 0
\(841\) −8.95557 + 27.5624i −0.308813 + 0.950428i
\(842\) 42.6492 6.75497i 1.46979 0.232792i
\(843\) −28.3144 + 32.9766i −0.975200 + 1.13578i
\(844\) 2.89209 3.98062i 0.0995499 0.137019i
\(845\) 0 0
\(846\) −12.7476 + 12.6148i −0.438272 + 0.433705i
\(847\) 10.3830 + 1.64450i 0.356763 + 0.0565058i
\(848\) −5.82858 + 11.4392i −0.200154 + 0.392825i
\(849\) −40.8301 + 3.10583i −1.40128 + 0.106592i
\(850\) 0 0
\(851\) 5.31419i 0.182168i
\(852\) 0.486389 1.16560i 0.0166634 0.0399329i
\(853\) 2.37400 14.9888i 0.0812842 0.513208i −0.913131 0.407667i \(-0.866342\pi\)
0.994415 0.105541i \(-0.0336575\pi\)
\(854\) −11.7468 + 8.53457i −0.401968 + 0.292047i
\(855\) 0 0
\(856\) −31.3665 22.7891i −1.07208 0.778914i
\(857\) 26.4246 26.4246i 0.902648 0.902648i −0.0930163 0.995665i \(-0.529651\pi\)
0.995665 + 0.0930163i \(0.0296509\pi\)
\(858\) −13.5727 57.1939i −0.463365 1.95257i
\(859\) −42.0699 13.6693i −1.43541 0.466392i −0.514944 0.857224i \(-0.672187\pi\)
−0.920462 + 0.390832i \(0.872187\pi\)
\(860\) 0 0
\(861\) 10.4269 + 25.3603i 0.355346 + 0.864277i
\(862\) −35.3346 + 18.0039i −1.20350 + 0.613215i
\(863\) 48.4015 24.6618i 1.64760 0.839496i 0.650832 0.759222i \(-0.274420\pi\)
0.996773 0.0802746i \(-0.0255797\pi\)
\(864\) −5.14810 + 3.09939i −0.175142 + 0.105443i
\(865\) 0 0
\(866\) −37.7888 12.2783i −1.28412 0.417235i
\(867\) 27.6492 6.56146i 0.939018 0.222839i
\(868\) −0.162822 + 0.162822i −0.00552655 + 0.00552655i
\(869\) −2.79221 2.02866i −0.0947191 0.0688174i
\(870\) 0 0
\(871\) 9.19470 6.68034i 0.311551 0.226355i
\(872\) −4.14864 + 26.1935i −0.140491 + 0.887023i
\(873\) −46.3479 15.3282i −1.56864 0.518781i
\(874\) 5.46382i 0.184816i
\(875\) 0 0
\(876\) 0.323292 + 4.25008i 0.0109230 + 0.143597i
\(877\) −22.0243 + 43.2252i −0.743709 + 1.45961i 0.139298 + 0.990250i \(0.455515\pi\)
−0.883007 + 0.469360i \(0.844485\pi\)
\(878\) −29.7538 4.71254i −1.00414 0.159041i
\(879\) 27.7473 + 32.6607i 0.935894 + 1.10162i
\(880\) 0 0
\(881\) 31.2390 42.9968i 1.05247 1.44860i 0.165820 0.986156i \(-0.446973\pi\)
0.886649 0.462443i \(-0.153027\pi\)
\(882\) 2.81726 3.83522i 0.0948620 0.129139i
\(883\) 9.36055 1.48257i 0.315008 0.0498923i 0.00307116 0.999995i \(-0.499022\pi\)
0.311936 + 0.950103i \(0.399022\pi\)
\(884\) −0.285258 + 0.877934i −0.00959427 + 0.0295281i
\(885\) 0 0
\(886\) 7.79887 + 24.0025i 0.262008 + 0.806379i
\(887\) 12.2915 + 24.1235i 0.412709 + 0.809986i 1.00000 0.000610667i \(0.000194381\pi\)
−0.587291 + 0.809376i \(0.699806\pi\)
\(888\) −12.2802 20.1578i −0.412098 0.676452i
\(889\) 26.4380 8.59022i 0.886702 0.288107i
\(890\) 0 0
\(891\) 35.2205 + 0.368958i 1.17993 + 0.0123606i
\(892\) −0.0762202 0.481236i −0.00255204 0.0161130i
\(893\) 10.0772 + 10.0772i 0.337219 + 0.337219i
\(894\) 12.2998 + 7.58170i 0.411367 + 0.253570i
\(895\) 0 0
\(896\) −18.2333 25.0960i −0.609131 0.838397i
\(897\) 10.4777 + 0.852225i 0.349839 + 0.0284550i
\(898\) 31.2169 + 15.9058i 1.04172 + 0.530784i
\(899\) −0.0637590 −0.00212648
\(900\) 0 0
\(901\) −2.26391 −0.0754218
\(902\) −33.6588 17.1500i −1.12072 0.571033i
\(903\) −33.2064 2.70092i −1.10504 0.0898811i
\(904\) −7.59433 10.4527i −0.252584 0.347652i
\(905\) 0 0
\(906\) 32.1472 + 19.8158i 1.06802 + 0.658335i
\(907\) 5.89173 + 5.89173i 0.195632 + 0.195632i 0.798124 0.602493i \(-0.205826\pi\)
−0.602493 + 0.798124i \(0.705826\pi\)
\(908\) 0.390657 + 2.46651i 0.0129644 + 0.0818541i
\(909\) −7.18281 + 43.8623i −0.238239 + 1.45482i
\(910\) 0 0
\(911\) 48.7073 15.8260i 1.61374 0.524337i 0.643290 0.765623i \(-0.277569\pi\)
0.970454 + 0.241286i \(0.0775691\pi\)
\(912\) 13.9353 + 22.8746i 0.461445 + 0.757455i
\(913\) −16.9715 33.3085i −0.561676 1.10235i
\(914\) 1.18733 + 3.65423i 0.0392735 + 0.120871i
\(915\) 0 0
\(916\) −0.919787 + 2.83081i −0.0303906 + 0.0935327i
\(917\) −10.6577 + 1.68802i −0.351949 + 0.0557433i
\(918\) −5.04339 3.14536i −0.166457 0.103812i
\(919\) −9.10877 + 12.5372i −0.300471 + 0.413562i −0.932380 0.361480i \(-0.882272\pi\)
0.631909 + 0.775042i \(0.282272\pi\)
\(920\) 0 0
\(921\) −6.34630 7.47008i −0.209118 0.246148i
\(922\) 38.4293 + 6.08661i 1.26560 + 0.200452i
\(923\) −9.42028 + 18.4883i −0.310072 + 0.608551i
\(924\) −0.256974 3.37825i −0.00845383 0.111136i
\(925\) 0 0
\(926\) 31.8466i 1.04654i
\(927\) −8.42581 + 25.4772i −0.276740 + 0.836780i
\(928\) −0.0250368 + 0.158076i −0.000821874 + 0.00518911i
\(929\) 33.7506 24.5213i 1.10732 0.804517i 0.125083 0.992146i \(-0.460080\pi\)
0.982240 + 0.187629i \(0.0600803\pi\)
\(930\) 0 0
\(931\) −3.05931 2.22272i −0.100265 0.0728467i
\(932\) −3.14437 + 3.14437i −0.102997 + 0.102997i
\(933\) 58.0124 13.7670i 1.89924 0.450710i
\(934\) 41.7570 + 13.5677i 1.36633 + 0.443947i
\(935\) 0 0
\(936\) 41.7133 20.9795i 1.36344 0.685737i
\(937\) −0.722614 + 0.368190i −0.0236068 + 0.0120282i −0.465754 0.884914i \(-0.654217\pi\)
0.442147 + 0.896942i \(0.354217\pi\)
\(938\) 6.27186 3.19567i 0.204784 0.104342i
\(939\) 12.8604 + 31.2793i 0.419685 + 1.02076i
\(940\) 0 0
\(941\) −16.0740 5.22276i −0.523998 0.170257i 0.0350611 0.999385i \(-0.488837\pi\)
−0.559059 + 0.829128i \(0.688837\pi\)
\(942\) −6.21404 26.1852i −0.202464 0.853161i
\(943\) 4.77697 4.77697i 0.155560 0.155560i
\(944\) 9.78102 + 7.10633i 0.318345 + 0.231291i
\(945\) 0 0
\(946\) 37.1330 26.9787i 1.20730 0.877153i
\(947\) −4.90398 + 30.9625i −0.159358 + 1.00615i 0.770289 + 0.637695i \(0.220112\pi\)
−0.929647 + 0.368452i \(0.879888\pi\)
\(948\) −0.120716 + 0.289288i −0.00392066 + 0.00939564i
\(949\) 70.0260i 2.27314i
\(950\) 0 0
\(951\) 5.07016 0.385673i 0.164411 0.0125063i
\(952\) 2.27005 4.45523i 0.0735729 0.144395i
\(953\) −25.1408 3.98191i −0.814391 0.128987i −0.264674 0.964338i \(-0.585264\pi\)
−0.549717 + 0.835351i \(0.685264\pi\)
\(954\) −9.20972 9.30671i −0.298176 0.301316i
\(955\) 0 0
\(956\) 1.01932 1.40298i 0.0329672 0.0453755i
\(957\) 0.611124 0.711752i 0.0197548 0.0230077i
\(958\) −44.3177 + 7.01924i −1.43184 + 0.226781i
\(959\) 6.24011 19.2051i 0.201504 0.620165i
\(960\) 0 0
\(961\) −9.51394 29.2809i −0.306901 0.944545i
\(962\) −20.1299 39.5071i −0.649013 1.27376i
\(963\) 35.4399 25.4661i 1.14204 0.820633i
\(964\) 0.305361 0.0992179i 0.00983502 0.00319559i
\(965\) 0 0
\(966\) 6.32687 + 1.53648i 0.203564 + 0.0494355i
\(967\) −8.00363 50.5329i −0.257379 1.62503i −0.690249 0.723572i \(-0.742499\pi\)
0.432869 0.901457i \(-0.357501\pi\)
\(968\) −8.13450 8.13450i −0.261453 0.261453i
\(969\) −2.47841 + 4.02072i −0.0796180 + 0.129164i
\(970\) 0 0
\(971\) −18.5870 25.5828i −0.596485 0.820991i 0.398896 0.916996i \(-0.369393\pi\)
−0.995381 + 0.0960053i \(0.969393\pi\)
\(972\) −0.706003 3.12014i −0.0226450 0.100079i
\(973\) 47.5211 + 24.2132i 1.52346 + 0.776240i
\(974\) −22.3649 −0.716618
\(975\) 0 0
\(976\) 17.5371 0.561349
\(977\) 39.7795 + 20.2687i 1.27266 + 0.648452i 0.954111 0.299454i \(-0.0968045\pi\)
0.318549 + 0.947906i \(0.396805\pi\)
\(978\) −1.78362 + 21.9286i −0.0570338 + 0.701201i
\(979\) 27.1166 + 37.3229i 0.866652 + 1.19284i
\(980\) 0 0
\(981\) −26.5260 13.6911i −0.846909 0.437124i
\(982\) 35.2835 + 35.2835i 1.12594 + 1.12594i
\(983\) −7.45579 47.0740i −0.237803 1.50143i −0.760740 0.649056i \(-0.775164\pi\)
0.522938 0.852371i \(-0.324836\pi\)
\(984\) 7.08124 29.1589i 0.225742 0.929550i
\(985\) 0 0
\(986\) −0.150560 + 0.0489200i −0.00479481 + 0.00155793i
\(987\) 14.5027 8.83512i 0.461627 0.281225i
\(988\) 1.92603 + 3.78004i 0.0612751 + 0.120259i
\(989\) 2.53650 + 7.80654i 0.0806559 + 0.248233i
\(990\) 0 0
\(991\) 1.87960 5.78480i 0.0597073 0.183760i −0.916754 0.399452i \(-0.869201\pi\)
0.976462 + 0.215691i \(0.0692005\pi\)
\(992\) 0.526221 0.0833452i 0.0167075 0.00264621i
\(993\) −5.30571 4.55559i −0.168372 0.144567i
\(994\) −7.55391 + 10.3971i −0.239595 + 0.329775i
\(995\) 0 0
\(996\) −2.58754 + 2.19827i −0.0819893 + 0.0696550i
\(997\) 24.4690 + 3.87551i 0.774942 + 0.122739i 0.531365 0.847143i \(-0.321679\pi\)
0.243577 + 0.969882i \(0.421679\pi\)
\(998\) −21.7973 + 42.7795i −0.689980 + 1.35416i
\(999\) 25.8823 5.99913i 0.818880 0.189804i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.2.l.b.107.6 64
3.2 odd 2 inner 375.2.l.b.107.3 64
5.2 odd 4 75.2.l.a.8.3 64
5.3 odd 4 375.2.l.c.143.6 64
5.4 even 2 375.2.l.a.107.3 64
15.2 even 4 75.2.l.a.8.6 yes 64
15.8 even 4 375.2.l.c.143.3 64
15.14 odd 2 375.2.l.a.107.6 64
25.3 odd 20 inner 375.2.l.b.368.3 64
25.4 even 10 75.2.l.a.47.6 yes 64
25.21 even 5 375.2.l.c.257.3 64
25.22 odd 20 375.2.l.a.368.6 64
75.29 odd 10 75.2.l.a.47.3 yes 64
75.47 even 20 375.2.l.a.368.3 64
75.53 even 20 inner 375.2.l.b.368.6 64
75.71 odd 10 375.2.l.c.257.6 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.l.a.8.3 64 5.2 odd 4
75.2.l.a.8.6 yes 64 15.2 even 4
75.2.l.a.47.3 yes 64 75.29 odd 10
75.2.l.a.47.6 yes 64 25.4 even 10
375.2.l.a.107.3 64 5.4 even 2
375.2.l.a.107.6 64 15.14 odd 2
375.2.l.a.368.3 64 75.47 even 20
375.2.l.a.368.6 64 25.22 odd 20
375.2.l.b.107.3 64 3.2 odd 2 inner
375.2.l.b.107.6 64 1.1 even 1 trivial
375.2.l.b.368.3 64 25.3 odd 20 inner
375.2.l.b.368.6 64 75.53 even 20 inner
375.2.l.c.143.3 64 15.8 even 4
375.2.l.c.143.6 64 5.3 odd 4
375.2.l.c.257.3 64 25.21 even 5
375.2.l.c.257.6 64 75.71 odd 10