Properties

Label 375.2
Level 375
Weight 2
Dimension 3328
Nonzero newspaces 9
Newform subspaces 28
Sturm bound 20000
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 9 \)
Newform subspaces: \( 28 \)
Sturm bound: \(20000\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(375))\).

Total New Old
Modular forms 5360 3584 1776
Cusp forms 4641 3328 1313
Eisenstein series 719 256 463

Trace form

\( 3328 q + 2 q^{2} - 30 q^{3} - 54 q^{4} - 50 q^{6} - 52 q^{7} + 18 q^{8} - 28 q^{9} - 80 q^{10} + 8 q^{11} - 22 q^{12} - 48 q^{13} + 24 q^{14} - 40 q^{15} - 142 q^{16} - 20 q^{17} - 48 q^{18} - 116 q^{19}+ \cdots - 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(375))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
375.2.a \(\chi_{375}(1, \cdot)\) 375.2.a.a 2 1
375.2.a.b 2
375.2.a.c 2
375.2.a.d 2
375.2.a.e 4
375.2.a.f 4
375.2.b \(\chi_{375}(124, \cdot)\) 375.2.b.a 4 1
375.2.b.b 4
375.2.b.c 8
375.2.e \(\chi_{375}(68, \cdot)\) 375.2.e.a 16 2
375.2.e.b 16
375.2.e.c 32
375.2.g \(\chi_{375}(76, \cdot)\) 375.2.g.a 4 4
375.2.g.b 8
375.2.g.c 12
375.2.g.d 16
375.2.g.e 16
375.2.i \(\chi_{375}(49, \cdot)\) 375.2.i.a 8 4
375.2.i.b 16
375.2.i.c 16
375.2.i.d 24
375.2.l \(\chi_{375}(32, \cdot)\) 375.2.l.a 64 8
375.2.l.b 64
375.2.l.c 64
375.2.m \(\chi_{375}(16, \cdot)\) 375.2.m.a 260 20
375.2.m.b 260
375.2.o \(\chi_{375}(4, \cdot)\) 375.2.o.a 480 20
375.2.r \(\chi_{375}(2, \cdot)\) 375.2.r.a 1920 40

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(375))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(375)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(125))\)\(^{\oplus 2}\)