Defining parameters
Level: | \( N \) | = | \( 375 = 3 \cdot 5^{3} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 9 \) | ||
Newform subspaces: | \( 28 \) | ||
Sturm bound: | \(20000\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(375))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5360 | 3584 | 1776 |
Cusp forms | 4641 | 3328 | 1313 |
Eisenstein series | 719 | 256 | 463 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(375))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
375.2.a | \(\chi_{375}(1, \cdot)\) | 375.2.a.a | 2 | 1 |
375.2.a.b | 2 | |||
375.2.a.c | 2 | |||
375.2.a.d | 2 | |||
375.2.a.e | 4 | |||
375.2.a.f | 4 | |||
375.2.b | \(\chi_{375}(124, \cdot)\) | 375.2.b.a | 4 | 1 |
375.2.b.b | 4 | |||
375.2.b.c | 8 | |||
375.2.e | \(\chi_{375}(68, \cdot)\) | 375.2.e.a | 16 | 2 |
375.2.e.b | 16 | |||
375.2.e.c | 32 | |||
375.2.g | \(\chi_{375}(76, \cdot)\) | 375.2.g.a | 4 | 4 |
375.2.g.b | 8 | |||
375.2.g.c | 12 | |||
375.2.g.d | 16 | |||
375.2.g.e | 16 | |||
375.2.i | \(\chi_{375}(49, \cdot)\) | 375.2.i.a | 8 | 4 |
375.2.i.b | 16 | |||
375.2.i.c | 16 | |||
375.2.i.d | 24 | |||
375.2.l | \(\chi_{375}(32, \cdot)\) | 375.2.l.a | 64 | 8 |
375.2.l.b | 64 | |||
375.2.l.c | 64 | |||
375.2.m | \(\chi_{375}(16, \cdot)\) | 375.2.m.a | 260 | 20 |
375.2.m.b | 260 | |||
375.2.o | \(\chi_{375}(4, \cdot)\) | 375.2.o.a | 480 | 20 |
375.2.r | \(\chi_{375}(2, \cdot)\) | 375.2.r.a | 1920 | 40 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(375))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(375)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(125))\)\(^{\oplus 2}\)