Properties

Label 375.2.l.b.107.7
Level $375$
Weight $2$
Character 375.107
Analytic conductor $2.994$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,2,Mod(32,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.l (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,20,0,-6,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 107.7
Character \(\chi\) \(=\) 375.107
Dual form 375.2.l.b.368.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.74302 + 0.888111i) q^{2} +(1.31346 + 1.12908i) q^{3} +(1.07379 + 1.47795i) q^{4} +(1.28664 + 3.13450i) q^{6} +(0.551254 + 0.551254i) q^{7} +(-0.0529901 - 0.334566i) q^{8} +(0.450377 + 2.96600i) q^{9} +(0.937544 - 0.304626i) q^{11} +(-0.258327 + 3.15362i) q^{12} +(-2.14163 - 4.20319i) q^{13} +(0.471270 + 1.45042i) q^{14} +(1.33382 - 4.10508i) q^{16} +(-3.38054 + 0.535425i) q^{17} +(-1.84912 + 5.56977i) q^{18} +(-3.79078 + 5.21756i) q^{19} +(0.101645 + 1.34646i) q^{21} +(1.90469 + 0.301674i) q^{22} +(0.435998 - 0.855694i) q^{23} +(0.308150 - 0.499270i) q^{24} -9.22822i q^{26} +(-2.75728 + 4.40425i) q^{27} +(-0.222792 + 1.40666i) q^{28} +(8.30669 - 6.03516i) q^{29} +(-2.73448 - 1.98672i) q^{31} +(5.49158 - 5.49158i) q^{32} +(1.57538 + 0.658442i) q^{33} +(-6.36785 - 2.06904i) q^{34} +(-3.89998 + 3.85050i) q^{36} +(-3.63316 + 1.85119i) q^{37} +(-11.2411 + 5.72765i) q^{38} +(1.93276 - 7.93880i) q^{39} +(3.89453 + 1.26541i) q^{41} +(-1.01864 + 2.43717i) q^{42} +(-4.93949 + 4.93949i) q^{43} +(1.45695 + 1.05853i) q^{44} +(1.51990 - 1.10427i) q^{46} +(0.732455 - 4.62454i) q^{47} +(6.38686 - 3.88589i) q^{48} -6.39224i q^{49} +(-5.04475 - 3.11362i) q^{51} +(3.91242 - 7.67856i) q^{52} +(3.42818 + 0.542970i) q^{53} +(-8.71745 + 5.22789i) q^{54} +(0.155220 - 0.213642i) q^{56} +(-10.8701 + 2.57300i) q^{57} +(19.8386 - 3.14212i) q^{58} +(0.172592 - 0.531183i) q^{59} +(2.95410 + 9.09178i) q^{61} +(-3.00182 - 5.89140i) q^{62} +(-1.38675 + 1.88329i) q^{63} +(6.23890 - 2.02714i) q^{64} +(2.16114 + 2.54678i) q^{66} +(-1.08040 - 6.82141i) q^{67} +(-4.42132 - 4.42132i) q^{68} +(1.53881 - 0.631649i) q^{69} +(5.08421 + 6.99781i) q^{71} +(0.968458 - 0.307850i) q^{72} +(-8.03649 - 4.09480i) q^{73} -7.97671 q^{74} -11.7818 q^{76} +(0.684752 + 0.348898i) q^{77} +(10.4194 - 12.1209i) q^{78} +(3.84334 + 5.28990i) q^{79} +(-8.59432 + 2.67164i) q^{81} +(5.66440 + 5.66440i) q^{82} +(0.223482 + 1.41101i) q^{83} +(-1.88085 + 1.59604i) q^{84} +(-12.9964 + 4.22279i) q^{86} +(17.7247 + 1.45191i) q^{87} +(-0.151598 - 0.297528i) q^{88} +(3.04398 + 9.36841i) q^{89} +(1.13644 - 3.49761i) q^{91} +(1.73284 - 0.274455i) q^{92} +(-1.34849 - 5.69692i) q^{93} +(5.38378 - 7.41014i) q^{94} +(13.4134 - 1.01259i) q^{96} +(-5.51558 - 0.873583i) q^{97} +(5.67701 - 11.1418i) q^{98} +(1.32577 + 2.64356i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 20 q^{4} - 6 q^{6} + 20 q^{7} + 10 q^{9} + 40 q^{12} - 8 q^{16} + 10 q^{18} - 6 q^{21} - 30 q^{27} - 80 q^{28} - 12 q^{31} - 50 q^{33} - 20 q^{34} - 22 q^{36} - 120 q^{37} - 30 q^{39} + 60 q^{42}+ \cdots + 42 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{13}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74302 + 0.888111i 1.23250 + 0.627989i 0.944143 0.329535i \(-0.106892\pi\)
0.288354 + 0.957524i \(0.406892\pi\)
\(3\) 1.31346 + 1.12908i 0.758329 + 0.651872i
\(4\) 1.07379 + 1.47795i 0.536895 + 0.738973i
\(5\) 0 0
\(6\) 1.28664 + 3.13450i 0.525270 + 1.27965i
\(7\) 0.551254 + 0.551254i 0.208355 + 0.208355i 0.803568 0.595213i \(-0.202932\pi\)
−0.595213 + 0.803568i \(0.702932\pi\)
\(8\) −0.0529901 0.334566i −0.0187348 0.118287i
\(9\) 0.450377 + 2.96600i 0.150126 + 0.988667i
\(10\) 0 0
\(11\) 0.937544 0.304626i 0.282680 0.0918483i −0.164245 0.986420i \(-0.552519\pi\)
0.446925 + 0.894571i \(0.352519\pi\)
\(12\) −0.258327 + 3.15362i −0.0745726 + 0.910372i
\(13\) −2.14163 4.20319i −0.593981 1.16575i −0.970895 0.239505i \(-0.923015\pi\)
0.376914 0.926248i \(-0.376985\pi\)
\(14\) 0.471270 + 1.45042i 0.125952 + 0.387641i
\(15\) 0 0
\(16\) 1.33382 4.10508i 0.333455 1.02627i
\(17\) −3.38054 + 0.535425i −0.819901 + 0.129860i −0.552274 0.833663i \(-0.686240\pi\)
−0.267627 + 0.963522i \(0.586240\pi\)
\(18\) −1.84912 + 5.56977i −0.435842 + 1.31281i
\(19\) −3.79078 + 5.21756i −0.869664 + 1.19699i 0.109514 + 0.993985i \(0.465070\pi\)
−0.979178 + 0.203004i \(0.934930\pi\)
\(20\) 0 0
\(21\) 0.101645 + 1.34646i 0.0221808 + 0.293822i
\(22\) 1.90469 + 0.301674i 0.406082 + 0.0643171i
\(23\) 0.435998 0.855694i 0.0909118 0.178424i −0.841073 0.540921i \(-0.818076\pi\)
0.931985 + 0.362497i \(0.118076\pi\)
\(24\) 0.308150 0.499270i 0.0629008 0.101913i
\(25\) 0 0
\(26\) 9.22822i 1.80980i
\(27\) −2.75728 + 4.40425i −0.530640 + 0.847598i
\(28\) −0.222792 + 1.40666i −0.0421038 + 0.265833i
\(29\) 8.30669 6.03516i 1.54251 1.12070i 0.593778 0.804629i \(-0.297636\pi\)
0.948735 0.316073i \(-0.102364\pi\)
\(30\) 0 0
\(31\) −2.73448 1.98672i −0.491128 0.356825i 0.314490 0.949261i \(-0.398166\pi\)
−0.805618 + 0.592436i \(0.798166\pi\)
\(32\) 5.49158 5.49158i 0.970784 0.970784i
\(33\) 1.57538 + 0.658442i 0.274238 + 0.114620i
\(34\) −6.36785 2.06904i −1.09208 0.354837i
\(35\) 0 0
\(36\) −3.89998 + 3.85050i −0.649997 + 0.641750i
\(37\) −3.63316 + 1.85119i −0.597288 + 0.304333i −0.726374 0.687300i \(-0.758796\pi\)
0.129086 + 0.991633i \(0.458796\pi\)
\(38\) −11.2411 + 5.72765i −1.82355 + 0.929148i
\(39\) 1.93276 7.93880i 0.309489 1.27122i
\(40\) 0 0
\(41\) 3.89453 + 1.26541i 0.608223 + 0.197624i 0.596905 0.802312i \(-0.296397\pi\)
0.0113186 + 0.999936i \(0.496397\pi\)
\(42\) −1.01864 + 2.43717i −0.157179 + 0.376064i
\(43\) −4.93949 + 4.93949i −0.753265 + 0.753265i −0.975087 0.221822i \(-0.928799\pi\)
0.221822 + 0.975087i \(0.428799\pi\)
\(44\) 1.45695 + 1.05853i 0.219643 + 0.159580i
\(45\) 0 0
\(46\) 1.51990 1.10427i 0.224097 0.162816i
\(47\) 0.732455 4.62454i 0.106840 0.674558i −0.874897 0.484310i \(-0.839071\pi\)
0.981736 0.190248i \(-0.0609293\pi\)
\(48\) 6.38686 3.88589i 0.921865 0.560879i
\(49\) 6.39224i 0.913177i
\(50\) 0 0
\(51\) −5.04475 3.11362i −0.706407 0.435994i
\(52\) 3.91242 7.67856i 0.542555 1.06482i
\(53\) 3.42818 + 0.542970i 0.470896 + 0.0745826i 0.387373 0.921923i \(-0.373383\pi\)
0.0835235 + 0.996506i \(0.473383\pi\)
\(54\) −8.71745 + 5.22789i −1.18629 + 0.711426i
\(55\) 0 0
\(56\) 0.155220 0.213642i 0.0207421 0.0285491i
\(57\) −10.8701 + 2.57300i −1.43978 + 0.340802i
\(58\) 19.8386 3.14212i 2.60493 0.412581i
\(59\) 0.172592 0.531183i 0.0224696 0.0691542i −0.939193 0.343390i \(-0.888425\pi\)
0.961663 + 0.274236i \(0.0884248\pi\)
\(60\) 0 0
\(61\) 2.95410 + 9.09178i 0.378233 + 1.16408i 0.941271 + 0.337652i \(0.109633\pi\)
−0.563038 + 0.826431i \(0.690367\pi\)
\(62\) −3.00182 5.89140i −0.381231 0.748209i
\(63\) −1.38675 + 1.88329i −0.174714 + 0.237273i
\(64\) 6.23890 2.02714i 0.779862 0.253393i
\(65\) 0 0
\(66\) 2.16114 + 2.54678i 0.266017 + 0.313487i
\(67\) −1.08040 6.82141i −0.131992 0.833367i −0.961487 0.274852i \(-0.911371\pi\)
0.829494 0.558515i \(-0.188629\pi\)
\(68\) −4.42132 4.42132i −0.536164 0.536164i
\(69\) 1.53881 0.631649i 0.185251 0.0760416i
\(70\) 0 0
\(71\) 5.08421 + 6.99781i 0.603385 + 0.830488i 0.996013 0.0892096i \(-0.0284341\pi\)
−0.392628 + 0.919697i \(0.628434\pi\)
\(72\) 0.968458 0.307850i 0.114134 0.0362804i
\(73\) −8.03649 4.09480i −0.940600 0.479260i −0.0847030 0.996406i \(-0.526994\pi\)
−0.855897 + 0.517147i \(0.826994\pi\)
\(74\) −7.97671 −0.927274
\(75\) 0 0
\(76\) −11.7818 −1.35146
\(77\) 0.684752 + 0.348898i 0.0780347 + 0.0397607i
\(78\) 10.4194 12.1209i 1.17976 1.37243i
\(79\) 3.84334 + 5.28990i 0.432410 + 0.595161i 0.968504 0.248997i \(-0.0801010\pi\)
−0.536095 + 0.844158i \(0.680101\pi\)
\(80\) 0 0
\(81\) −8.59432 + 2.67164i −0.954925 + 0.296849i
\(82\) 5.66440 + 5.66440i 0.625528 + 0.625528i
\(83\) 0.223482 + 1.41101i 0.0245303 + 0.154878i 0.996913 0.0785138i \(-0.0250175\pi\)
−0.972383 + 0.233392i \(0.925017\pi\)
\(84\) −1.88085 + 1.59604i −0.205218 + 0.174143i
\(85\) 0 0
\(86\) −12.9964 + 4.22279i −1.40144 + 0.455355i
\(87\) 17.7247 + 1.45191i 1.90029 + 0.155661i
\(88\) −0.151598 0.297528i −0.0161604 0.0317166i
\(89\) 3.04398 + 9.36841i 0.322661 + 0.993049i 0.972485 + 0.232964i \(0.0748426\pi\)
−0.649824 + 0.760085i \(0.725157\pi\)
\(90\) 0 0
\(91\) 1.13644 3.49761i 0.119131 0.366649i
\(92\) 1.73284 0.274455i 0.180661 0.0286139i
\(93\) −1.34849 5.69692i −0.139832 0.590743i
\(94\) 5.38378 7.41014i 0.555295 0.764297i
\(95\) 0 0
\(96\) 13.4134 1.01259i 1.36900 0.103347i
\(97\) −5.51558 0.873583i −0.560023 0.0886989i −0.129995 0.991515i \(-0.541496\pi\)
−0.430028 + 0.902816i \(0.641496\pi\)
\(98\) 5.67701 11.1418i 0.573465 1.12549i
\(99\) 1.32577 + 2.64356i 0.133245 + 0.265688i
\(100\) 0 0
\(101\) 3.43356i 0.341652i −0.985301 0.170826i \(-0.945356\pi\)
0.985301 0.170826i \(-0.0546437\pi\)
\(102\) −6.02784 9.90739i −0.596845 0.980978i
\(103\) −0.772999 + 4.88052i −0.0761658 + 0.480892i 0.919891 + 0.392174i \(0.128277\pi\)
−0.996057 + 0.0887178i \(0.971723\pi\)
\(104\) −1.29276 + 0.939244i −0.126765 + 0.0921004i
\(105\) 0 0
\(106\) 5.49315 + 3.99100i 0.533542 + 0.387641i
\(107\) −2.44736 + 2.44736i −0.236595 + 0.236595i −0.815439 0.578844i \(-0.803504\pi\)
0.578844 + 0.815439i \(0.303504\pi\)
\(108\) −9.46999 + 0.654121i −0.911250 + 0.0629429i
\(109\) 2.20399 + 0.716119i 0.211104 + 0.0685918i 0.412660 0.910885i \(-0.364600\pi\)
−0.201556 + 0.979477i \(0.564600\pi\)
\(110\) 0 0
\(111\) −6.86216 1.67064i −0.651327 0.158570i
\(112\) 2.99821 1.52767i 0.283305 0.144351i
\(113\) 2.90689 1.48114i 0.273457 0.139334i −0.311885 0.950120i \(-0.600960\pi\)
0.585342 + 0.810786i \(0.300960\pi\)
\(114\) −21.2318 5.16904i −1.98854 0.484125i
\(115\) 0 0
\(116\) 17.8393 + 5.79634i 1.65634 + 0.538176i
\(117\) 11.5021 8.24509i 1.06337 0.762259i
\(118\) 0.772580 0.772580i 0.0711217 0.0711217i
\(119\) −2.15869 1.56838i −0.197887 0.143773i
\(120\) 0 0
\(121\) −8.11300 + 5.89444i −0.737545 + 0.535858i
\(122\) −2.92547 + 18.4707i −0.264859 + 1.67226i
\(123\) 3.68658 + 6.05929i 0.332408 + 0.546347i
\(124\) 6.17474i 0.554508i
\(125\) 0 0
\(126\) −4.08970 + 2.05102i −0.364339 + 0.182720i
\(127\) −6.90244 + 13.5468i −0.612493 + 1.20208i 0.351508 + 0.936185i \(0.385669\pi\)
−0.964001 + 0.265900i \(0.914331\pi\)
\(128\) −2.66650 0.422332i −0.235687 0.0373292i
\(129\) −12.0649 + 0.910786i −1.06225 + 0.0801903i
\(130\) 0 0
\(131\) 0.850285 1.17032i 0.0742897 0.102251i −0.770255 0.637736i \(-0.779871\pi\)
0.844545 + 0.535485i \(0.179871\pi\)
\(132\) 0.718483 + 3.03535i 0.0625360 + 0.264193i
\(133\) −4.96588 + 0.786518i −0.430597 + 0.0681998i
\(134\) 4.17500 12.8493i 0.360665 1.11001i
\(135\) 0 0
\(136\) 0.358270 + 1.10264i 0.0307214 + 0.0945507i
\(137\) −4.30255 8.44422i −0.367591 0.721438i 0.630928 0.775842i \(-0.282674\pi\)
−0.998519 + 0.0544031i \(0.982674\pi\)
\(138\) 3.24314 + 0.265660i 0.276075 + 0.0226145i
\(139\) 6.29917 2.04672i 0.534288 0.173601i −0.0294316 0.999567i \(-0.509370\pi\)
0.563720 + 0.825966i \(0.309370\pi\)
\(140\) 0 0
\(141\) 6.18350 5.24717i 0.520745 0.441891i
\(142\) 2.64702 + 16.7126i 0.222133 + 1.40249i
\(143\) −3.28827 3.28827i −0.274979 0.274979i
\(144\) 12.7764 + 2.10728i 1.06470 + 0.175607i
\(145\) 0 0
\(146\) −10.3711 14.2746i −0.858318 1.18137i
\(147\) 7.21732 8.39598i 0.595274 0.692488i
\(148\) −6.63721 3.38183i −0.545575 0.277985i
\(149\) −10.3466 −0.847626 −0.423813 0.905750i \(-0.639309\pi\)
−0.423813 + 0.905750i \(0.639309\pi\)
\(150\) 0 0
\(151\) 5.60298 0.455964 0.227982 0.973665i \(-0.426787\pi\)
0.227982 + 0.973665i \(0.426787\pi\)
\(152\) 1.94649 + 0.991787i 0.157881 + 0.0804445i
\(153\) −3.11059 9.78554i −0.251476 0.791114i
\(154\) 0.883672 + 1.21627i 0.0712083 + 0.0980098i
\(155\) 0 0
\(156\) 13.8085 5.66809i 1.10556 0.453811i
\(157\) −7.18526 7.18526i −0.573446 0.573446i 0.359644 0.933090i \(-0.382898\pi\)
−0.933090 + 0.359644i \(0.882898\pi\)
\(158\) 2.00098 + 12.6337i 0.159189 + 1.00508i
\(159\) 3.88973 + 4.58384i 0.308476 + 0.363522i
\(160\) 0 0
\(161\) 0.712050 0.231359i 0.0561174 0.0182337i
\(162\) −17.3527 2.97600i −1.36336 0.233817i
\(163\) 8.85172 + 17.3725i 0.693320 + 1.36072i 0.921990 + 0.387214i \(0.126562\pi\)
−0.228670 + 0.973504i \(0.573438\pi\)
\(164\) 2.31170 + 7.11469i 0.180514 + 0.555564i
\(165\) 0 0
\(166\) −0.863599 + 2.65788i −0.0670283 + 0.206292i
\(167\) 0.529779 0.0839087i 0.0409955 0.00649305i −0.135903 0.990722i \(-0.543394\pi\)
0.176899 + 0.984229i \(0.443394\pi\)
\(168\) 0.445094 0.105356i 0.0343397 0.00812840i
\(169\) −5.43898 + 7.48611i −0.418383 + 0.575855i
\(170\) 0 0
\(171\) −17.1826 8.89358i −1.31398 0.680109i
\(172\) −12.6043 1.99632i −0.961067 0.152218i
\(173\) −7.23210 + 14.1938i −0.549846 + 1.07913i 0.434132 + 0.900849i \(0.357055\pi\)
−0.983979 + 0.178285i \(0.942945\pi\)
\(174\) 29.6050 + 18.2722i 2.24435 + 1.38521i
\(175\) 0 0
\(176\) 4.25500i 0.320733i
\(177\) 0.826439 0.502821i 0.0621190 0.0377943i
\(178\) −3.01448 + 19.0327i −0.225945 + 1.42656i
\(179\) 14.7628 10.7258i 1.10342 0.801684i 0.121808 0.992554i \(-0.461131\pi\)
0.981615 + 0.190870i \(0.0611308\pi\)
\(180\) 0 0
\(181\) 8.42806 + 6.12334i 0.626453 + 0.455145i 0.855170 0.518348i \(-0.173453\pi\)
−0.228717 + 0.973493i \(0.573453\pi\)
\(182\) 5.08710 5.08710i 0.377081 0.377081i
\(183\) −6.38520 + 15.2771i −0.472008 + 1.12932i
\(184\) −0.309390 0.100527i −0.0228085 0.00741093i
\(185\) 0 0
\(186\) 2.70906 11.1274i 0.198638 0.815903i
\(187\) −3.00630 + 1.53179i −0.219842 + 0.112015i
\(188\) 7.62132 3.88326i 0.555842 0.283216i
\(189\) −3.94782 + 0.907895i −0.287162 + 0.0660396i
\(190\) 0 0
\(191\) −16.3919 5.32604i −1.18607 0.385379i −0.351454 0.936205i \(-0.614313\pi\)
−0.834620 + 0.550826i \(0.814313\pi\)
\(192\) 10.4834 + 4.38161i 0.756571 + 0.316215i
\(193\) 13.5906 13.5906i 0.978276 0.978276i −0.0214931 0.999769i \(-0.506842\pi\)
0.999769 + 0.0214931i \(0.00684200\pi\)
\(194\) −8.83791 6.42112i −0.634525 0.461009i
\(195\) 0 0
\(196\) 9.44738 6.86393i 0.674813 0.490280i
\(197\) −0.334594 + 2.11254i −0.0238388 + 0.150512i −0.996737 0.0807236i \(-0.974277\pi\)
0.972898 + 0.231236i \(0.0742769\pi\)
\(198\) −0.0369342 + 5.78519i −0.00262480 + 0.411136i
\(199\) 18.8648i 1.33729i 0.743582 + 0.668644i \(0.233125\pi\)
−0.743582 + 0.668644i \(0.766875\pi\)
\(200\) 0 0
\(201\) 6.28281 10.1795i 0.443155 0.718009i
\(202\) 3.04939 5.98476i 0.214554 0.421086i
\(203\) 7.90601 + 1.25219i 0.554893 + 0.0878864i
\(204\) −0.815242 10.7993i −0.0570784 0.756099i
\(205\) 0 0
\(206\) −5.68179 + 7.82031i −0.395869 + 0.544867i
\(207\) 2.73435 + 0.907785i 0.190051 + 0.0630954i
\(208\) −20.1109 + 3.18526i −1.39444 + 0.220858i
\(209\) −1.96461 + 6.04646i −0.135895 + 0.418242i
\(210\) 0 0
\(211\) −1.54603 4.75818i −0.106433 0.327567i 0.883631 0.468184i \(-0.155091\pi\)
−0.990064 + 0.140617i \(0.955091\pi\)
\(212\) 2.87866 + 5.64970i 0.197708 + 0.388023i
\(213\) −1.22313 + 14.9318i −0.0838076 + 1.02311i
\(214\) −6.43931 + 2.09226i −0.440182 + 0.143024i
\(215\) 0 0
\(216\) 1.61962 + 0.689113i 0.110201 + 0.0468882i
\(217\) −0.412209 2.60258i −0.0279825 0.176675i
\(218\) 3.20559 + 3.20559i 0.217110 + 0.217110i
\(219\) −5.93231 14.4522i −0.400868 0.976587i
\(220\) 0 0
\(221\) 9.49035 + 13.0623i 0.638390 + 0.878669i
\(222\) −10.4771 9.00631i −0.703179 0.604464i
\(223\) −10.8469 5.52678i −0.726363 0.370101i 0.0513829 0.998679i \(-0.483637\pi\)
−0.777746 + 0.628578i \(0.783637\pi\)
\(224\) 6.05452 0.404534
\(225\) 0 0
\(226\) 6.38217 0.424536
\(227\) 13.3560 + 6.80520i 0.886466 + 0.451677i 0.837066 0.547102i \(-0.184269\pi\)
0.0494003 + 0.998779i \(0.484269\pi\)
\(228\) −15.4749 13.3025i −1.02485 0.880980i
\(229\) −9.00455 12.3937i −0.595037 0.818999i 0.400205 0.916426i \(-0.368939\pi\)
−0.995243 + 0.0974268i \(0.968939\pi\)
\(230\) 0 0
\(231\) 0.505464 + 1.23140i 0.0332571 + 0.0810203i
\(232\) −2.45933 2.45933i −0.161463 0.161463i
\(233\) −0.338659 2.13821i −0.0221863 0.140079i 0.974109 0.226080i \(-0.0725911\pi\)
−0.996295 + 0.0860013i \(0.972591\pi\)
\(234\) 27.3709 4.15618i 1.78929 0.271698i
\(235\) 0 0
\(236\) 0.970388 0.315298i 0.0631669 0.0205242i
\(237\) −0.924610 + 11.2875i −0.0600599 + 0.733203i
\(238\) −2.36974 4.65087i −0.153607 0.301471i
\(239\) 7.04340 + 21.6774i 0.455600 + 1.40219i 0.870430 + 0.492293i \(0.163841\pi\)
−0.414830 + 0.909899i \(0.636159\pi\)
\(240\) 0 0
\(241\) −0.706155 + 2.17332i −0.0454874 + 0.139996i −0.971221 0.238181i \(-0.923449\pi\)
0.925733 + 0.378177i \(0.123449\pi\)
\(242\) −19.3760 + 3.06885i −1.24554 + 0.197273i
\(243\) −14.3048 6.19453i −0.917654 0.397380i
\(244\) −10.2651 + 14.1287i −0.657154 + 0.904495i
\(245\) 0 0
\(246\) 1.04445 + 13.8355i 0.0665918 + 0.882120i
\(247\) 30.0488 + 4.75926i 1.91196 + 0.302825i
\(248\) −0.519788 + 1.02014i −0.0330066 + 0.0647791i
\(249\) −1.29960 + 2.10564i −0.0823587 + 0.133439i
\(250\) 0 0
\(251\) 14.3226i 0.904036i 0.892009 + 0.452018i \(0.149296\pi\)
−0.892009 + 0.452018i \(0.850704\pi\)
\(252\) −4.27248 0.0272766i −0.269141 0.00171827i
\(253\) 0.148100 0.935067i 0.00931097 0.0587871i
\(254\) −24.0621 + 17.4822i −1.50979 + 1.09693i
\(255\) 0 0
\(256\) −14.8869 10.8160i −0.930432 0.675998i
\(257\) −4.31188 + 4.31188i −0.268968 + 0.268968i −0.828684 0.559716i \(-0.810910\pi\)
0.559716 + 0.828684i \(0.310910\pi\)
\(258\) −21.8382 9.12744i −1.35959 0.568250i
\(259\) −3.02327 0.982320i −0.187857 0.0610384i
\(260\) 0 0
\(261\) 21.6414 + 21.9195i 1.33957 + 1.35679i
\(262\) 2.52143 1.28473i 0.155774 0.0793711i
\(263\) 27.7729 14.1510i 1.71255 0.872587i 0.730753 0.682642i \(-0.239169\pi\)
0.981795 0.189945i \(-0.0608310\pi\)
\(264\) 0.136813 0.561958i 0.00842026 0.0345861i
\(265\) 0 0
\(266\) −9.35412 3.03934i −0.573538 0.186354i
\(267\) −6.57948 + 15.7420i −0.402658 + 0.963392i
\(268\) 8.92154 8.92154i 0.544970 0.544970i
\(269\) −11.9339 8.67050i −0.727624 0.528649i 0.161187 0.986924i \(-0.448468\pi\)
−0.888811 + 0.458274i \(0.848468\pi\)
\(270\) 0 0
\(271\) 19.8939 14.4538i 1.20847 0.878004i 0.213378 0.976970i \(-0.431553\pi\)
0.995091 + 0.0989656i \(0.0315534\pi\)
\(272\) −2.31107 + 14.5915i −0.140129 + 0.884741i
\(273\) 5.44174 3.31085i 0.329349 0.200382i
\(274\) 18.5395i 1.12001i
\(275\) 0 0
\(276\) 2.58590 + 1.59602i 0.155653 + 0.0960691i
\(277\) −1.52140 + 2.98592i −0.0914121 + 0.179406i −0.932186 0.361981i \(-0.882101\pi\)
0.840773 + 0.541387i \(0.182101\pi\)
\(278\) 12.7973 + 2.02689i 0.767529 + 0.121565i
\(279\) 4.66106 9.00525i 0.279050 0.539130i
\(280\) 0 0
\(281\) 0.291342 0.400997i 0.0173800 0.0239215i −0.800239 0.599682i \(-0.795294\pi\)
0.817619 + 0.575760i \(0.195294\pi\)
\(282\) 15.4380 3.65426i 0.919320 0.217608i
\(283\) 22.6222 3.58300i 1.34475 0.212987i 0.557784 0.829986i \(-0.311652\pi\)
0.786964 + 0.616999i \(0.211652\pi\)
\(284\) −4.88302 + 15.0284i −0.289754 + 0.891770i
\(285\) 0 0
\(286\) −2.81116 8.65186i −0.166227 0.511595i
\(287\) 1.44931 + 2.84444i 0.0855502 + 0.167902i
\(288\) 18.7613 + 13.8148i 1.10552 + 0.814042i
\(289\) −5.02660 + 1.63324i −0.295682 + 0.0960730i
\(290\) 0 0
\(291\) −6.25818 7.37493i −0.366861 0.432326i
\(292\) −2.57762 16.2745i −0.150844 0.952390i
\(293\) 7.39973 + 7.39973i 0.432297 + 0.432297i 0.889409 0.457112i \(-0.151116\pi\)
−0.457112 + 0.889409i \(0.651116\pi\)
\(294\) 20.0365 8.22454i 1.16855 0.479665i
\(295\) 0 0
\(296\) 0.811866 + 1.11744i 0.0471888 + 0.0649498i
\(297\) −1.24342 + 4.96911i −0.0721508 + 0.288337i
\(298\) −18.0343 9.18892i −1.04470 0.532300i
\(299\) −4.53039 −0.261999
\(300\) 0 0
\(301\) −5.44583 −0.313892
\(302\) 9.76609 + 4.97607i 0.561975 + 0.286341i
\(303\) 3.87675 4.50987i 0.222714 0.259085i
\(304\) 16.3622 + 22.5207i 0.938439 + 1.29165i
\(305\) 0 0
\(306\) 3.26884 19.8189i 0.186867 1.13297i
\(307\) 6.95771 + 6.95771i 0.397097 + 0.397097i 0.877208 0.480111i \(-0.159404\pi\)
−0.480111 + 0.877208i \(0.659404\pi\)
\(308\) 0.219627 + 1.38667i 0.0125144 + 0.0790129i
\(309\) −6.52578 + 5.53762i −0.371239 + 0.315024i
\(310\) 0 0
\(311\) −2.10692 + 0.684580i −0.119473 + 0.0388190i −0.368143 0.929769i \(-0.620006\pi\)
0.248671 + 0.968588i \(0.420006\pi\)
\(312\) −2.75847 0.225958i −0.156168 0.0127924i
\(313\) −10.9036 21.3996i −0.616309 1.20958i −0.962467 0.271399i \(-0.912514\pi\)
0.346158 0.938176i \(-0.387486\pi\)
\(314\) −6.14271 18.9053i −0.346653 1.06689i
\(315\) 0 0
\(316\) −3.69125 + 11.3605i −0.207649 + 0.639078i
\(317\) −0.769521 + 0.121880i −0.0432206 + 0.00684547i −0.178007 0.984029i \(-0.556965\pi\)
0.134787 + 0.990875i \(0.456965\pi\)
\(318\) 2.70891 + 11.4442i 0.151908 + 0.641760i
\(319\) 5.94941 8.18866i 0.333103 0.458477i
\(320\) 0 0
\(321\) −5.97777 + 0.451266i −0.333647 + 0.0251872i
\(322\) 1.44659 + 0.229117i 0.0806152 + 0.0127682i
\(323\) 10.0213 19.6678i 0.557598 1.09435i
\(324\) −13.1770 9.83316i −0.732058 0.546287i
\(325\) 0 0
\(326\) 38.1418i 2.11248i
\(327\) 2.08631 + 3.42907i 0.115373 + 0.189628i
\(328\) 0.216992 1.37003i 0.0119814 0.0756473i
\(329\) 2.95306 2.14553i 0.162808 0.118287i
\(330\) 0 0
\(331\) −12.1264 8.81032i −0.666525 0.484259i 0.202335 0.979316i \(-0.435147\pi\)
−0.868860 + 0.495057i \(0.835147\pi\)
\(332\) −1.84542 + 1.84542i −0.101281 + 0.101281i
\(333\) −7.12692 9.94222i −0.390553 0.544830i
\(334\) 0.997933 + 0.324248i 0.0546044 + 0.0177421i
\(335\) 0 0
\(336\) 5.66290 + 1.37867i 0.308936 + 0.0752129i
\(337\) 21.4776 10.9434i 1.16996 0.596124i 0.242537 0.970142i \(-0.422020\pi\)
0.927421 + 0.374019i \(0.122020\pi\)
\(338\) −16.1287 + 8.21799i −0.877287 + 0.447000i
\(339\) 5.49041 + 1.33668i 0.298198 + 0.0725986i
\(340\) 0 0
\(341\) −3.16890 1.02964i −0.171606 0.0557581i
\(342\) −22.0510 30.7616i −1.19238 1.66340i
\(343\) 7.38253 7.38253i 0.398619 0.398619i
\(344\) 1.91433 + 1.39084i 0.103214 + 0.0749891i
\(345\) 0 0
\(346\) −25.2113 + 18.3171i −1.35537 + 0.984733i
\(347\) 5.05725 31.9302i 0.271487 1.71410i −0.355164 0.934804i \(-0.615575\pi\)
0.626652 0.779299i \(-0.284425\pi\)
\(348\) 16.8868 + 27.7552i 0.905226 + 1.48783i
\(349\) 8.46821i 0.453293i −0.973977 0.226646i \(-0.927224\pi\)
0.973977 0.226646i \(-0.0727762\pi\)
\(350\) 0 0
\(351\) 24.4169 + 2.15711i 1.30328 + 0.115138i
\(352\) 3.47572 6.82148i 0.185256 0.363586i
\(353\) −33.2366 5.26415i −1.76900 0.280183i −0.814887 0.579619i \(-0.803201\pi\)
−0.954116 + 0.299437i \(0.903201\pi\)
\(354\) 1.88706 0.142455i 0.100296 0.00757141i
\(355\) 0 0
\(356\) −10.5774 + 14.5586i −0.560601 + 0.771602i
\(357\) −1.06454 4.49734i −0.0563416 0.238024i
\(358\) 35.2575 5.58424i 1.86342 0.295136i
\(359\) 2.38803 7.34959i 0.126035 0.387897i −0.868053 0.496471i \(-0.834629\pi\)
0.994088 + 0.108575i \(0.0346287\pi\)
\(360\) 0 0
\(361\) −6.98158 21.4871i −0.367452 1.13090i
\(362\) 9.25203 + 18.1581i 0.486276 + 0.954370i
\(363\) −17.3114 1.41805i −0.908613 0.0744284i
\(364\) 6.38958 2.07610i 0.334905 0.108817i
\(365\) 0 0
\(366\) −24.6973 + 20.9575i −1.29095 + 1.09547i
\(367\) −1.86431 11.7708i −0.0973164 0.614431i −0.987352 0.158541i \(-0.949321\pi\)
0.890036 0.455890i \(-0.150679\pi\)
\(368\) −2.93115 2.93115i −0.152796 0.152796i
\(369\) −1.99920 + 12.1211i −0.104074 + 0.630998i
\(370\) 0 0
\(371\) 1.59048 + 2.18911i 0.0825737 + 0.113653i
\(372\) 6.97175 8.11030i 0.361468 0.420499i
\(373\) 22.5244 + 11.4767i 1.16627 + 0.594243i 0.926392 0.376560i \(-0.122893\pi\)
0.239876 + 0.970804i \(0.422893\pi\)
\(374\) −6.60042 −0.341299
\(375\) 0 0
\(376\) −1.58603 −0.0817931
\(377\) −43.1568 21.9895i −2.22269 1.13251i
\(378\) −7.68743 1.92363i −0.395399 0.0989409i
\(379\) −11.2506 15.4851i −0.577904 0.795416i 0.415560 0.909566i \(-0.363586\pi\)
−0.993464 + 0.114150i \(0.963586\pi\)
\(380\) 0 0
\(381\) −24.3615 + 9.99987i −1.24808 + 0.512309i
\(382\) −23.8412 23.8412i −1.21982 1.21982i
\(383\) −3.31513 20.9309i −0.169395 1.06952i −0.915095 0.403238i \(-0.867885\pi\)
0.745700 0.666282i \(-0.232115\pi\)
\(384\) −3.02551 3.56539i −0.154395 0.181946i
\(385\) 0 0
\(386\) 35.7587 11.6187i 1.82007 0.591376i
\(387\) −16.8752 12.4259i −0.857812 0.631643i
\(388\) −4.63148 9.08978i −0.235128 0.461464i
\(389\) −3.35765 10.3338i −0.170240 0.523944i 0.829144 0.559035i \(-0.188828\pi\)
−0.999384 + 0.0350902i \(0.988828\pi\)
\(390\) 0 0
\(391\) −1.01575 + 3.12615i −0.0513686 + 0.158096i
\(392\) −2.13863 + 0.338725i −0.108017 + 0.0171082i
\(393\) 2.43819 0.577134i 0.122991 0.0291125i
\(394\) −2.45937 + 3.38503i −0.123901 + 0.170536i
\(395\) 0 0
\(396\) −2.48344 + 4.79805i −0.124797 + 0.241111i
\(397\) −7.56976 1.19893i −0.379915 0.0601727i −0.0364437 0.999336i \(-0.511603\pi\)
−0.343472 + 0.939163i \(0.611603\pi\)
\(398\) −16.7540 + 32.8816i −0.839802 + 1.64821i
\(399\) −7.41055 4.57379i −0.370991 0.228976i
\(400\) 0 0
\(401\) 20.7216i 1.03479i −0.855747 0.517395i \(-0.826902\pi\)
0.855747 0.517395i \(-0.173098\pi\)
\(402\) 19.9916 12.1632i 0.997089 0.606648i
\(403\) −2.49429 + 15.7484i −0.124250 + 0.784481i
\(404\) 5.07463 3.68693i 0.252472 0.183432i
\(405\) 0 0
\(406\) 12.6682 + 9.20399i 0.628713 + 0.456786i
\(407\) −2.84233 + 2.84233i −0.140889 + 0.140889i
\(408\) −0.774391 + 1.85279i −0.0383380 + 0.0917270i
\(409\) −30.3286 9.85436i −1.49965 0.487267i −0.559736 0.828671i \(-0.689098\pi\)
−0.939917 + 0.341404i \(0.889098\pi\)
\(410\) 0 0
\(411\) 3.88292 15.9491i 0.191530 0.786710i
\(412\) −8.04319 + 4.09821i −0.396259 + 0.201904i
\(413\) 0.387959 0.197675i 0.0190902 0.00972695i
\(414\) 3.95980 + 4.01069i 0.194614 + 0.197115i
\(415\) 0 0
\(416\) −34.8431 11.3212i −1.70832 0.555068i
\(417\) 10.5846 + 4.42394i 0.518332 + 0.216641i
\(418\) −8.79427 + 8.79427i −0.430142 + 0.430142i
\(419\) 10.4586 + 7.59860i 0.510935 + 0.371216i 0.813178 0.582015i \(-0.197736\pi\)
−0.302243 + 0.953231i \(0.597736\pi\)
\(420\) 0 0
\(421\) −9.92844 + 7.21344i −0.483883 + 0.351561i −0.802827 0.596212i \(-0.796672\pi\)
0.318944 + 0.947773i \(0.396672\pi\)
\(422\) 1.53104 9.66663i 0.0745300 0.470564i
\(423\) 14.0463 + 0.0896750i 0.682953 + 0.00436015i
\(424\) 1.17572i 0.0570982i
\(425\) 0 0
\(426\) −15.3931 + 24.9401i −0.745796 + 1.20835i
\(427\) −3.38342 + 6.64034i −0.163735 + 0.321349i
\(428\) −6.24502 0.989114i −0.301864 0.0478106i
\(429\) −0.606321 8.03174i −0.0292735 0.387776i
\(430\) 0 0
\(431\) 23.6623 32.5684i 1.13977 1.56876i 0.371760 0.928329i \(-0.378754\pi\)
0.768013 0.640434i \(-0.221246\pi\)
\(432\) 14.4020 + 17.1933i 0.692919 + 0.827215i
\(433\) −0.688486 + 0.109046i −0.0330865 + 0.00524039i −0.172956 0.984930i \(-0.555332\pi\)
0.139869 + 0.990170i \(0.455332\pi\)
\(434\) 1.59290 4.90243i 0.0764614 0.235324i
\(435\) 0 0
\(436\) 1.30824 + 4.02634i 0.0626532 + 0.192827i
\(437\) 2.81186 + 5.51859i 0.134510 + 0.263990i
\(438\) 2.49502 30.4589i 0.119217 1.45538i
\(439\) 32.6150 10.5973i 1.55663 0.505780i 0.600724 0.799456i \(-0.294879\pi\)
0.955905 + 0.293677i \(0.0948789\pi\)
\(440\) 0 0
\(441\) 18.9594 2.87892i 0.902828 0.137091i
\(442\) 4.94102 + 31.1964i 0.235020 + 1.48386i
\(443\) 20.2627 + 20.2627i 0.962712 + 0.962712i 0.999329 0.0366177i \(-0.0116584\pi\)
−0.0366177 + 0.999329i \(0.511658\pi\)
\(444\) −4.89940 11.9358i −0.232515 0.566449i
\(445\) 0 0
\(446\) −13.9979 19.2665i −0.662822 0.912296i
\(447\) −13.5899 11.6821i −0.642780 0.552544i
\(448\) 4.55669 + 2.32175i 0.215283 + 0.109692i
\(449\) 18.2524 0.861386 0.430693 0.902499i \(-0.358269\pi\)
0.430693 + 0.902499i \(0.358269\pi\)
\(450\) 0 0
\(451\) 4.03677 0.190084
\(452\) 5.31043 + 2.70580i 0.249782 + 0.127270i
\(453\) 7.35932 + 6.32619i 0.345771 + 0.297230i
\(454\) 17.2359 + 23.7231i 0.808919 + 1.11338i
\(455\) 0 0
\(456\) 1.43684 + 3.50041i 0.0672864 + 0.163922i
\(457\) 15.1979 + 15.1979i 0.710929 + 0.710929i 0.966730 0.255800i \(-0.0823390\pi\)
−0.255800 + 0.966730i \(0.582339\pi\)
\(458\) −4.68809 29.5994i −0.219060 1.38309i
\(459\) 6.96296 16.3650i 0.325003 0.763855i
\(460\) 0 0
\(461\) 17.1732 5.57990i 0.799835 0.259882i 0.119548 0.992828i \(-0.461855\pi\)
0.680286 + 0.732946i \(0.261855\pi\)
\(462\) −0.212589 + 2.59526i −0.00989054 + 0.120742i
\(463\) −4.61839 9.06411i −0.214635 0.421245i 0.758437 0.651746i \(-0.225963\pi\)
−0.973072 + 0.230502i \(0.925963\pi\)
\(464\) −13.6952 42.1494i −0.635782 1.95674i
\(465\) 0 0
\(466\) 1.30868 4.02770i 0.0606233 0.186579i
\(467\) 11.1130 1.76013i 0.514250 0.0814493i 0.106085 0.994357i \(-0.466169\pi\)
0.408166 + 0.912908i \(0.366169\pi\)
\(468\) 24.5367 + 8.14599i 1.13421 + 0.376549i
\(469\) 3.16475 4.35591i 0.146135 0.201137i
\(470\) 0 0
\(471\) −1.32488 17.5503i −0.0610473 0.808674i
\(472\) −0.186862 0.0295960i −0.00860100 0.00136226i
\(473\) −3.12629 + 6.13568i −0.143747 + 0.282119i
\(474\) −11.6362 + 18.8532i −0.534467 + 0.865954i
\(475\) 0 0
\(476\) 4.87454i 0.223424i
\(477\) −0.0664762 + 10.4125i −0.00304374 + 0.476756i
\(478\) −6.97514 + 44.0393i −0.319035 + 2.01431i
\(479\) −14.0049 + 10.1752i −0.639901 + 0.464915i −0.859816 0.510604i \(-0.829422\pi\)
0.219915 + 0.975519i \(0.429422\pi\)
\(480\) 0 0
\(481\) 15.5618 + 11.3063i 0.709556 + 0.515522i
\(482\) −3.16099 + 3.16099i −0.143979 + 0.143979i
\(483\) 1.19647 + 0.500077i 0.0544415 + 0.0227543i
\(484\) −17.4233 5.66118i −0.791969 0.257326i
\(485\) 0 0
\(486\) −19.4321 23.5014i −0.881457 1.06605i
\(487\) −9.46599 + 4.82316i −0.428945 + 0.218558i −0.655115 0.755530i \(-0.727380\pi\)
0.226170 + 0.974088i \(0.427380\pi\)
\(488\) 2.88526 1.47011i 0.130610 0.0665490i
\(489\) −7.98842 + 32.8124i −0.361249 + 1.48383i
\(490\) 0 0
\(491\) 7.07290 + 2.29812i 0.319195 + 0.103713i 0.464233 0.885713i \(-0.346330\pi\)
−0.145037 + 0.989426i \(0.546330\pi\)
\(492\) −4.99668 + 11.9550i −0.225268 + 0.538972i
\(493\) −24.8497 + 24.8497i −1.11917 + 1.11917i
\(494\) 48.1487 + 34.9821i 2.16631 + 1.57392i
\(495\) 0 0
\(496\) −11.8029 + 8.57533i −0.529967 + 0.385044i
\(497\) −1.05488 + 6.66027i −0.0473179 + 0.298754i
\(498\) −4.13526 + 2.51597i −0.185305 + 0.112743i
\(499\) 22.9184i 1.02597i −0.858398 0.512985i \(-0.828540\pi\)
0.858398 0.512985i \(-0.171460\pi\)
\(500\) 0 0
\(501\) 0.790585 + 0.487949i 0.0353207 + 0.0218000i
\(502\) −12.7201 + 24.9646i −0.567725 + 1.11422i
\(503\) 8.38878 + 1.32865i 0.374037 + 0.0592416i 0.340623 0.940200i \(-0.389362\pi\)
0.0334140 + 0.999442i \(0.489362\pi\)
\(504\) 0.703570 + 0.364163i 0.0313395 + 0.0162211i
\(505\) 0 0
\(506\) 1.08858 1.49831i 0.0483934 0.0666078i
\(507\) −15.5963 + 3.69172i −0.692655 + 0.163955i
\(508\) −27.4332 + 4.34500i −1.21715 + 0.192778i
\(509\) −0.901786 + 2.77541i −0.0399710 + 0.123018i −0.969051 0.246861i \(-0.920601\pi\)
0.929080 + 0.369879i \(0.120601\pi\)
\(510\) 0 0
\(511\) −2.17288 6.68742i −0.0961223 0.295834i
\(512\) −13.8910 27.2627i −0.613902 1.20485i
\(513\) −12.5272 31.0818i −0.553087 1.37229i
\(514\) −11.3451 + 3.68625i −0.500411 + 0.162594i
\(515\) 0 0
\(516\) −14.3013 16.8533i −0.629578 0.741924i
\(517\) −0.722048 4.55883i −0.0317556 0.200497i
\(518\) −4.39720 4.39720i −0.193202 0.193202i
\(519\) −25.5250 + 10.4775i −1.12042 + 0.459909i
\(520\) 0 0
\(521\) −4.48976 6.17962i −0.196700 0.270734i 0.699262 0.714866i \(-0.253512\pi\)
−0.895962 + 0.444132i \(0.853512\pi\)
\(522\) 18.2544 + 57.4261i 0.798972 + 2.51347i
\(523\) 5.98876 + 3.05143i 0.261870 + 0.133430i 0.579997 0.814619i \(-0.303054\pi\)
−0.318127 + 0.948048i \(0.603054\pi\)
\(524\) 2.64269 0.115447
\(525\) 0 0
\(526\) 60.9762 2.65869
\(527\) 10.3078 + 5.25207i 0.449013 + 0.228784i
\(528\) 4.80422 5.58880i 0.209077 0.243221i
\(529\) 12.9769 + 17.8612i 0.564215 + 0.776575i
\(530\) 0 0
\(531\) 1.65322 + 0.272675i 0.0717437 + 0.0118331i
\(532\) −6.49475 6.49475i −0.281583 0.281583i
\(533\) −3.02189 19.0795i −0.130893 0.826423i
\(534\) −25.4487 + 21.5952i −1.10127 + 0.934514i
\(535\) 0 0
\(536\) −2.22496 + 0.722933i −0.0961037 + 0.0312260i
\(537\) 31.5007 + 2.58036i 1.35935 + 0.111351i
\(538\) −13.1006 25.7114i −0.564808 1.10850i
\(539\) −1.94724 5.99300i −0.0838737 0.258137i
\(540\) 0 0
\(541\) −4.34775 + 13.3810i −0.186924 + 0.575294i −0.999976 0.00689744i \(-0.997804\pi\)
0.813052 + 0.582191i \(0.197804\pi\)
\(542\) 47.5119 7.52515i 2.04081 0.323233i
\(543\) 4.15624 + 17.5587i 0.178361 + 0.753516i
\(544\) −15.6242 + 21.5048i −0.669881 + 0.922012i
\(545\) 0 0
\(546\) 12.4254 0.938004i 0.531759 0.0401429i
\(547\) −18.5296 2.93480i −0.792269 0.125483i −0.252833 0.967510i \(-0.581362\pi\)
−0.539436 + 0.842027i \(0.681362\pi\)
\(548\) 7.86007 15.4263i 0.335766 0.658977i
\(549\) −25.6358 + 12.8566i −1.09411 + 0.548706i
\(550\) 0 0
\(551\) 66.2186i 2.82101i
\(552\) −0.292870 0.481363i −0.0124654 0.0204882i
\(553\) −0.797424 + 5.03474i −0.0339099 + 0.214099i
\(554\) −5.30365 + 3.85333i −0.225331 + 0.163712i
\(555\) 0 0
\(556\) 9.78894 + 7.11208i 0.415143 + 0.301619i
\(557\) −4.41902 + 4.41902i −0.187240 + 0.187240i −0.794502 0.607262i \(-0.792268\pi\)
0.607262 + 0.794502i \(0.292268\pi\)
\(558\) 16.1220 11.5568i 0.682497 0.489236i
\(559\) 31.3401 + 10.1830i 1.32555 + 0.430696i
\(560\) 0 0
\(561\) −5.67817 1.38239i −0.239732 0.0583646i
\(562\) 0.863943 0.440201i 0.0364432 0.0185688i
\(563\) −39.3209 + 20.0350i −1.65718 + 0.844375i −0.661662 + 0.749802i \(0.730149\pi\)
−0.995518 + 0.0945733i \(0.969851\pi\)
\(564\) 14.3948 + 3.50453i 0.606132 + 0.147567i
\(565\) 0 0
\(566\) 42.6129 + 13.8458i 1.79115 + 0.581981i
\(567\) −6.21041 3.26490i −0.260813 0.137113i
\(568\) 2.07182 2.07182i 0.0869316 0.0869316i
\(569\) −7.36407 5.35031i −0.308718 0.224297i 0.422628 0.906303i \(-0.361108\pi\)
−0.731346 + 0.682006i \(0.761108\pi\)
\(570\) 0 0
\(571\) 14.7509 10.7172i 0.617307 0.448500i −0.234673 0.972074i \(-0.575402\pi\)
0.851980 + 0.523575i \(0.175402\pi\)
\(572\) 1.32897 8.39081i 0.0555672 0.350837i
\(573\) −15.5166 25.5032i −0.648217 1.06541i
\(574\) 6.24505i 0.260663i
\(575\) 0 0
\(576\) 8.82236 + 17.5916i 0.367598 + 0.732983i
\(577\) 15.0501 29.5375i 0.626544 1.22966i −0.331613 0.943416i \(-0.607593\pi\)
0.958156 0.286245i \(-0.0924072\pi\)
\(578\) −10.2119 1.61741i −0.424761 0.0672755i
\(579\) 33.1957 2.50596i 1.37957 0.104144i
\(580\) 0 0
\(581\) −0.654629 + 0.901019i −0.0271586 + 0.0373806i
\(582\) −4.35835 18.4126i −0.180660 0.763226i
\(583\) 3.37947 0.535255i 0.139963 0.0221680i
\(584\) −0.944126 + 2.90572i −0.0390682 + 0.120240i
\(585\) 0 0
\(586\) 6.32606 + 19.4696i 0.261327 + 0.804282i
\(587\) 13.4842 + 26.4642i 0.556551 + 1.09229i 0.982276 + 0.187440i \(0.0600190\pi\)
−0.425725 + 0.904853i \(0.639981\pi\)
\(588\) 20.1587 + 1.65129i 0.831331 + 0.0680979i
\(589\) 20.7316 6.73611i 0.854232 0.277557i
\(590\) 0 0
\(591\) −2.82469 + 2.39697i −0.116192 + 0.0985980i
\(592\) 2.75328 + 17.3835i 0.113159 + 0.714459i
\(593\) 15.2390 + 15.2390i 0.625792 + 0.625792i 0.947006 0.321215i \(-0.104091\pi\)
−0.321215 + 0.947006i \(0.604091\pi\)
\(594\) −6.58043 + 7.55694i −0.269998 + 0.310065i
\(595\) 0 0
\(596\) −11.1101 15.2917i −0.455087 0.626373i
\(597\) −21.2998 + 24.7782i −0.871741 + 1.01410i
\(598\) −7.89653 4.02348i −0.322913 0.164532i
\(599\) 29.5824 1.20870 0.604351 0.796718i \(-0.293432\pi\)
0.604351 + 0.796718i \(0.293432\pi\)
\(600\) 0 0
\(601\) −27.6332 −1.12718 −0.563591 0.826054i \(-0.690581\pi\)
−0.563591 + 0.826054i \(0.690581\pi\)
\(602\) −9.49216 4.83650i −0.386871 0.197121i
\(603\) 19.7457 6.27669i 0.804107 0.255606i
\(604\) 6.01643 + 8.28091i 0.244805 + 0.336945i
\(605\) 0 0
\(606\) 10.7625 4.41778i 0.437197 0.179460i
\(607\) 20.2336 + 20.2336i 0.821256 + 0.821256i 0.986288 0.165032i \(-0.0527729\pi\)
−0.165032 + 0.986288i \(0.552773\pi\)
\(608\) 7.83528 + 49.4700i 0.317763 + 2.00627i
\(609\) 8.97044 + 10.5712i 0.363501 + 0.428366i
\(610\) 0 0
\(611\) −21.0064 + 6.82540i −0.849829 + 0.276126i
\(612\) 11.1224 15.1049i 0.449595 0.610579i
\(613\) 6.16521 + 12.0999i 0.249011 + 0.488711i 0.981350 0.192229i \(-0.0615716\pi\)
−0.732340 + 0.680940i \(0.761572\pi\)
\(614\) 5.94817 + 18.3066i 0.240049 + 0.738794i
\(615\) 0 0
\(616\) 0.0804445 0.247583i 0.00324120 0.00997540i
\(617\) 33.3556 5.28301i 1.34285 0.212686i 0.556694 0.830718i \(-0.312070\pi\)
0.786153 + 0.618032i \(0.212070\pi\)
\(618\) −16.2926 + 3.85653i −0.655383 + 0.155133i
\(619\) −12.4660 + 17.1580i −0.501052 + 0.689638i −0.982378 0.186903i \(-0.940155\pi\)
0.481327 + 0.876541i \(0.340155\pi\)
\(620\) 0 0
\(621\) 2.56652 + 4.27963i 0.102991 + 0.171736i
\(622\) −4.28038 0.677945i −0.171628 0.0271831i
\(623\) −3.48637 + 6.84238i −0.139678 + 0.274134i
\(624\) −30.0114 18.5230i −1.20142 0.741515i
\(625\) 0 0
\(626\) 46.9834i 1.87783i
\(627\) −9.40735 + 5.72361i −0.375694 + 0.228579i
\(628\) 2.90396 18.3349i 0.115881 0.731642i
\(629\) 11.2909 8.20329i 0.450196 0.327087i
\(630\) 0 0
\(631\) −6.46706 4.69860i −0.257450 0.187048i 0.451572 0.892235i \(-0.350863\pi\)
−0.709022 + 0.705186i \(0.750863\pi\)
\(632\) 1.56616 1.56616i 0.0622986 0.0622986i
\(633\) 3.34170 7.99528i 0.132820 0.317784i
\(634\) −1.44953 0.470981i −0.0575682 0.0187050i
\(635\) 0 0
\(636\) −2.59791 + 10.6709i −0.103014 + 0.423129i
\(637\) −26.8678 + 13.6898i −1.06454 + 0.542410i
\(638\) 17.6424 8.98923i 0.698468 0.355887i
\(639\) −18.4657 + 18.2314i −0.730492 + 0.721224i
\(640\) 0 0
\(641\) −39.9287 12.9736i −1.57709 0.512427i −0.615784 0.787915i \(-0.711160\pi\)
−0.961304 + 0.275488i \(0.911160\pi\)
\(642\) −10.8201 4.52236i −0.427036 0.178483i
\(643\) −10.8134 + 10.8134i −0.426437 + 0.426437i −0.887413 0.460975i \(-0.847500\pi\)
0.460975 + 0.887413i \(0.347500\pi\)
\(644\) 1.10653 + 0.803941i 0.0436034 + 0.0316797i
\(645\) 0 0
\(646\) 34.9344 25.3813i 1.37448 0.998615i
\(647\) 0.0667390 0.421374i 0.00262378 0.0165659i −0.986342 0.164712i \(-0.947331\pi\)
0.988965 + 0.148146i \(0.0473306\pi\)
\(648\) 1.34925 + 2.73380i 0.0530037 + 0.107394i
\(649\) 0.550584i 0.0216123i
\(650\) 0 0
\(651\) 2.39709 3.88381i 0.0939494 0.152219i
\(652\) −16.1707 + 31.7368i −0.633293 + 1.24291i
\(653\) −8.39719 1.32998i −0.328608 0.0520463i −0.0100490 0.999950i \(-0.503199\pi\)
−0.318559 + 0.947903i \(0.603199\pi\)
\(654\) 0.591075 + 7.82978i 0.0231129 + 0.306169i
\(655\) 0 0
\(656\) 10.3892 14.2995i 0.405630 0.558302i
\(657\) 8.52571 25.6804i 0.332620 1.00189i
\(658\) 7.05270 1.11704i 0.274943 0.0435467i
\(659\) −11.7433 + 36.1421i −0.457453 + 1.40790i 0.410778 + 0.911735i \(0.365257\pi\)
−0.868231 + 0.496160i \(0.834743\pi\)
\(660\) 0 0
\(661\) 5.76600 + 17.7459i 0.224271 + 0.690236i 0.998365 + 0.0571648i \(0.0182061\pi\)
−0.774093 + 0.633071i \(0.781794\pi\)
\(662\) −13.3119 26.1261i −0.517382 1.01542i
\(663\) −2.28314 + 27.8722i −0.0886697 + 1.08247i
\(664\) 0.460233 0.149539i 0.0178605 0.00580323i
\(665\) 0 0
\(666\) −3.59253 23.6589i −0.139208 0.916765i
\(667\) −1.54255 9.73930i −0.0597279 0.377107i
\(668\) 0.692884 + 0.692884i 0.0268085 + 0.0268085i
\(669\) −8.00689 19.5062i −0.309564 0.754154i
\(670\) 0 0
\(671\) 5.53919 + 7.62404i 0.213838 + 0.294323i
\(672\) 7.95239 + 6.83601i 0.306770 + 0.263705i
\(673\) 13.5503 + 6.90421i 0.522325 + 0.266138i 0.695213 0.718804i \(-0.255310\pi\)
−0.172888 + 0.984941i \(0.555310\pi\)
\(674\) 47.1547 1.81633
\(675\) 0 0
\(676\) −16.9044 −0.650169
\(677\) −6.94944 3.54092i −0.267089 0.136089i 0.315318 0.948986i \(-0.397889\pi\)
−0.582407 + 0.812898i \(0.697889\pi\)
\(678\) 8.38275 + 7.20595i 0.321938 + 0.276743i
\(679\) −2.55892 3.52205i −0.0982024 0.135164i
\(680\) 0 0
\(681\) 9.85899 + 24.0183i 0.377797 + 0.920382i
\(682\) −4.60901 4.60901i −0.176488 0.176488i
\(683\) 2.04378 + 12.9039i 0.0782029 + 0.493754i 0.995438 + 0.0954080i \(0.0304156\pi\)
−0.917235 + 0.398346i \(0.869584\pi\)
\(684\) −5.30624 34.9447i −0.202889 1.33615i
\(685\) 0 0
\(686\) 19.4244 6.31136i 0.741626 0.240969i
\(687\) 2.16627 26.4455i 0.0826482 1.00896i
\(688\) 13.6886 + 26.8653i 0.521872 + 1.02423i
\(689\) −5.05968 15.5721i −0.192759 0.593250i
\(690\) 0 0
\(691\) −13.0283 + 40.0970i −0.495620 + 1.52536i 0.320368 + 0.947293i \(0.396193\pi\)
−0.815988 + 0.578068i \(0.803807\pi\)
\(692\) −28.7434 + 4.55251i −1.09266 + 0.173061i
\(693\) −0.726436 + 2.18811i −0.0275950 + 0.0831194i
\(694\) 37.1724 51.1634i 1.41105 1.94214i
\(695\) 0 0
\(696\) −0.453474 6.00702i −0.0171889 0.227695i
\(697\) −13.8431 2.19254i −0.524346 0.0830482i
\(698\) 7.52071 14.7602i 0.284663 0.558682i
\(699\) 1.96938 3.19083i 0.0744889 0.120688i
\(700\) 0 0
\(701\) 42.0365i 1.58770i −0.608116 0.793848i \(-0.708075\pi\)
0.608116 0.793848i \(-0.291925\pi\)
\(702\) 40.6433 + 25.4448i 1.53398 + 0.960353i
\(703\) 4.11382 25.9737i 0.155156 0.979615i
\(704\) 5.23172 3.80106i 0.197178 0.143258i
\(705\) 0 0
\(706\) −53.2567 38.6932i −2.00434 1.45624i
\(707\) 1.89277 1.89277i 0.0711848 0.0711848i
\(708\) 1.63057 + 0.681508i 0.0612804 + 0.0256127i
\(709\) 28.0166 + 9.10314i 1.05219 + 0.341876i 0.783526 0.621359i \(-0.213419\pi\)
0.268660 + 0.963235i \(0.413419\pi\)
\(710\) 0 0
\(711\) −13.9589 + 13.7818i −0.523500 + 0.516858i
\(712\) 2.97305 1.51485i 0.111420 0.0567712i
\(713\) −2.89225 + 1.47368i −0.108316 + 0.0551896i
\(714\) 2.13862 8.78436i 0.0800358 0.328746i
\(715\) 0 0
\(716\) 31.7043 + 10.3014i 1.18485 + 0.384980i
\(717\) −15.2241 + 36.4250i −0.568555 + 1.36032i
\(718\) 10.6896 10.6896i 0.398933 0.398933i
\(719\) −25.9550 18.8574i −0.967957 0.703262i −0.0129720 0.999916i \(-0.504129\pi\)
−0.954985 + 0.296654i \(0.904129\pi\)
\(720\) 0 0
\(721\) −3.11653 + 2.26429i −0.116066 + 0.0843265i
\(722\) 6.91392 43.6527i 0.257309 1.62459i
\(723\) −3.38135 + 2.05728i −0.125754 + 0.0765110i
\(724\) 19.0314i 0.707297i
\(725\) 0 0
\(726\) −28.9146 17.8461i −1.07312 0.662332i
\(727\) 21.4016 42.0031i 0.793742 1.55781i −0.0357969 0.999359i \(-0.511397\pi\)
0.829539 0.558448i \(-0.188603\pi\)
\(728\) −1.23040 0.194876i −0.0456017 0.00722260i
\(729\) −11.7948 24.2875i −0.436843 0.899538i
\(730\) 0 0
\(731\) 14.0534 19.3428i 0.519784 0.715421i
\(732\) −29.4351 + 6.96745i −1.08795 + 0.257524i
\(733\) −3.67592 + 0.582209i −0.135773 + 0.0215044i −0.223951 0.974600i \(-0.571896\pi\)
0.0881779 + 0.996105i \(0.471896\pi\)
\(734\) 7.20426 22.1724i 0.265914 0.818399i
\(735\) 0 0
\(736\) −2.30480 7.09343i −0.0849559 0.261467i
\(737\) −3.09091 6.06625i −0.113855 0.223453i
\(738\) −14.2495 + 19.3517i −0.524531 + 0.712347i
\(739\) −45.0233 + 14.6289i −1.65621 + 0.538134i −0.980072 0.198643i \(-0.936347\pi\)
−0.676136 + 0.736777i \(0.736347\pi\)
\(740\) 0 0
\(741\) 34.0945 + 40.1785i 1.25249 + 1.47599i
\(742\) 0.828062 + 5.22818i 0.0303991 + 0.191932i
\(743\) −37.4947 37.4947i −1.37555 1.37555i −0.851991 0.523556i \(-0.824605\pi\)
−0.523556 0.851991i \(-0.675395\pi\)
\(744\) −1.83454 + 0.753040i −0.0672575 + 0.0276078i
\(745\) 0 0
\(746\) 29.0677 + 40.0083i 1.06424 + 1.46481i
\(747\) −4.08440 + 1.29833i −0.149440 + 0.0475035i
\(748\) −5.49203 2.79833i −0.200809 0.102317i
\(749\) −2.69823 −0.0985913
\(750\) 0 0
\(751\) −21.2697 −0.776142 −0.388071 0.921629i \(-0.626858\pi\)
−0.388071 + 0.921629i \(0.626858\pi\)
\(752\) −18.0071 9.17508i −0.656652 0.334581i
\(753\) −16.1713 + 18.8123i −0.589316 + 0.685557i
\(754\) −55.6938 76.6559i −2.02825 2.79164i
\(755\) 0 0
\(756\) −5.58096 4.85978i −0.202977 0.176749i
\(757\) 22.1455 + 22.1455i 0.804891 + 0.804891i 0.983856 0.178964i \(-0.0572747\pi\)
−0.178964 + 0.983856i \(0.557275\pi\)
\(758\) −5.85746 36.9825i −0.212752 1.34327i
\(759\) 1.25028 1.06096i 0.0453825 0.0385104i
\(760\) 0 0
\(761\) −33.4555 + 10.8703i −1.21276 + 0.394050i −0.844440 0.535649i \(-0.820067\pi\)
−0.368320 + 0.929699i \(0.620067\pi\)
\(762\) −51.3434 4.20576i −1.85998 0.152359i
\(763\) 0.820194 + 1.60972i 0.0296930 + 0.0582758i
\(764\) −9.72984 29.9454i −0.352013 1.08339i
\(765\) 0 0
\(766\) 12.8106 39.4271i 0.462867 1.42456i
\(767\) −2.60229 + 0.412162i −0.0939632 + 0.0148823i
\(768\) −7.34138 31.0148i −0.264909 1.11915i
\(769\) −17.0696 + 23.4943i −0.615545 + 0.847225i −0.997019 0.0771542i \(-0.975417\pi\)
0.381474 + 0.924380i \(0.375417\pi\)
\(770\) 0 0
\(771\) −10.5319 + 0.795064i −0.379299 + 0.0286335i
\(772\) 34.6798 + 5.49273i 1.24815 + 0.197688i
\(773\) −17.9588 + 35.2461i −0.645933 + 1.26771i 0.303227 + 0.952918i \(0.401936\pi\)
−0.949159 + 0.314796i \(0.898064\pi\)
\(774\) −18.3781 36.6455i −0.660587 1.31720i
\(775\) 0 0
\(776\) 1.89162i 0.0679051i
\(777\) −2.86184 4.70374i −0.102668 0.168746i
\(778\) 3.32511 20.9939i 0.119211 0.752669i
\(779\) −21.3656 + 15.5230i −0.765503 + 0.556170i
\(780\) 0 0
\(781\) 6.89839 + 5.01197i 0.246844 + 0.179342i
\(782\) −4.54683 + 4.54683i −0.162594 + 0.162594i
\(783\) 3.67644 + 53.2254i 0.131385 + 1.90212i
\(784\) −26.2406 8.52609i −0.937165 0.304503i
\(785\) 0 0
\(786\) 4.76237 + 1.15943i 0.169868 + 0.0413556i
\(787\) −11.8192 + 6.02216i −0.421307 + 0.214667i −0.651774 0.758413i \(-0.725975\pi\)
0.230466 + 0.973080i \(0.425975\pi\)
\(788\) −3.48151 + 1.77392i −0.124024 + 0.0631931i
\(789\) 52.4562 + 12.7708i 1.86749 + 0.454654i
\(790\) 0 0
\(791\) 2.41892 + 0.785955i 0.0860069 + 0.0279453i
\(792\) 0.814192 0.583640i 0.0289311 0.0207388i
\(793\) 31.8878 31.8878i 1.13237 1.13237i
\(794\) −12.1294 8.81254i −0.430457 0.312745i
\(795\) 0 0
\(796\) −27.8811 + 20.2568i −0.988220 + 0.717984i
\(797\) −3.63324 + 22.9393i −0.128696 + 0.812553i 0.835912 + 0.548864i \(0.184939\pi\)
−0.964608 + 0.263690i \(0.915061\pi\)
\(798\) −8.85466 14.5536i −0.313452 0.515191i
\(799\) 16.0256i 0.566945i
\(800\) 0 0
\(801\) −26.4158 + 13.2478i −0.933355 + 0.468087i
\(802\) 18.4031 36.1181i 0.649836 1.27538i
\(803\) −8.78194 1.39092i −0.309908 0.0490846i
\(804\) 21.7912 1.64503i 0.768517 0.0580159i
\(805\) 0 0
\(806\) −18.3339 + 25.2344i −0.645783 + 0.888844i
\(807\) −5.88513 24.8627i −0.207166 0.875208i
\(808\) −1.14875 + 0.181945i −0.0404130 + 0.00640080i
\(809\) 7.57984 23.3283i 0.266493 0.820181i −0.724853 0.688904i \(-0.758092\pi\)
0.991346 0.131277i \(-0.0419077\pi\)
\(810\) 0 0
\(811\) −7.17737 22.0897i −0.252032 0.775674i −0.994400 0.105682i \(-0.966298\pi\)
0.742368 0.669992i \(-0.233702\pi\)
\(812\) 6.63873 + 13.0292i 0.232974 + 0.457237i
\(813\) 42.4493 + 3.47721i 1.48876 + 0.121951i
\(814\) −7.47852 + 2.42992i −0.262122 + 0.0851686i
\(815\) 0 0
\(816\) −19.5104 + 16.5561i −0.683002 + 0.579579i
\(817\) −7.04756 44.4965i −0.246563 1.55674i
\(818\) −44.1115 44.1115i −1.54232 1.54232i
\(819\) 10.8857 + 1.79544i 0.380378 + 0.0627379i
\(820\) 0 0
\(821\) −14.1182 19.4320i −0.492729 0.678183i 0.488160 0.872754i \(-0.337668\pi\)
−0.980888 + 0.194572i \(0.937668\pi\)
\(822\) 20.9325 24.3510i 0.730106 0.849340i
\(823\) −26.7301 13.6197i −0.931752 0.474751i −0.0788873 0.996884i \(-0.525137\pi\)
−0.852865 + 0.522132i \(0.825137\pi\)
\(824\) 1.67382 0.0583102
\(825\) 0 0
\(826\) 0.851776 0.0296371
\(827\) −6.22861 3.17364i −0.216590 0.110358i 0.342330 0.939580i \(-0.388784\pi\)
−0.558920 + 0.829222i \(0.688784\pi\)
\(828\) 1.59447 + 5.01600i 0.0554115 + 0.174318i
\(829\) −4.72836 6.50802i −0.164223 0.226033i 0.718973 0.695038i \(-0.244613\pi\)
−0.883195 + 0.469005i \(0.844613\pi\)
\(830\) 0 0
\(831\) −5.36963 + 2.20412i −0.186270 + 0.0764601i
\(832\) −21.8818 21.8818i −0.758617 0.758617i
\(833\) 3.42256 + 21.6092i 0.118585 + 0.748715i
\(834\) 14.5202 + 17.1113i 0.502795 + 0.592516i
\(835\) 0 0
\(836\) −11.0459 + 3.58904i −0.382031 + 0.124129i
\(837\) 16.2897 6.56539i 0.563056 0.226933i
\(838\) 11.4811 + 22.5328i 0.396606 + 0.778384i
\(839\) −3.47947 10.7087i −0.120125 0.369706i 0.872857 0.487977i \(-0.162265\pi\)
−0.992981 + 0.118271i \(0.962265\pi\)
\(840\) 0 0
\(841\) 23.6164 72.6838i 0.814358 2.50634i
\(842\) −23.7118 + 3.75557i −0.817161 + 0.129426i
\(843\) 0.835423 0.197749i 0.0287735 0.00681084i
\(844\) 5.37223 7.39424i 0.184920 0.254520i
\(845\) 0 0
\(846\) 24.4032 + 12.6309i 0.839000 + 0.434261i
\(847\) −7.72166 1.22299i −0.265319 0.0420224i
\(848\) 6.80150 13.3487i 0.233565 0.458396i
\(849\) 33.7589 + 20.8360i 1.15860 + 0.715089i
\(850\) 0 0
\(851\) 3.91599i 0.134238i
\(852\) −23.3818 + 14.2259i −0.801049 + 0.487373i
\(853\) 2.39903 15.1469i 0.0821411 0.518619i −0.911970 0.410256i \(-0.865439\pi\)
0.994111 0.108362i \(-0.0345607\pi\)
\(854\) −11.7947 + 8.56936i −0.403607 + 0.293237i
\(855\) 0 0
\(856\) 0.948489 + 0.689118i 0.0324187 + 0.0235536i
\(857\) −2.97404 + 2.97404i −0.101591 + 0.101591i −0.756076 0.654484i \(-0.772886\pi\)
0.654484 + 0.756076i \(0.272886\pi\)
\(858\) 6.07624 14.5379i 0.207440 0.496316i
\(859\) 24.1552 + 7.84850i 0.824165 + 0.267787i 0.690585 0.723251i \(-0.257353\pi\)
0.133579 + 0.991038i \(0.457353\pi\)
\(860\) 0 0
\(861\) −1.30796 + 5.37245i −0.0445753 + 0.183093i
\(862\) 70.1681 35.7524i 2.38993 1.21773i
\(863\) 12.0203 6.12466i 0.409177 0.208486i −0.237272 0.971443i \(-0.576253\pi\)
0.646449 + 0.762957i \(0.276253\pi\)
\(864\) 9.04443 + 39.3281i 0.307698 + 1.33797i
\(865\) 0 0
\(866\) −1.29689 0.421384i −0.0440700 0.0143192i
\(867\) −8.44631 3.53021i −0.286852 0.119892i
\(868\) 3.40385 3.40385i 0.115534 0.115534i
\(869\) 5.21474 + 3.78873i 0.176898 + 0.128524i
\(870\) 0 0
\(871\) −26.3578 + 19.1501i −0.893100 + 0.648875i
\(872\) 0.122800 0.775327i 0.00415852 0.0262559i
\(873\) 0.106953 16.7527i 0.00361982 0.566992i
\(874\) 12.1162i 0.409837i
\(875\) 0 0
\(876\) 14.9895 24.2862i 0.506447 0.820556i
\(877\) −6.83909 + 13.4225i −0.230940 + 0.453245i −0.977175 0.212438i \(-0.931860\pi\)
0.746235 + 0.665683i \(0.231860\pi\)
\(878\) 66.2600 + 10.4946i 2.23617 + 0.354174i
\(879\) 1.36443 + 18.0741i 0.0460210 + 0.609625i
\(880\) 0 0
\(881\) −26.2832 + 36.1757i −0.885504 + 1.21879i 0.0893619 + 0.995999i \(0.471517\pi\)
−0.974866 + 0.222792i \(0.928483\pi\)
\(882\) 35.6033 + 11.8200i 1.19883 + 0.398001i
\(883\) −17.2484 + 2.73187i −0.580454 + 0.0919349i −0.439755 0.898118i \(-0.644935\pi\)
−0.140699 + 0.990052i \(0.544935\pi\)
\(884\) −9.11480 + 28.0525i −0.306564 + 0.943506i
\(885\) 0 0
\(886\) 17.3227 + 53.3138i 0.581968 + 1.79111i
\(887\) 19.0088 + 37.3069i 0.638253 + 1.25264i 0.952857 + 0.303420i \(0.0981284\pi\)
−0.314604 + 0.949223i \(0.601872\pi\)
\(888\) −0.195314 + 2.38437i −0.00655432 + 0.0800143i
\(889\) −11.2727 + 3.66273i −0.378075 + 0.122844i
\(890\) 0 0
\(891\) −7.24370 + 5.12283i −0.242673 + 0.171621i
\(892\) −3.47904 21.9658i −0.116487 0.735468i
\(893\) 21.3522 + 21.3522i 0.714524 + 0.714524i
\(894\) −13.3124 32.4314i −0.445233 1.08467i
\(895\) 0 0
\(896\) −1.23711 1.70273i −0.0413288 0.0568842i
\(897\) −5.95050 5.11515i −0.198681 0.170790i
\(898\) 31.8143 + 16.2102i 1.06166 + 0.540941i
\(899\) −34.7047 −1.15747
\(900\) 0 0
\(901\) −11.8798 −0.395774
\(902\) 7.03615 + 3.58510i 0.234278 + 0.119371i
\(903\) −7.15290 6.14875i −0.238034 0.204618i
\(904\) −0.649574 0.894062i −0.0216045 0.0297361i
\(905\) 0 0
\(906\) 7.20905 + 17.5625i 0.239505 + 0.583476i
\(907\) −3.29748 3.29748i −0.109491 0.109491i 0.650239 0.759730i \(-0.274669\pi\)
−0.759730 + 0.650239i \(0.774669\pi\)
\(908\) 4.28379 + 27.0468i 0.142162 + 0.897578i
\(909\) 10.1840 1.54640i 0.337780 0.0512908i
\(910\) 0 0
\(911\) 32.2491 10.4784i 1.06846 0.347164i 0.278573 0.960415i \(-0.410139\pi\)
0.789888 + 0.613251i \(0.210139\pi\)
\(912\) −3.93634 + 48.0543i −0.130345 + 1.59124i
\(913\) 0.639354 + 1.25480i 0.0211595 + 0.0415279i
\(914\) 12.9928 + 39.9877i 0.429763 + 1.32267i
\(915\) 0 0
\(916\) 8.64822 26.6165i 0.285745 0.879433i
\(917\) 1.11387 0.176419i 0.0367831 0.00582587i
\(918\) 26.6705 22.3406i 0.880258 0.737351i
\(919\) 26.7422 36.8075i 0.882144 1.21417i −0.0936779 0.995603i \(-0.529862\pi\)
0.975822 0.218565i \(-0.0701376\pi\)
\(920\) 0 0
\(921\) 1.28292 + 16.9945i 0.0422738 + 0.559987i
\(922\) 34.8887 + 5.52582i 1.14900 + 0.181983i
\(923\) 18.5246 36.3566i 0.609745 1.19669i
\(924\) −1.27718 + 2.06932i −0.0420162 + 0.0680755i
\(925\) 0 0
\(926\) 19.9005i 0.653972i
\(927\) −14.8238 0.0946388i −0.486876 0.00310835i
\(928\) 12.4743 78.7595i 0.409488 2.58541i
\(929\) −28.1643 + 20.4626i −0.924041 + 0.671355i −0.944527 0.328435i \(-0.893479\pi\)
0.0204855 + 0.999790i \(0.493479\pi\)
\(930\) 0 0
\(931\) 33.3519 + 24.2315i 1.09306 + 0.794157i
\(932\) 2.79651 2.79651i 0.0916027 0.0916027i
\(933\) −3.54031 1.47970i −0.115905 0.0484432i
\(934\) 20.9334 + 6.80167i 0.684962 + 0.222558i
\(935\) 0 0
\(936\) −3.36803 3.41131i −0.110087 0.111502i
\(937\) −25.5737 + 13.0305i −0.835458 + 0.425687i −0.818734 0.574173i \(-0.805324\pi\)
−0.0167239 + 0.999860i \(0.505324\pi\)
\(938\) 9.38474 4.78176i 0.306422 0.156130i
\(939\) 9.84021 40.4186i 0.321123 1.31901i
\(940\) 0 0
\(941\) 48.7206 + 15.8303i 1.58825 + 0.516053i 0.964164 0.265305i \(-0.0854727\pi\)
0.624083 + 0.781358i \(0.285473\pi\)
\(942\) 13.2773 31.7670i 0.432598 1.03503i
\(943\) 2.78081 2.78081i 0.0905556 0.0905556i
\(944\) −1.95034 1.41701i −0.0634782 0.0461196i
\(945\) 0 0
\(946\) −10.8983 + 7.91810i −0.354335 + 0.257440i
\(947\) −4.38792 + 27.7042i −0.142588 + 0.900267i 0.807858 + 0.589377i \(0.200627\pi\)
−0.950446 + 0.310890i \(0.899373\pi\)
\(948\) −17.6752 + 10.7539i −0.574063 + 0.349271i
\(949\) 42.5484i 1.38118i
\(950\) 0 0
\(951\) −1.14835 0.708762i −0.0372378 0.0229832i
\(952\) −0.410338 + 0.805334i −0.0132991 + 0.0261010i
\(953\) −3.32321 0.526345i −0.107649 0.0170500i 0.102377 0.994746i \(-0.467355\pi\)
−0.210027 + 0.977696i \(0.567355\pi\)
\(954\) −9.36333 + 18.0901i −0.303149 + 0.585690i
\(955\) 0 0
\(956\) −24.4748 + 33.6867i −0.791573 + 1.08951i
\(957\) 17.0600 4.03818i 0.551470 0.130536i
\(958\) −33.4475 + 5.29756i −1.08064 + 0.171156i
\(959\) 2.28312 7.02671i 0.0737257 0.226904i
\(960\) 0 0
\(961\) −6.04918 18.6175i −0.195135 0.600563i
\(962\) 17.0832 + 33.5276i 0.550783 + 1.08097i
\(963\) −8.36110 6.15663i −0.269433 0.198395i
\(964\) −3.97032 + 1.29003i −0.127875 + 0.0415492i
\(965\) 0 0
\(966\) 1.64135 + 1.93424i 0.0528096 + 0.0622333i
\(967\) 4.46829 + 28.2117i 0.143690 + 0.907226i 0.949207 + 0.314653i \(0.101888\pi\)
−0.805516 + 0.592573i \(0.798112\pi\)
\(968\) 2.40199 + 2.40199i 0.0772028 + 0.0772028i
\(969\) 35.3690 14.5182i 1.13622 0.466393i
\(970\) 0 0
\(971\) 18.4852 + 25.4427i 0.593218 + 0.816495i 0.995066 0.0992113i \(-0.0316320\pi\)
−0.401848 + 0.915706i \(0.631632\pi\)
\(972\) −6.20519 27.7934i −0.199032 0.891473i
\(973\) 4.60071 + 2.34418i 0.147492 + 0.0751509i
\(974\) −20.7829 −0.665926
\(975\) 0 0
\(976\) 41.2627 1.32079
\(977\) 4.10325 + 2.09071i 0.131275 + 0.0668877i 0.518394 0.855142i \(-0.326530\pi\)
−0.387120 + 0.922029i \(0.626530\pi\)
\(978\) −43.0650 + 50.0979i −1.37707 + 1.60195i
\(979\) 5.70773 + 7.85601i 0.182420 + 0.251079i
\(980\) 0 0
\(981\) −1.13138 + 6.85955i −0.0361223 + 0.219009i
\(982\) 10.2872 + 10.2872i 0.328277 + 0.328277i
\(983\) 2.00270 + 12.6446i 0.0638763 + 0.403299i 0.998823 + 0.0485102i \(0.0154473\pi\)
−0.934946 + 0.354789i \(0.884553\pi\)
\(984\) 1.83188 1.55449i 0.0583982 0.0495552i
\(985\) 0 0
\(986\) −65.3827 + 21.2441i −2.08221 + 0.676551i
\(987\) 6.30121 + 0.516160i 0.200570 + 0.0164295i
\(988\) 25.2322 + 49.5210i 0.802743 + 1.57547i
\(989\) 2.07308 + 6.38029i 0.0659202 + 0.202882i
\(990\) 0 0
\(991\) −14.7045 + 45.2557i −0.467103 + 1.43759i 0.389216 + 0.921147i \(0.372746\pi\)
−0.856319 + 0.516448i \(0.827254\pi\)
\(992\) −25.9269 + 4.10641i −0.823179 + 0.130379i
\(993\) −5.98003 25.2636i −0.189771 0.801717i
\(994\) −7.75373 + 10.6721i −0.245933 + 0.338498i
\(995\) 0 0
\(996\) −4.50752 + 0.340275i −0.142826 + 0.0107820i
\(997\) −20.1708 3.19474i −0.638816 0.101179i −0.171379 0.985205i \(-0.554822\pi\)
−0.467437 + 0.884027i \(0.654822\pi\)
\(998\) 20.3541 39.9472i 0.644297 1.26451i
\(999\) 1.86457 21.1056i 0.0589924 0.667751i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.2.l.b.107.7 64
3.2 odd 2 inner 375.2.l.b.107.2 64
5.2 odd 4 75.2.l.a.8.2 64
5.3 odd 4 375.2.l.c.143.7 64
5.4 even 2 375.2.l.a.107.2 64
15.2 even 4 75.2.l.a.8.7 yes 64
15.8 even 4 375.2.l.c.143.2 64
15.14 odd 2 375.2.l.a.107.7 64
25.3 odd 20 inner 375.2.l.b.368.2 64
25.4 even 10 75.2.l.a.47.7 yes 64
25.21 even 5 375.2.l.c.257.2 64
25.22 odd 20 375.2.l.a.368.7 64
75.29 odd 10 75.2.l.a.47.2 yes 64
75.47 even 20 375.2.l.a.368.2 64
75.53 even 20 inner 375.2.l.b.368.7 64
75.71 odd 10 375.2.l.c.257.7 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.l.a.8.2 64 5.2 odd 4
75.2.l.a.8.7 yes 64 15.2 even 4
75.2.l.a.47.2 yes 64 75.29 odd 10
75.2.l.a.47.7 yes 64 25.4 even 10
375.2.l.a.107.2 64 5.4 even 2
375.2.l.a.107.7 64 15.14 odd 2
375.2.l.a.368.2 64 75.47 even 20
375.2.l.a.368.7 64 25.22 odd 20
375.2.l.b.107.2 64 3.2 odd 2 inner
375.2.l.b.107.7 64 1.1 even 1 trivial
375.2.l.b.368.2 64 25.3 odd 20 inner
375.2.l.b.368.7 64 75.53 even 20 inner
375.2.l.c.143.2 64 15.8 even 4
375.2.l.c.143.7 64 5.3 odd 4
375.2.l.c.257.2 64 25.21 even 5
375.2.l.c.257.7 64 75.71 odd 10