Properties

Label 375.2.l.a.107.7
Level $375$
Weight $2$
Character 375.107
Analytic conductor $2.994$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,2,Mod(32,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.l (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,20,0,-6,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 107.7
Character \(\chi\) \(=\) 375.107
Dual form 375.2.l.a.368.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.74302 + 0.888111i) q^{2} +(1.59808 - 0.667932i) q^{3} +(1.07379 + 1.47795i) q^{4} +(3.37868 + 0.255059i) q^{6} +(-0.551254 - 0.551254i) q^{7} +(-0.0529901 - 0.334566i) q^{8} +(2.10773 - 2.13482i) q^{9} +(-0.937544 + 0.304626i) q^{11} +(2.70317 + 1.64466i) q^{12} +(2.14163 + 4.20319i) q^{13} +(-0.471270 - 1.45042i) q^{14} +(1.33382 - 4.10508i) q^{16} +(-3.38054 + 0.535425i) q^{17} +(5.56977 - 1.84912i) q^{18} +(-3.79078 + 5.21756i) q^{19} +(-1.24915 - 0.512749i) q^{21} +(-1.90469 - 0.301674i) q^{22} +(0.435998 - 0.855694i) q^{23} +(-0.308150 - 0.499270i) q^{24} +9.22822i q^{26} +(1.94242 - 4.81944i) q^{27} +(0.222792 - 1.40666i) q^{28} +(-8.30669 + 6.03516i) q^{29} +(-2.73448 - 1.98672i) q^{31} +(5.49158 - 5.49158i) q^{32} +(-1.29480 + 1.11303i) q^{33} +(-6.36785 - 2.06904i) q^{34} +(5.41842 + 0.822768i) q^{36} +(3.63316 - 1.85119i) q^{37} +(-11.2411 + 5.72765i) q^{38} +(6.22994 + 5.28657i) q^{39} +(-3.89453 - 1.26541i) q^{41} +(-1.72191 - 2.00311i) q^{42} +(4.93949 - 4.93949i) q^{43} +(-1.45695 - 1.05853i) q^{44} +(1.51990 - 1.10427i) q^{46} +(0.732455 - 4.62454i) q^{47} +(-0.610356 - 7.45115i) q^{48} -6.39224i q^{49} +(-5.04475 + 3.11362i) q^{51} +(-3.91242 + 7.67856i) q^{52} +(3.42818 + 0.542970i) q^{53} +(7.66586 - 6.67528i) q^{54} +(-0.155220 + 0.213642i) q^{56} +(-2.57300 + 10.8701i) q^{57} +(-19.8386 + 3.14212i) q^{58} +(-0.172592 + 0.531183i) q^{59} +(2.95410 + 9.09178i) q^{61} +(-3.00182 - 5.89140i) q^{62} +(-2.33873 + 0.0149310i) q^{63} +(6.23890 - 2.02714i) q^{64} +(-3.24536 + 0.790106i) q^{66} +(1.08040 + 6.82141i) q^{67} +(-4.42132 - 4.42132i) q^{68} +(0.125215 - 1.65869i) q^{69} +(-5.08421 - 6.99781i) q^{71} +(-0.825927 - 0.592052i) q^{72} +(8.03649 + 4.09480i) q^{73} +7.97671 q^{74} -11.7818 q^{76} +(0.684752 + 0.348898i) q^{77} +(6.16382 + 14.7475i) q^{78} +(3.84334 + 5.28990i) q^{79} +(-0.114912 - 8.99927i) q^{81} +(-5.66440 - 5.66440i) q^{82} +(0.223482 + 1.41101i) q^{83} +(-0.583510 - 2.39676i) q^{84} +(12.9964 - 4.22279i) q^{86} +(-9.24369 + 15.1930i) q^{87} +(0.151598 + 0.297528i) q^{88} +(-3.04398 - 9.36841i) q^{89} +(1.13644 - 3.49761i) q^{91} +(1.73284 - 0.274455i) q^{92} +(-5.69692 - 1.34849i) q^{93} +(5.38378 - 7.41014i) q^{94} +(5.10800 - 12.4440i) q^{96} +(5.51558 + 0.873583i) q^{97} +(5.67701 - 11.1418i) q^{98} +(-1.32577 + 2.64356i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 20 q^{4} - 6 q^{6} - 20 q^{7} + 10 q^{9} - 40 q^{12} - 8 q^{16} - 10 q^{18} - 6 q^{21} + 30 q^{27} + 80 q^{28} - 12 q^{31} + 50 q^{33} - 20 q^{34} - 22 q^{36} + 120 q^{37} - 30 q^{39} - 60 q^{42}+ \cdots + 42 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{13}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74302 + 0.888111i 1.23250 + 0.627989i 0.944143 0.329535i \(-0.106892\pi\)
0.288354 + 0.957524i \(0.406892\pi\)
\(3\) 1.59808 0.667932i 0.922653 0.385631i
\(4\) 1.07379 + 1.47795i 0.536895 + 0.738973i
\(5\) 0 0
\(6\) 3.37868 + 0.255059i 1.37934 + 0.104127i
\(7\) −0.551254 0.551254i −0.208355 0.208355i 0.595213 0.803568i \(-0.297068\pi\)
−0.803568 + 0.595213i \(0.797068\pi\)
\(8\) −0.0529901 0.334566i −0.0187348 0.118287i
\(9\) 2.10773 2.13482i 0.702578 0.711607i
\(10\) 0 0
\(11\) −0.937544 + 0.304626i −0.282680 + 0.0918483i −0.446925 0.894571i \(-0.647481\pi\)
0.164245 + 0.986420i \(0.447481\pi\)
\(12\) 2.70317 + 1.64466i 0.780339 + 0.474773i
\(13\) 2.14163 + 4.20319i 0.593981 + 1.16575i 0.970895 + 0.239505i \(0.0769853\pi\)
−0.376914 + 0.926248i \(0.623015\pi\)
\(14\) −0.471270 1.45042i −0.125952 0.387641i
\(15\) 0 0
\(16\) 1.33382 4.10508i 0.333455 1.02627i
\(17\) −3.38054 + 0.535425i −0.819901 + 0.129860i −0.552274 0.833663i \(-0.686240\pi\)
−0.267627 + 0.963522i \(0.586240\pi\)
\(18\) 5.56977 1.84912i 1.31281 0.435842i
\(19\) −3.79078 + 5.21756i −0.869664 + 1.19699i 0.109514 + 0.993985i \(0.465070\pi\)
−0.979178 + 0.203004i \(0.934930\pi\)
\(20\) 0 0
\(21\) −1.24915 0.512749i −0.272587 0.111891i
\(22\) −1.90469 0.301674i −0.406082 0.0643171i
\(23\) 0.435998 0.855694i 0.0909118 0.178424i −0.841073 0.540921i \(-0.818076\pi\)
0.931985 + 0.362497i \(0.118076\pi\)
\(24\) −0.308150 0.499270i −0.0629008 0.101913i
\(25\) 0 0
\(26\) 9.22822i 1.80980i
\(27\) 1.94242 4.81944i 0.373819 0.927502i
\(28\) 0.222792 1.40666i 0.0421038 0.265833i
\(29\) −8.30669 + 6.03516i −1.54251 + 1.12070i −0.593778 + 0.804629i \(0.702364\pi\)
−0.948735 + 0.316073i \(0.897636\pi\)
\(30\) 0 0
\(31\) −2.73448 1.98672i −0.491128 0.356825i 0.314490 0.949261i \(-0.398166\pi\)
−0.805618 + 0.592436i \(0.798166\pi\)
\(32\) 5.49158 5.49158i 0.970784 0.970784i
\(33\) −1.29480 + 1.11303i −0.225396 + 0.193754i
\(34\) −6.36785 2.06904i −1.09208 0.354837i
\(35\) 0 0
\(36\) 5.41842 + 0.822768i 0.903069 + 0.137128i
\(37\) 3.63316 1.85119i 0.597288 0.304333i −0.129086 0.991633i \(-0.541204\pi\)
0.726374 + 0.687300i \(0.241204\pi\)
\(38\) −11.2411 + 5.72765i −1.82355 + 0.929148i
\(39\) 6.22994 + 5.28657i 0.997589 + 0.846529i
\(40\) 0 0
\(41\) −3.89453 1.26541i −0.608223 0.197624i −0.0113186 0.999936i \(-0.503603\pi\)
−0.596905 + 0.802312i \(0.703603\pi\)
\(42\) −1.72191 2.00311i −0.265696 0.309087i
\(43\) 4.93949 4.93949i 0.753265 0.753265i −0.221822 0.975087i \(-0.571201\pi\)
0.975087 + 0.221822i \(0.0712005\pi\)
\(44\) −1.45695 1.05853i −0.219643 0.159580i
\(45\) 0 0
\(46\) 1.51990 1.10427i 0.224097 0.162816i
\(47\) 0.732455 4.62454i 0.106840 0.674558i −0.874897 0.484310i \(-0.839071\pi\)
0.981736 0.190248i \(-0.0609293\pi\)
\(48\) −0.610356 7.45115i −0.0880973 1.07548i
\(49\) 6.39224i 0.913177i
\(50\) 0 0
\(51\) −5.04475 + 3.11362i −0.706407 + 0.435994i
\(52\) −3.91242 + 7.67856i −0.542555 + 1.06482i
\(53\) 3.42818 + 0.542970i 0.470896 + 0.0745826i 0.387373 0.921923i \(-0.373383\pi\)
0.0835235 + 0.996506i \(0.473383\pi\)
\(54\) 7.66586 6.67528i 1.04319 0.908390i
\(55\) 0 0
\(56\) −0.155220 + 0.213642i −0.0207421 + 0.0285491i
\(57\) −2.57300 + 10.8701i −0.340802 + 1.43978i
\(58\) −19.8386 + 3.14212i −2.60493 + 0.412581i
\(59\) −0.172592 + 0.531183i −0.0224696 + 0.0691542i −0.961663 0.274236i \(-0.911575\pi\)
0.939193 + 0.343390i \(0.111575\pi\)
\(60\) 0 0
\(61\) 2.95410 + 9.09178i 0.378233 + 1.16408i 0.941271 + 0.337652i \(0.109633\pi\)
−0.563038 + 0.826431i \(0.690367\pi\)
\(62\) −3.00182 5.89140i −0.381231 0.748209i
\(63\) −2.33873 + 0.0149310i −0.294652 + 0.00188113i
\(64\) 6.23890 2.02714i 0.779862 0.253393i
\(65\) 0 0
\(66\) −3.24536 + 0.790106i −0.399476 + 0.0972553i
\(67\) 1.08040 + 6.82141i 0.131992 + 0.833367i 0.961487 + 0.274852i \(0.0886288\pi\)
−0.829494 + 0.558515i \(0.811371\pi\)
\(68\) −4.42132 4.42132i −0.536164 0.536164i
\(69\) 0.125215 1.65869i 0.0150741 0.199682i
\(70\) 0 0
\(71\) −5.08421 6.99781i −0.603385 0.830488i 0.392628 0.919697i \(-0.371566\pi\)
−0.996013 + 0.0892096i \(0.971566\pi\)
\(72\) −0.825927 0.592052i −0.0973365 0.0697740i
\(73\) 8.03649 + 4.09480i 0.940600 + 0.479260i 0.855897 0.517147i \(-0.173006\pi\)
0.0847030 + 0.996406i \(0.473006\pi\)
\(74\) 7.97671 0.927274
\(75\) 0 0
\(76\) −11.7818 −1.35146
\(77\) 0.684752 + 0.348898i 0.0780347 + 0.0397607i
\(78\) 6.16382 + 14.7475i 0.697915 + 1.66982i
\(79\) 3.84334 + 5.28990i 0.432410 + 0.595161i 0.968504 0.248997i \(-0.0801010\pi\)
−0.536095 + 0.844158i \(0.680101\pi\)
\(80\) 0 0
\(81\) −0.114912 8.99927i −0.0127680 0.999918i
\(82\) −5.66440 5.66440i −0.625528 0.625528i
\(83\) 0.223482 + 1.41101i 0.0245303 + 0.154878i 0.996913 0.0785138i \(-0.0250175\pi\)
−0.972383 + 0.233392i \(0.925017\pi\)
\(84\) −0.583510 2.39676i −0.0636661 0.261508i
\(85\) 0 0
\(86\) 12.9964 4.22279i 1.40144 0.455355i
\(87\) −9.24369 + 15.1930i −0.991028 + 1.62886i
\(88\) 0.151598 + 0.297528i 0.0161604 + 0.0317166i
\(89\) −3.04398 9.36841i −0.322661 0.993049i −0.972485 0.232964i \(-0.925157\pi\)
0.649824 0.760085i \(-0.274843\pi\)
\(90\) 0 0
\(91\) 1.13644 3.49761i 0.119131 0.366649i
\(92\) 1.73284 0.274455i 0.180661 0.0286139i
\(93\) −5.69692 1.34849i −0.590743 0.139832i
\(94\) 5.38378 7.41014i 0.555295 0.764297i
\(95\) 0 0
\(96\) 5.10800 12.4440i 0.521333 1.27006i
\(97\) 5.51558 + 0.873583i 0.560023 + 0.0886989i 0.430028 0.902816i \(-0.358504\pi\)
0.129995 + 0.991515i \(0.458504\pi\)
\(98\) 5.67701 11.1418i 0.573465 1.12549i
\(99\) −1.32577 + 2.64356i −0.133245 + 0.265688i
\(100\) 0 0
\(101\) 3.43356i 0.341652i 0.985301 + 0.170826i \(0.0546437\pi\)
−0.985301 + 0.170826i \(0.945356\pi\)
\(102\) −11.5583 + 0.946793i −1.14444 + 0.0937464i
\(103\) 0.772999 4.88052i 0.0761658 0.480892i −0.919891 0.392174i \(-0.871723\pi\)
0.996057 0.0887178i \(-0.0282769\pi\)
\(104\) 1.29276 0.939244i 0.126765 0.0921004i
\(105\) 0 0
\(106\) 5.49315 + 3.99100i 0.533542 + 0.387641i
\(107\) −2.44736 + 2.44736i −0.236595 + 0.236595i −0.815439 0.578844i \(-0.803504\pi\)
0.578844 + 0.815439i \(0.303504\pi\)
\(108\) 9.20863 2.30428i 0.886101 0.221730i
\(109\) 2.20399 + 0.716119i 0.211104 + 0.0685918i 0.412660 0.910885i \(-0.364600\pi\)
−0.201556 + 0.979477i \(0.564600\pi\)
\(110\) 0 0
\(111\) 4.56962 5.38505i 0.433729 0.511127i
\(112\) −2.99821 + 1.52767i −0.283305 + 0.144351i
\(113\) 2.90689 1.48114i 0.273457 0.139334i −0.311885 0.950120i \(-0.600960\pi\)
0.585342 + 0.810786i \(0.300960\pi\)
\(114\) −14.1386 + 16.6616i −1.32420 + 1.56050i
\(115\) 0 0
\(116\) −17.8393 5.79634i −1.65634 0.538176i
\(117\) 13.4870 + 4.28720i 1.24688 + 0.396352i
\(118\) −0.772580 + 0.772580i −0.0711217 + 0.0711217i
\(119\) 2.15869 + 1.56838i 0.197887 + 0.143773i
\(120\) 0 0
\(121\) −8.11300 + 5.89444i −0.737545 + 0.535858i
\(122\) −2.92547 + 18.4707i −0.264859 + 1.67226i
\(123\) −7.06898 + 0.579051i −0.637389 + 0.0522113i
\(124\) 6.17474i 0.554508i
\(125\) 0 0
\(126\) −4.08970 2.05102i −0.364339 0.182720i
\(127\) 6.90244 13.5468i 0.612493 1.20208i −0.351508 0.936185i \(-0.614331\pi\)
0.964001 0.265900i \(-0.0856691\pi\)
\(128\) −2.66650 0.422332i −0.235687 0.0373292i
\(129\) 4.59447 11.1929i 0.404520 0.985484i
\(130\) 0 0
\(131\) −0.850285 + 1.17032i −0.0742897 + 0.102251i −0.844545 0.535485i \(-0.820129\pi\)
0.770255 + 0.637736i \(0.220129\pi\)
\(132\) −3.03535 0.718483i −0.264193 0.0625360i
\(133\) 4.96588 0.786518i 0.430597 0.0681998i
\(134\) −4.17500 + 12.8493i −0.360665 + 1.11001i
\(135\) 0 0
\(136\) 0.358270 + 1.10264i 0.0307214 + 0.0945507i
\(137\) −4.30255 8.44422i −0.367591 0.721438i 0.630928 0.775842i \(-0.282674\pi\)
−0.998519 + 0.0544031i \(0.982674\pi\)
\(138\) 1.69135 2.77991i 0.143977 0.236642i
\(139\) 6.29917 2.04672i 0.534288 0.173601i −0.0294316 0.999567i \(-0.509370\pi\)
0.563720 + 0.825966i \(0.309370\pi\)
\(140\) 0 0
\(141\) −1.91835 7.87962i −0.161554 0.663584i
\(142\) −2.64702 16.7126i −0.222133 1.40249i
\(143\) −3.28827 3.28827i −0.274979 0.274979i
\(144\) −5.95226 11.4999i −0.496022 0.958323i
\(145\) 0 0
\(146\) 10.3711 + 14.2746i 0.858318 + 1.18137i
\(147\) −4.26958 10.2153i −0.352149 0.842546i
\(148\) 6.63721 + 3.38183i 0.545575 + 0.277985i
\(149\) 10.3466 0.847626 0.423813 0.905750i \(-0.360691\pi\)
0.423813 + 0.905750i \(0.360691\pi\)
\(150\) 0 0
\(151\) 5.60298 0.455964 0.227982 0.973665i \(-0.426787\pi\)
0.227982 + 0.973665i \(0.426787\pi\)
\(152\) 1.94649 + 0.991787i 0.157881 + 0.0804445i
\(153\) −5.98224 + 8.34537i −0.483636 + 0.674683i
\(154\) 0.883672 + 1.21627i 0.0712083 + 0.0980098i
\(155\) 0 0
\(156\) −1.12362 + 14.8842i −0.0899614 + 1.19169i
\(157\) 7.18526 + 7.18526i 0.573446 + 0.573446i 0.933090 0.359644i \(-0.117102\pi\)
−0.359644 + 0.933090i \(0.617102\pi\)
\(158\) 2.00098 + 12.6337i 0.159189 + 1.00508i
\(159\) 5.84118 1.42208i 0.463235 0.112778i
\(160\) 0 0
\(161\) −0.712050 + 0.231359i −0.0561174 + 0.0182337i
\(162\) 7.79205 15.7879i 0.612201 1.24042i
\(163\) −8.85172 17.3725i −0.693320 1.36072i −0.921990 0.387214i \(-0.873438\pi\)
0.228670 0.973504i \(-0.426562\pi\)
\(164\) −2.31170 7.11469i −0.180514 0.555564i
\(165\) 0 0
\(166\) −0.863599 + 2.65788i −0.0670283 + 0.206292i
\(167\) 0.529779 0.0839087i 0.0409955 0.00649305i −0.135903 0.990722i \(-0.543394\pi\)
0.176899 + 0.984229i \(0.443394\pi\)
\(168\) −0.105356 + 0.445094i −0.00812840 + 0.0343397i
\(169\) −5.43898 + 7.48611i −0.418383 + 0.575855i
\(170\) 0 0
\(171\) 3.14859 + 19.0898i 0.240779 + 1.45984i
\(172\) 12.6043 + 1.99632i 0.961067 + 0.152218i
\(173\) −7.23210 + 14.1938i −0.549846 + 1.07913i 0.434132 + 0.900849i \(0.357055\pi\)
−0.983979 + 0.178285i \(0.942945\pi\)
\(174\) −29.6050 + 18.2722i −2.24435 + 1.38521i
\(175\) 0 0
\(176\) 4.25500i 0.320733i
\(177\) 0.0789781 + 0.964154i 0.00593636 + 0.0724703i
\(178\) 3.01448 19.0327i 0.225945 1.42656i
\(179\) −14.7628 + 10.7258i −1.10342 + 0.801684i −0.981615 0.190870i \(-0.938869\pi\)
−0.121808 + 0.992554i \(0.538869\pi\)
\(180\) 0 0
\(181\) 8.42806 + 6.12334i 0.626453 + 0.455145i 0.855170 0.518348i \(-0.173453\pi\)
−0.228717 + 0.973493i \(0.573453\pi\)
\(182\) 5.08710 5.08710i 0.377081 0.377081i
\(183\) 10.7936 + 12.5563i 0.797884 + 0.928186i
\(184\) −0.309390 0.100527i −0.0228085 0.00741093i
\(185\) 0 0
\(186\) −8.73221 7.40994i −0.640277 0.543323i
\(187\) 3.00630 1.53179i 0.219842 0.112015i
\(188\) 7.62132 3.88326i 0.555842 0.283216i
\(189\) −3.72750 + 1.58597i −0.271136 + 0.115362i
\(190\) 0 0
\(191\) 16.3919 + 5.32604i 1.18607 + 0.385379i 0.834620 0.550826i \(-0.185687\pi\)
0.351454 + 0.936205i \(0.385687\pi\)
\(192\) 8.61628 7.40669i 0.621826 0.534532i
\(193\) −13.5906 + 13.5906i −0.978276 + 0.978276i −0.999769 0.0214931i \(-0.993158\pi\)
0.0214931 + 0.999769i \(0.493158\pi\)
\(194\) 8.83791 + 6.42112i 0.634525 + 0.461009i
\(195\) 0 0
\(196\) 9.44738 6.86393i 0.674813 0.490280i
\(197\) −0.334594 + 2.11254i −0.0238388 + 0.150512i −0.996737 0.0807236i \(-0.974277\pi\)
0.972898 + 0.231236i \(0.0742769\pi\)
\(198\) −4.65861 + 3.43033i −0.331073 + 0.243783i
\(199\) 18.8648i 1.33729i 0.743582 + 0.668644i \(0.233125\pi\)
−0.743582 + 0.668644i \(0.766875\pi\)
\(200\) 0 0
\(201\) 6.28281 + 10.1795i 0.443155 + 0.718009i
\(202\) −3.04939 + 5.98476i −0.214554 + 0.421086i
\(203\) 7.90601 + 1.25219i 0.554893 + 0.0878864i
\(204\) −10.0188 4.11249i −0.701455 0.287932i
\(205\) 0 0
\(206\) 5.68179 7.82031i 0.395869 0.544867i
\(207\) −0.907785 2.73435i −0.0630954 0.190051i
\(208\) 20.1109 3.18526i 1.39444 0.220858i
\(209\) 1.96461 6.04646i 0.135895 0.418242i
\(210\) 0 0
\(211\) −1.54603 4.75818i −0.106433 0.327567i 0.883631 0.468184i \(-0.155091\pi\)
−0.990064 + 0.140617i \(0.955091\pi\)
\(212\) 2.87866 + 5.64970i 0.197708 + 0.388023i
\(213\) −12.7990 7.78718i −0.876976 0.533569i
\(214\) −6.43931 + 2.09226i −0.440182 + 0.143024i
\(215\) 0 0
\(216\) −1.71535 0.394485i −0.116715 0.0268413i
\(217\) 0.412209 + 2.60258i 0.0279825 + 0.176675i
\(218\) 3.20559 + 3.20559i 0.217110 + 0.217110i
\(219\) 15.5780 + 1.17599i 1.05266 + 0.0794663i
\(220\) 0 0
\(221\) −9.49035 13.0623i −0.638390 0.878669i
\(222\) 12.7474 5.32790i 0.855552 0.357585i
\(223\) 10.8469 + 5.52678i 0.726363 + 0.370101i 0.777746 0.628578i \(-0.216363\pi\)
−0.0513829 + 0.998679i \(0.516363\pi\)
\(224\) −6.05452 −0.404534
\(225\) 0 0
\(226\) 6.38217 0.424536
\(227\) 13.3560 + 6.80520i 0.886466 + 0.451677i 0.837066 0.547102i \(-0.184269\pi\)
0.0494003 + 0.998779i \(0.484269\pi\)
\(228\) −18.8282 + 7.86942i −1.24693 + 0.521165i
\(229\) −9.00455 12.3937i −0.595037 0.818999i 0.400205 0.916426i \(-0.368939\pi\)
−0.995243 + 0.0974268i \(0.968939\pi\)
\(230\) 0 0
\(231\) 1.32733 + 0.100201i 0.0873319 + 0.00659274i
\(232\) 2.45933 + 2.45933i 0.161463 + 0.161463i
\(233\) −0.338659 2.13821i −0.0221863 0.140079i 0.974109 0.226080i \(-0.0725911\pi\)
−0.996295 + 0.0860013i \(0.972591\pi\)
\(234\) 19.7006 + 19.4506i 1.28787 + 1.27153i
\(235\) 0 0
\(236\) −0.970388 + 0.315298i −0.0631669 + 0.0205242i
\(237\) 9.67527 + 5.88661i 0.628476 + 0.382377i
\(238\) 2.36974 + 4.65087i 0.153607 + 0.301471i
\(239\) −7.04340 21.6774i −0.455600 1.40219i −0.870430 0.492293i \(-0.836159\pi\)
0.414830 0.909899i \(-0.363841\pi\)
\(240\) 0 0
\(241\) −0.706155 + 2.17332i −0.0454874 + 0.139996i −0.971221 0.238181i \(-0.923449\pi\)
0.925733 + 0.378177i \(0.123449\pi\)
\(242\) −19.3760 + 3.06885i −1.24554 + 0.197273i
\(243\) −6.19453 14.3048i −0.397380 0.917654i
\(244\) −10.2651 + 14.1287i −0.657154 + 0.904495i
\(245\) 0 0
\(246\) −12.8356 5.26874i −0.818368 0.335923i
\(247\) −30.0488 4.75926i −1.91196 0.302825i
\(248\) −0.519788 + 1.02014i −0.0330066 + 0.0647791i
\(249\) 1.29960 + 2.10564i 0.0823587 + 0.133439i
\(250\) 0 0
\(251\) 14.3226i 0.904036i −0.892009 0.452018i \(-0.850704\pi\)
0.892009 0.452018i \(-0.149296\pi\)
\(252\) −2.53337 3.44048i −0.159587 0.216730i
\(253\) −0.148100 + 0.935067i −0.00931097 + 0.0587871i
\(254\) 24.0621 17.4822i 1.50979 1.09693i
\(255\) 0 0
\(256\) −14.8869 10.8160i −0.930432 0.675998i
\(257\) −4.31188 + 4.31188i −0.268968 + 0.268968i −0.828684 0.559716i \(-0.810910\pi\)
0.559716 + 0.828684i \(0.310910\pi\)
\(258\) 17.9488 15.4291i 1.11744 0.960573i
\(259\) −3.02327 0.982320i −0.187857 0.0610384i
\(260\) 0 0
\(261\) −4.62431 + 30.4538i −0.286237 + 1.88504i
\(262\) −2.52143 + 1.28473i −0.155774 + 0.0793711i
\(263\) 27.7729 14.1510i 1.71255 0.872587i 0.730753 0.682642i \(-0.239169\pi\)
0.981795 0.189945i \(-0.0608310\pi\)
\(264\) 0.440995 + 0.374217i 0.0271414 + 0.0230315i
\(265\) 0 0
\(266\) 9.35412 + 3.03934i 0.573538 + 0.186354i
\(267\) −11.1220 12.9383i −0.680655 0.791812i
\(268\) −8.92154 + 8.92154i −0.544970 + 0.544970i
\(269\) 11.9339 + 8.67050i 0.727624 + 0.528649i 0.888811 0.458274i \(-0.151532\pi\)
−0.161187 + 0.986924i \(0.551532\pi\)
\(270\) 0 0
\(271\) 19.8939 14.4538i 1.20847 0.878004i 0.213378 0.976970i \(-0.431553\pi\)
0.995091 + 0.0989656i \(0.0315534\pi\)
\(272\) −2.31107 + 14.5915i −0.140129 + 0.884741i
\(273\) −0.520036 6.34853i −0.0314740 0.384230i
\(274\) 18.5395i 1.12001i
\(275\) 0 0
\(276\) 2.58590 1.59602i 0.155653 0.0960691i
\(277\) 1.52140 2.98592i 0.0914121 0.179406i −0.840773 0.541387i \(-0.817899\pi\)
0.932186 + 0.361981i \(0.117899\pi\)
\(278\) 12.7973 + 2.02689i 0.767529 + 0.121565i
\(279\) −10.0048 + 1.65015i −0.598975 + 0.0987922i
\(280\) 0 0
\(281\) −0.291342 + 0.400997i −0.0173800 + 0.0239215i −0.817619 0.575760i \(-0.804706\pi\)
0.800239 + 0.599682i \(0.204706\pi\)
\(282\) 3.65426 15.4380i 0.217608 0.919320i
\(283\) −22.6222 + 3.58300i −1.34475 + 0.212987i −0.786964 0.616999i \(-0.788348\pi\)
−0.557784 + 0.829986i \(0.688348\pi\)
\(284\) 4.88302 15.0284i 0.289754 0.891770i
\(285\) 0 0
\(286\) −2.81116 8.65186i −0.166227 0.511595i
\(287\) 1.44931 + 2.84444i 0.0855502 + 0.167902i
\(288\) −0.148743 23.2983i −0.00876474 1.37287i
\(289\) −5.02660 + 1.63324i −0.295682 + 0.0960730i
\(290\) 0 0
\(291\) 9.39785 2.28798i 0.550912 0.134124i
\(292\) 2.57762 + 16.2745i 0.150844 + 0.952390i
\(293\) 7.39973 + 7.39973i 0.432297 + 0.432297i 0.889409 0.457112i \(-0.151116\pi\)
−0.457112 + 0.889409i \(0.651116\pi\)
\(294\) 1.63040 21.5973i 0.0950866 1.25958i
\(295\) 0 0
\(296\) −0.811866 1.11744i −0.0471888 0.0649498i
\(297\) −0.352974 + 5.11015i −0.0204816 + 0.296521i
\(298\) 18.0343 + 9.18892i 1.04470 + 0.532300i
\(299\) 4.53039 0.261999
\(300\) 0 0
\(301\) −5.44583 −0.313892
\(302\) 9.76609 + 4.97607i 0.561975 + 0.286341i
\(303\) 2.29339 + 5.48712i 0.131752 + 0.315227i
\(304\) 16.3622 + 22.5207i 0.938439 + 1.29165i
\(305\) 0 0
\(306\) −17.8388 + 9.23322i −1.01977 + 0.527828i
\(307\) −6.95771 6.95771i −0.397097 0.397097i 0.480111 0.877208i \(-0.340596\pi\)
−0.877208 + 0.480111i \(0.840596\pi\)
\(308\) 0.219627 + 1.38667i 0.0125144 + 0.0790129i
\(309\) −2.02454 8.31578i −0.115172 0.473068i
\(310\) 0 0
\(311\) 2.10692 0.684580i 0.119473 0.0388190i −0.248671 0.968588i \(-0.579994\pi\)
0.368143 + 0.929769i \(0.379994\pi\)
\(312\) 1.43858 2.36446i 0.0814437 0.133861i
\(313\) 10.9036 + 21.3996i 0.616309 + 1.20958i 0.962467 + 0.271399i \(0.0874863\pi\)
−0.346158 + 0.938176i \(0.612514\pi\)
\(314\) 6.14271 + 18.9053i 0.346653 + 1.06689i
\(315\) 0 0
\(316\) −3.69125 + 11.3605i −0.207649 + 0.639078i
\(317\) −0.769521 + 0.121880i −0.0432206 + 0.00684547i −0.178007 0.984029i \(-0.556965\pi\)
0.134787 + 0.990875i \(0.456965\pi\)
\(318\) 11.4442 + 2.70891i 0.641760 + 0.151908i
\(319\) 5.94941 8.18866i 0.333103 0.458477i
\(320\) 0 0
\(321\) −2.27641 + 5.54575i −0.127057 + 0.309534i
\(322\) −1.44659 0.229117i −0.0806152 0.0127682i
\(323\) 10.0213 19.6678i 0.557598 1.09435i
\(324\) 13.1770 9.83316i 0.732058 0.546287i
\(325\) 0 0
\(326\) 38.1418i 2.11248i
\(327\) 4.00047 0.327696i 0.221227 0.0181216i
\(328\) −0.216992 + 1.37003i −0.0119814 + 0.0756473i
\(329\) −2.95306 + 2.14553i −0.162808 + 0.118287i
\(330\) 0 0
\(331\) −12.1264 8.81032i −0.666525 0.484259i 0.202335 0.979316i \(-0.435147\pi\)
−0.868860 + 0.495057i \(0.835147\pi\)
\(332\) −1.84542 + 1.84542i −0.101281 + 0.101281i
\(333\) 3.70578 11.6580i 0.203076 0.638852i
\(334\) 0.997933 + 0.324248i 0.0546044 + 0.0177421i
\(335\) 0 0
\(336\) −3.77102 + 4.44394i −0.205726 + 0.242437i
\(337\) −21.4776 + 10.9434i −1.16996 + 0.596124i −0.927421 0.374019i \(-0.877980\pi\)
−0.242537 + 0.970142i \(0.577980\pi\)
\(338\) −16.1287 + 8.21799i −0.877287 + 0.447000i
\(339\) 3.65616 4.30858i 0.198575 0.234010i
\(340\) 0 0
\(341\) 3.16890 + 1.02964i 0.171606 + 0.0557581i
\(342\) −11.4658 + 36.0702i −0.620002 + 1.95045i
\(343\) −7.38253 + 7.38253i −0.398619 + 0.398619i
\(344\) −1.91433 1.39084i −0.103214 0.0749891i
\(345\) 0 0
\(346\) −25.2113 + 18.3171i −1.35537 + 0.984733i
\(347\) 5.05725 31.9302i 0.271487 1.71410i −0.355164 0.934804i \(-0.615575\pi\)
0.626652 0.779299i \(-0.284425\pi\)
\(348\) −32.3802 + 2.65241i −1.73576 + 0.142184i
\(349\) 8.46821i 0.453293i −0.973977 0.226646i \(-0.927224\pi\)
0.973977 0.226646i \(-0.0727762\pi\)
\(350\) 0 0
\(351\) 24.4169 2.15711i 1.30328 0.115138i
\(352\) −3.47572 + 6.82148i −0.185256 + 0.363586i
\(353\) −33.2366 5.26415i −1.76900 0.280183i −0.814887 0.579619i \(-0.803201\pi\)
−0.954116 + 0.299437i \(0.903201\pi\)
\(354\) −0.718616 + 1.75068i −0.0381940 + 0.0930474i
\(355\) 0 0
\(356\) 10.5774 14.5586i 0.560601 0.771602i
\(357\) 4.49734 + 1.06454i 0.238024 + 0.0563416i
\(358\) −35.2575 + 5.58424i −1.86342 + 0.295136i
\(359\) −2.38803 + 7.34959i −0.126035 + 0.387897i −0.994088 0.108575i \(-0.965371\pi\)
0.868053 + 0.496471i \(0.165371\pi\)
\(360\) 0 0
\(361\) −6.98158 21.4871i −0.367452 1.13090i
\(362\) 9.25203 + 18.1581i 0.486276 + 0.954370i
\(363\) −9.02815 + 14.8387i −0.473855 + 0.778831i
\(364\) 6.38958 2.07610i 0.334905 0.108817i
\(365\) 0 0
\(366\) 7.66201 + 31.4717i 0.400500 + 1.64505i
\(367\) 1.86431 + 11.7708i 0.0973164 + 0.614431i 0.987352 + 0.158541i \(0.0506791\pi\)
−0.890036 + 0.455890i \(0.849321\pi\)
\(368\) −2.93115 2.93115i −0.152796 0.152796i
\(369\) −10.9100 + 5.64697i −0.567955 + 0.293970i
\(370\) 0 0
\(371\) −1.59048 2.18911i −0.0825737 0.113653i
\(372\) −4.12430 9.86774i −0.213835 0.511619i
\(373\) −22.5244 11.4767i −1.16627 0.594243i −0.239876 0.970804i \(-0.577107\pi\)
−0.926392 + 0.376560i \(0.877107\pi\)
\(374\) 6.60042 0.341299
\(375\) 0 0
\(376\) −1.58603 −0.0817931
\(377\) −43.1568 21.9895i −2.22269 1.13251i
\(378\) −7.90561 0.546065i −0.406621 0.0280866i
\(379\) −11.2506 15.4851i −0.577904 0.795416i 0.415560 0.909566i \(-0.363586\pi\)
−0.993464 + 0.114150i \(0.963586\pi\)
\(380\) 0 0
\(381\) 1.98233 26.2593i 0.101558 1.34530i
\(382\) 23.8412 + 23.8412i 1.21982 + 1.21982i
\(383\) −3.31513 20.9309i −0.169395 1.06952i −0.915095 0.403238i \(-0.867885\pi\)
0.745700 0.666282i \(-0.232115\pi\)
\(384\) −4.54337 + 1.10612i −0.231853 + 0.0564463i
\(385\) 0 0
\(386\) −35.7587 + 11.6187i −1.82007 + 0.591376i
\(387\) −0.133789 20.9560i −0.00680087 1.06526i
\(388\) 4.63148 + 9.08978i 0.235128 + 0.461464i
\(389\) 3.35765 + 10.3338i 0.170240 + 0.523944i 0.999384 0.0350902i \(-0.0111719\pi\)
−0.829144 + 0.559035i \(0.811172\pi\)
\(390\) 0 0
\(391\) −1.01575 + 3.12615i −0.0513686 + 0.158096i
\(392\) −2.13863 + 0.338725i −0.108017 + 0.0171082i
\(393\) −0.577134 + 2.43819i −0.0291125 + 0.122991i
\(394\) −2.45937 + 3.38503i −0.123901 + 0.170536i
\(395\) 0 0
\(396\) −5.33064 + 0.879211i −0.267875 + 0.0441820i
\(397\) 7.56976 + 1.19893i 0.379915 + 0.0601727i 0.343472 0.939163i \(-0.388397\pi\)
0.0364437 + 0.999336i \(0.488397\pi\)
\(398\) −16.7540 + 32.8816i −0.839802 + 1.64821i
\(399\) 7.41055 4.57379i 0.370991 0.228976i
\(400\) 0 0
\(401\) 20.7216i 1.03479i 0.855747 + 0.517395i \(0.173098\pi\)
−0.855747 + 0.517395i \(0.826902\pi\)
\(402\) 1.91048 + 23.3229i 0.0952861 + 1.16324i
\(403\) 2.49429 15.7484i 0.124250 0.784481i
\(404\) −5.07463 + 3.68693i −0.252472 + 0.183432i
\(405\) 0 0
\(406\) 12.6682 + 9.20399i 0.628713 + 0.456786i
\(407\) −2.84233 + 2.84233i −0.140889 + 0.140889i
\(408\) 1.30903 + 1.52281i 0.0648068 + 0.0753904i
\(409\) −30.3286 9.85436i −1.49965 0.487267i −0.559736 0.828671i \(-0.689098\pi\)
−0.939917 + 0.341404i \(0.889098\pi\)
\(410\) 0 0
\(411\) −12.5160 10.6208i −0.617368 0.523883i
\(412\) 8.04319 4.09821i 0.396259 0.201904i
\(413\) 0.387959 0.197675i 0.0190902 0.00972695i
\(414\) 0.846124 5.57223i 0.0415847 0.273860i
\(415\) 0 0
\(416\) 34.8431 + 11.3212i 1.70832 + 0.555068i
\(417\) 8.69952 7.47825i 0.426017 0.366211i
\(418\) 8.79427 8.79427i 0.430142 0.430142i
\(419\) −10.4586 7.59860i −0.510935 0.371216i 0.302243 0.953231i \(-0.402264\pi\)
−0.813178 + 0.582015i \(0.802264\pi\)
\(420\) 0 0
\(421\) −9.92844 + 7.21344i −0.483883 + 0.351561i −0.802827 0.596212i \(-0.796672\pi\)
0.318944 + 0.947773i \(0.396672\pi\)
\(422\) 1.53104 9.66663i 0.0745300 0.470564i
\(423\) −8.32873 11.3110i −0.404957 0.549957i
\(424\) 1.17572i 0.0570982i
\(425\) 0 0
\(426\) −15.3931 24.9401i −0.745796 1.20835i
\(427\) 3.38342 6.64034i 0.163735 0.321349i
\(428\) −6.24502 0.989114i −0.301864 0.0478106i
\(429\) −7.45127 3.05859i −0.359751 0.147670i
\(430\) 0 0
\(431\) −23.6623 + 32.5684i −1.13977 + 1.56876i −0.371760 + 0.928329i \(0.621246\pi\)
−0.768013 + 0.640434i \(0.778754\pi\)
\(432\) −17.1933 14.4020i −0.827215 0.692919i
\(433\) 0.688486 0.109046i 0.0330865 0.00524039i −0.139869 0.990170i \(-0.544668\pi\)
0.172956 + 0.984930i \(0.444668\pi\)
\(434\) −1.59290 + 4.90243i −0.0764614 + 0.235324i
\(435\) 0 0
\(436\) 1.30824 + 4.02634i 0.0626532 + 0.192827i
\(437\) 2.81186 + 5.51859i 0.134510 + 0.263990i
\(438\) 26.1083 + 15.8848i 1.24750 + 0.759004i
\(439\) 32.6150 10.5973i 1.55663 0.505780i 0.600724 0.799456i \(-0.294879\pi\)
0.955905 + 0.293677i \(0.0948789\pi\)
\(440\) 0 0
\(441\) −13.6463 13.4731i −0.649823 0.641578i
\(442\) −4.94102 31.1964i −0.235020 1.48386i
\(443\) 20.2627 + 20.2627i 0.962712 + 0.962712i 0.999329 0.0366177i \(-0.0116584\pi\)
−0.0366177 + 0.999329i \(0.511658\pi\)
\(444\) 12.8656 + 0.971235i 0.610576 + 0.0460928i
\(445\) 0 0
\(446\) 13.9979 + 19.2665i 0.662822 + 0.912296i
\(447\) 16.5347 6.91082i 0.782065 0.326871i
\(448\) −4.55669 2.32175i −0.215283 0.109692i
\(449\) −18.2524 −0.861386 −0.430693 0.902499i \(-0.641731\pi\)
−0.430693 + 0.902499i \(0.641731\pi\)
\(450\) 0 0
\(451\) 4.03677 0.190084
\(452\) 5.31043 + 2.70580i 0.249782 + 0.127270i
\(453\) 8.95403 3.74241i 0.420697 0.175834i
\(454\) 17.2359 + 23.7231i 0.808919 + 1.11338i
\(455\) 0 0
\(456\) 3.77310 + 0.284834i 0.176692 + 0.0133386i
\(457\) −15.1979 15.1979i −0.710929 0.710929i 0.255800 0.966730i \(-0.417661\pi\)
−0.966730 + 0.255800i \(0.917661\pi\)
\(458\) −4.68809 29.5994i −0.219060 1.38309i
\(459\) −3.98597 + 17.3323i −0.186049 + 0.809004i
\(460\) 0 0
\(461\) −17.1732 + 5.57990i −0.799835 + 0.259882i −0.680286 0.732946i \(-0.738145\pi\)
−0.119548 + 0.992828i \(0.538145\pi\)
\(462\) 2.22457 + 1.35347i 0.103496 + 0.0629690i
\(463\) 4.61839 + 9.06411i 0.214635 + 0.421245i 0.973072 0.230502i \(-0.0740367\pi\)
−0.758437 + 0.651746i \(0.774037\pi\)
\(464\) 13.6952 + 42.1494i 0.635782 + 1.95674i
\(465\) 0 0
\(466\) 1.30868 4.02770i 0.0606233 0.186579i
\(467\) 11.1130 1.76013i 0.514250 0.0814493i 0.106085 0.994357i \(-0.466169\pi\)
0.408166 + 0.912908i \(0.366169\pi\)
\(468\) 8.14599 + 24.5367i 0.376549 + 1.13421i
\(469\) 3.16475 4.35591i 0.146135 0.201137i
\(470\) 0 0
\(471\) 16.2819 + 6.68337i 0.750230 + 0.307954i
\(472\) 0.186862 + 0.0295960i 0.00860100 + 0.00136226i
\(473\) −3.12629 + 6.13568i −0.143747 + 0.282119i
\(474\) 11.6362 + 18.8532i 0.534467 + 0.865954i
\(475\) 0 0
\(476\) 4.87454i 0.223424i
\(477\) 8.38483 6.17410i 0.383915 0.282693i
\(478\) 6.97514 44.0393i 0.319035 2.01431i
\(479\) 14.0049 10.1752i 0.639901 0.464915i −0.219915 0.975519i \(-0.570578\pi\)
0.859816 + 0.510604i \(0.170578\pi\)
\(480\) 0 0
\(481\) 15.5618 + 11.3063i 0.709556 + 0.515522i
\(482\) −3.16099 + 3.16099i −0.143979 + 0.143979i
\(483\) −0.983383 + 0.845332i −0.0447455 + 0.0384639i
\(484\) −17.4233 5.66118i −0.791969 0.257326i
\(485\) 0 0
\(486\) 1.90709 30.4349i 0.0865074 1.38056i
\(487\) 9.46599 4.82316i 0.428945 0.218558i −0.226170 0.974088i \(-0.572620\pi\)
0.655115 + 0.755530i \(0.272620\pi\)
\(488\) 2.88526 1.47011i 0.130610 0.0665490i
\(489\) −25.7494 21.8503i −1.16443 0.988105i
\(490\) 0 0
\(491\) −7.07290 2.29812i −0.319195 0.103713i 0.145037 0.989426i \(-0.453670\pi\)
−0.464233 + 0.885713i \(0.653670\pi\)
\(492\) −8.44642 9.82580i −0.380794 0.442981i
\(493\) 24.8497 24.8497i 1.11917 1.11917i
\(494\) −48.1487 34.9821i −2.16631 1.57392i
\(495\) 0 0
\(496\) −11.8029 + 8.57533i −0.529967 + 0.385044i
\(497\) −1.05488 + 6.66027i −0.0473179 + 0.298754i
\(498\) 0.395183 + 4.82434i 0.0177086 + 0.216184i
\(499\) 22.9184i 1.02597i −0.858398 0.512985i \(-0.828540\pi\)
0.858398 0.512985i \(-0.171460\pi\)
\(500\) 0 0
\(501\) 0.790585 0.487949i 0.0353207 0.0218000i
\(502\) 12.7201 24.9646i 0.567725 1.11422i
\(503\) 8.38878 + 1.32865i 0.374037 + 0.0592416i 0.340623 0.940200i \(-0.389362\pi\)
0.0334140 + 0.999442i \(0.489362\pi\)
\(504\) 0.128925 + 0.781667i 0.00574276 + 0.0348182i
\(505\) 0 0
\(506\) −1.08858 + 1.49831i −0.0483934 + 0.0666078i
\(507\) −3.69172 + 15.5963i −0.163955 + 0.692655i
\(508\) 27.4332 4.34500i 1.21715 0.192778i
\(509\) 0.901786 2.77541i 0.0399710 0.123018i −0.929080 0.369879i \(-0.879399\pi\)
0.969051 + 0.246861i \(0.0793991\pi\)
\(510\) 0 0
\(511\) −2.17288 6.68742i −0.0961223 0.295834i
\(512\) −13.8910 27.2627i −0.613902 1.20485i
\(513\) 17.7824 + 28.4041i 0.785113 + 1.25407i
\(514\) −11.3451 + 3.68625i −0.500411 + 0.162594i
\(515\) 0 0
\(516\) 21.4761 5.22851i 0.945431 0.230172i
\(517\) 0.722048 + 4.55883i 0.0317556 + 0.200497i
\(518\) −4.39720 4.39720i −0.193202 0.193202i
\(519\) −2.07700 + 27.5134i −0.0911704 + 1.20770i
\(520\) 0 0
\(521\) 4.48976 + 6.17962i 0.196700 + 0.270734i 0.895962 0.444132i \(-0.146488\pi\)
−0.699262 + 0.714866i \(0.746488\pi\)
\(522\) −35.1066 + 48.9745i −1.53657 + 2.14356i
\(523\) −5.98876 3.05143i −0.261870 0.133430i 0.318127 0.948048i \(-0.396946\pi\)
−0.579997 + 0.814619i \(0.696946\pi\)
\(524\) −2.64269 −0.115447
\(525\) 0 0
\(526\) 60.9762 2.65869
\(527\) 10.3078 + 5.25207i 0.449013 + 0.228784i
\(528\) 2.84205 + 6.79985i 0.123684 + 0.295925i
\(529\) 12.9769 + 17.8612i 0.564215 + 0.776575i
\(530\) 0 0
\(531\) 0.770203 + 1.48805i 0.0334240 + 0.0645757i
\(532\) 6.49475 + 6.49475i 0.281583 + 0.281583i
\(533\) −3.02189 19.0795i −0.130893 0.826423i
\(534\) −7.89514 32.4292i −0.341656 1.40335i
\(535\) 0 0
\(536\) 2.22496 0.722933i 0.0961037 0.0312260i
\(537\) −16.4281 + 27.0013i −0.708923 + 1.16519i
\(538\) 13.1006 + 25.7114i 0.564808 + 1.10850i
\(539\) 1.94724 + 5.99300i 0.0838737 + 0.258137i
\(540\) 0 0
\(541\) −4.34775 + 13.3810i −0.186924 + 0.575294i −0.999976 0.00689744i \(-0.997804\pi\)
0.813052 + 0.582191i \(0.197804\pi\)
\(542\) 47.5119 7.52515i 2.04081 0.323233i
\(543\) 17.5587 + 4.15624i 0.753516 + 0.178361i
\(544\) −15.6242 + 21.5048i −0.669881 + 0.922012i
\(545\) 0 0
\(546\) 4.73176 11.5274i 0.202501 0.493328i
\(547\) 18.5296 + 2.93480i 0.792269 + 0.125483i 0.539436 0.842027i \(-0.318638\pi\)
0.252833 + 0.967510i \(0.418638\pi\)
\(548\) 7.86007 15.4263i 0.335766 0.658977i
\(549\) 25.6358 + 12.8566i 1.09411 + 0.548706i
\(550\) 0 0
\(551\) 66.2186i 2.82101i
\(552\) −0.561575 + 0.0460011i −0.0239022 + 0.00195794i
\(553\) 0.797424 5.03474i 0.0339099 0.214099i
\(554\) 5.30365 3.85333i 0.225331 0.163712i
\(555\) 0 0
\(556\) 9.78894 + 7.11208i 0.415143 + 0.301619i
\(557\) −4.41902 + 4.41902i −0.187240 + 0.187240i −0.794502 0.607262i \(-0.792268\pi\)
0.607262 + 0.794502i \(0.292268\pi\)
\(558\) −18.9041 6.00917i −0.800275 0.254388i
\(559\) 31.3401 + 10.1830i 1.32555 + 0.430696i
\(560\) 0 0
\(561\) 3.78118 4.45592i 0.159642 0.188129i
\(562\) −0.863943 + 0.440201i −0.0364432 + 0.0185688i
\(563\) −39.3209 + 20.0350i −1.65718 + 0.844375i −0.661662 + 0.749802i \(0.730149\pi\)
−0.995518 + 0.0945733i \(0.969851\pi\)
\(564\) 9.58575 11.2963i 0.403633 0.475660i
\(565\) 0 0
\(566\) −42.6129 13.8458i −1.79115 0.581981i
\(567\) −4.89754 + 5.02423i −0.205677 + 0.210998i
\(568\) −2.07182 + 2.07182i −0.0869316 + 0.0869316i
\(569\) 7.36407 + 5.35031i 0.308718 + 0.224297i 0.731346 0.682006i \(-0.238892\pi\)
−0.422628 + 0.906303i \(0.638892\pi\)
\(570\) 0 0
\(571\) 14.7509 10.7172i 0.617307 0.448500i −0.234673 0.972074i \(-0.575402\pi\)
0.851980 + 0.523575i \(0.175402\pi\)
\(572\) 1.32897 8.39081i 0.0555672 0.350837i
\(573\) 29.7530 2.43720i 1.24295 0.101815i
\(574\) 6.24505i 0.260663i
\(575\) 0 0
\(576\) 8.82236 17.5916i 0.367598 0.732983i
\(577\) −15.0501 + 29.5375i −0.626544 + 1.22966i 0.331613 + 0.943416i \(0.392407\pi\)
−0.958156 + 0.286245i \(0.907593\pi\)
\(578\) −10.2119 1.61741i −0.424761 0.0672755i
\(579\) −12.6413 + 30.7966i −0.525356 + 1.27986i
\(580\) 0 0
\(581\) 0.654629 0.901019i 0.0271586 0.0373806i
\(582\) 18.4126 + 4.35835i 0.763226 + 0.180660i
\(583\) −3.37947 + 0.535255i −0.139963 + 0.0221680i
\(584\) 0.944126 2.90572i 0.0390682 0.120240i
\(585\) 0 0
\(586\) 6.32606 + 19.4696i 0.261327 + 0.804282i
\(587\) 13.4842 + 26.4642i 0.556551 + 1.09229i 0.982276 + 0.187440i \(0.0600190\pi\)
−0.425725 + 0.904853i \(0.639981\pi\)
\(588\) 10.5131 17.2793i 0.433551 0.712588i
\(589\) 20.7316 6.73611i 0.854232 0.277557i
\(590\) 0 0
\(591\) 0.876325 + 3.59950i 0.0360472 + 0.148064i
\(592\) −2.75328 17.3835i −0.113159 0.714459i
\(593\) 15.2390 + 15.2390i 0.625792 + 0.625792i 0.947006 0.321215i \(-0.104091\pi\)
−0.321215 + 0.947006i \(0.604091\pi\)
\(594\) −5.15361 + 8.59359i −0.211455 + 0.352599i
\(595\) 0 0
\(596\) 11.1101 + 15.2917i 0.455087 + 0.626373i
\(597\) 12.6004 + 30.1475i 0.515699 + 1.23385i
\(598\) 7.89653 + 4.02348i 0.322913 + 0.164532i
\(599\) −29.5824 −1.20870 −0.604351 0.796718i \(-0.706568\pi\)
−0.604351 + 0.796718i \(0.706568\pi\)
\(600\) 0 0
\(601\) −27.6332 −1.12718 −0.563591 0.826054i \(-0.690581\pi\)
−0.563591 + 0.826054i \(0.690581\pi\)
\(602\) −9.49216 4.83650i −0.386871 0.197121i
\(603\) 16.8397 + 12.0712i 0.685765 + 0.491579i
\(604\) 6.01643 + 8.28091i 0.244805 + 0.336945i
\(605\) 0 0
\(606\) −0.875760 + 11.6009i −0.0355753 + 0.471255i
\(607\) −20.2336 20.2336i −0.821256 0.821256i 0.165032 0.986288i \(-0.447227\pi\)
−0.986288 + 0.165032i \(0.947227\pi\)
\(608\) 7.83528 + 49.4700i 0.317763 + 2.00627i
\(609\) 13.4708 3.27957i 0.545865 0.132895i
\(610\) 0 0
\(611\) 21.0064 6.82540i 0.849829 0.276126i
\(612\) −18.7577 + 0.119754i −0.758235 + 0.00484077i
\(613\) −6.16521 12.0999i −0.249011 0.488711i 0.732340 0.680940i \(-0.238428\pi\)
−0.981350 + 0.192229i \(0.938428\pi\)
\(614\) −5.94817 18.3066i −0.240049 0.738794i
\(615\) 0 0
\(616\) 0.0804445 0.247583i 0.00324120 0.00997540i
\(617\) 33.3556 5.28301i 1.34285 0.212686i 0.556694 0.830718i \(-0.312070\pi\)
0.786153 + 0.618032i \(0.212070\pi\)
\(618\) 3.85653 16.2926i 0.155133 0.655383i
\(619\) −12.4660 + 17.1580i −0.501052 + 0.689638i −0.982378 0.186903i \(-0.940155\pi\)
0.481327 + 0.876541i \(0.340155\pi\)
\(620\) 0 0
\(621\) −3.27708 3.76338i −0.131504 0.151019i
\(622\) 4.28038 + 0.677945i 0.171628 + 0.0271831i
\(623\) −3.48637 + 6.84238i −0.139678 + 0.274134i
\(624\) 30.0114 18.5230i 1.20142 0.741515i
\(625\) 0 0
\(626\) 46.9834i 1.87783i
\(627\) −0.899007 10.9750i −0.0359029 0.438298i
\(628\) −2.90396 + 18.3349i −0.115881 + 0.731642i
\(629\) −11.2909 + 8.20329i −0.450196 + 0.327087i
\(630\) 0 0
\(631\) −6.46706 4.69860i −0.257450 0.187048i 0.451572 0.892235i \(-0.350863\pi\)
−0.709022 + 0.705186i \(0.750863\pi\)
\(632\) 1.56616 1.56616i 0.0622986 0.0622986i
\(633\) −5.64882 6.57133i −0.224520 0.261187i
\(634\) −1.44953 0.470981i −0.0575682 0.0187050i
\(635\) 0 0
\(636\) 8.37396 + 7.10593i 0.332049 + 0.281768i
\(637\) 26.8678 13.6898i 1.06454 0.542410i
\(638\) 17.6424 8.98923i 0.698468 0.355887i
\(639\) −25.6552 3.89566i −1.01491 0.154110i
\(640\) 0 0
\(641\) 39.9287 + 12.9736i 1.57709 + 0.512427i 0.961304 0.275488i \(-0.0888395\pi\)
0.615784 + 0.787915i \(0.288840\pi\)
\(642\) −8.89306 + 7.64462i −0.350981 + 0.301709i
\(643\) 10.8134 10.8134i 0.426437 0.426437i −0.460975 0.887413i \(-0.652500\pi\)
0.887413 + 0.460975i \(0.152500\pi\)
\(644\) −1.10653 0.803941i −0.0436034 0.0316797i
\(645\) 0 0
\(646\) 34.9344 25.3813i 1.37448 0.998615i
\(647\) 0.0667390 0.421374i 0.00262378 0.0165659i −0.986342 0.164712i \(-0.947331\pi\)
0.988965 + 0.148146i \(0.0473306\pi\)
\(648\) −3.00476 + 0.515317i −0.118038 + 0.0202436i
\(649\) 0.550584i 0.0216123i
\(650\) 0 0
\(651\) 2.39709 + 3.88381i 0.0939494 + 0.152219i
\(652\) 16.1707 31.7368i 0.633293 1.24291i
\(653\) −8.39719 1.32998i −0.328608 0.0520463i −0.0100490 0.999950i \(-0.503199\pi\)
−0.318559 + 0.947903i \(0.603199\pi\)
\(654\) 7.26391 + 2.98168i 0.284042 + 0.116593i
\(655\) 0 0
\(656\) −10.3892 + 14.2995i −0.405630 + 0.558302i
\(657\) 25.6804 8.52571i 1.00189 0.332620i
\(658\) −7.05270 + 1.11704i −0.274943 + 0.0435467i
\(659\) 11.7433 36.1421i 0.457453 1.40790i −0.410778 0.911735i \(-0.634743\pi\)
0.868231 0.496160i \(-0.165257\pi\)
\(660\) 0 0
\(661\) 5.76600 + 17.7459i 0.224271 + 0.690236i 0.998365 + 0.0571648i \(0.0182061\pi\)
−0.774093 + 0.633071i \(0.781794\pi\)
\(662\) −13.3119 26.1261i −0.517382 1.01542i
\(663\) −23.8911 14.5358i −0.927854 0.564524i
\(664\) 0.460233 0.149539i 0.0178605 0.00580323i
\(665\) 0 0
\(666\) 16.8128 17.0288i 0.651482 0.659854i
\(667\) 1.54255 + 9.73930i 0.0597279 + 0.377107i
\(668\) 0.692884 + 0.692884i 0.0268085 + 0.0268085i
\(669\) 21.0258 + 1.58725i 0.812904 + 0.0613666i
\(670\) 0 0
\(671\) −5.53919 7.62404i −0.213838 0.294323i
\(672\) −9.67562 + 4.04400i −0.373245 + 0.156001i
\(673\) −13.5503 6.90421i −0.522325 0.266138i 0.172888 0.984941i \(-0.444690\pi\)
−0.695213 + 0.718804i \(0.744690\pi\)
\(674\) −47.1547 −1.81633
\(675\) 0 0
\(676\) −16.9044 −0.650169
\(677\) −6.94944 3.54092i −0.267089 0.136089i 0.315318 0.948986i \(-0.397889\pi\)
−0.582407 + 0.812898i \(0.697889\pi\)
\(678\) 10.1992 4.26285i 0.391699 0.163714i
\(679\) −2.55892 3.52205i −0.0982024 0.135164i
\(680\) 0 0
\(681\) 25.8893 + 1.95440i 0.992081 + 0.0748929i
\(682\) 4.60901 + 4.60901i 0.176488 + 0.176488i
\(683\) 2.04378 + 12.9039i 0.0782029 + 0.493754i 0.995438 + 0.0954080i \(0.0304156\pi\)
−0.917235 + 0.398346i \(0.869584\pi\)
\(684\) −24.8328 + 25.1520i −0.949507 + 0.961709i
\(685\) 0 0
\(686\) −19.4244 + 6.31136i −0.741626 + 0.240969i
\(687\) −22.6682 13.7917i −0.864844 0.526187i
\(688\) −13.6886 26.8653i −0.521872 1.02423i
\(689\) 5.05968 + 15.5721i 0.192759 + 0.593250i
\(690\) 0 0
\(691\) −13.0283 + 40.0970i −0.495620 + 1.52536i 0.320368 + 0.947293i \(0.396193\pi\)
−0.815988 + 0.578068i \(0.803807\pi\)
\(692\) −28.7434 + 4.55251i −1.09266 + 0.173061i
\(693\) 2.18811 0.726436i 0.0831194 0.0275950i
\(694\) 37.1724 51.1634i 1.41105 1.94214i
\(695\) 0 0
\(696\) 5.57288 + 2.28755i 0.211240 + 0.0867093i
\(697\) 13.8431 + 2.19254i 0.524346 + 0.0830482i
\(698\) 7.52071 14.7602i 0.284663 0.558682i
\(699\) −1.96938 3.19083i −0.0744889 0.120688i
\(700\) 0 0
\(701\) 42.0365i 1.58770i 0.608116 + 0.793848i \(0.291925\pi\)
−0.608116 + 0.793848i \(0.708075\pi\)
\(702\) 44.4749 + 17.9251i 1.67860 + 0.676538i
\(703\) −4.11382 + 25.9737i −0.155156 + 0.979615i
\(704\) −5.23172 + 3.80106i −0.197178 + 0.143258i
\(705\) 0 0
\(706\) −53.2567 38.6932i −2.00434 1.45624i
\(707\) 1.89277 1.89277i 0.0711848 0.0711848i
\(708\) −1.34016 + 1.15203i −0.0503664 + 0.0432958i
\(709\) 28.0166 + 9.10314i 1.05219 + 0.341876i 0.783526 0.621359i \(-0.213419\pi\)
0.268660 + 0.963235i \(0.413419\pi\)
\(710\) 0 0
\(711\) 19.3937 + 2.94487i 0.727322 + 0.110441i
\(712\) −2.97305 + 1.51485i −0.111420 + 0.0567712i
\(713\) −2.89225 + 1.47368i −0.108316 + 0.0551896i
\(714\) 6.89350 + 5.84965i 0.257983 + 0.218918i
\(715\) 0 0
\(716\) −31.7043 10.3014i −1.18485 0.384980i
\(717\) −25.7349 29.9377i −0.961089 1.11804i
\(718\) −10.6896 + 10.6896i −0.398933 + 0.398933i
\(719\) 25.9550 + 18.8574i 0.967957 + 0.703262i 0.954985 0.296654i \(-0.0958708\pi\)
0.0129720 + 0.999916i \(0.495871\pi\)
\(720\) 0 0
\(721\) −3.11653 + 2.26429i −0.116066 + 0.0843265i
\(722\) 6.91392 43.6527i 0.257309 1.62459i
\(723\) 0.323137 + 3.94481i 0.0120176 + 0.146709i
\(724\) 19.0314i 0.707297i
\(725\) 0 0
\(726\) −28.9146 + 17.8461i −1.07312 + 0.662332i
\(727\) −21.4016 + 42.0031i −0.793742 + 1.55781i 0.0357969 + 0.999359i \(0.488603\pi\)
−0.829539 + 0.558448i \(0.811397\pi\)
\(728\) −1.23040 0.194876i −0.0456017 0.00722260i
\(729\) −19.4540 18.7227i −0.720519 0.693435i
\(730\) 0 0
\(731\) −14.0534 + 19.3428i −0.519784 + 0.715421i
\(732\) −6.96745 + 29.4351i −0.257524 + 1.08795i
\(733\) 3.67592 0.582209i 0.135773 0.0215044i −0.0881779 0.996105i \(-0.528104\pi\)
0.223951 + 0.974600i \(0.428104\pi\)
\(734\) −7.20426 + 22.1724i −0.265914 + 0.818399i
\(735\) 0 0
\(736\) −2.30480 7.09343i −0.0849559 0.261467i
\(737\) −3.09091 6.06625i −0.113855 0.223453i
\(738\) −24.0315 + 0.153423i −0.884612 + 0.00564759i
\(739\) −45.0233 + 14.6289i −1.65621 + 0.538134i −0.980072 0.198643i \(-0.936347\pi\)
−0.676136 + 0.736777i \(0.736347\pi\)
\(740\) 0 0
\(741\) −51.1993 + 12.4649i −1.88085 + 0.457908i
\(742\) −0.828062 5.22818i −0.0303991 0.191932i
\(743\) −37.4947 37.4947i −1.37555 1.37555i −0.851991 0.523556i \(-0.824605\pi\)
−0.523556 0.851991i \(-0.675395\pi\)
\(744\) −0.149279 + 1.97745i −0.00547284 + 0.0724970i
\(745\) 0 0
\(746\) −29.0677 40.0083i −1.06424 1.46481i
\(747\) 3.48329 + 2.49694i 0.127447 + 0.0913581i
\(748\) 5.49203 + 2.79833i 0.200809 + 0.102317i
\(749\) 2.69823 0.0985913
\(750\) 0 0
\(751\) −21.2697 −0.776142 −0.388071 0.921629i \(-0.626858\pi\)
−0.388071 + 0.921629i \(0.626858\pi\)
\(752\) −18.0071 9.17508i −0.656652 0.334581i
\(753\) −9.56654 22.8887i −0.348624 0.834112i
\(754\) −55.6938 76.6559i −2.02825 2.79164i
\(755\) 0 0
\(756\) −6.34654 3.80605i −0.230821 0.138425i
\(757\) −22.1455 22.1455i −0.804891 0.804891i 0.178964 0.983856i \(-0.442725\pi\)
−0.983856 + 0.178964i \(0.942725\pi\)
\(758\) −5.85746 36.9825i −0.212752 1.34327i
\(759\) 0.387885 + 1.59323i 0.0140793 + 0.0578307i
\(760\) 0 0
\(761\) 33.4555 10.8703i 1.21276 0.394050i 0.368320 0.929699i \(-0.379933\pi\)
0.844440 + 0.535649i \(0.179933\pi\)
\(762\) 26.7764 44.0098i 0.970006 1.59431i
\(763\) −0.820194 1.60972i −0.0296930 0.0582758i
\(764\) 9.72984 + 29.9454i 0.352013 + 1.08339i
\(765\) 0 0
\(766\) 12.8106 39.4271i 0.462867 1.42456i
\(767\) −2.60229 + 0.412162i −0.0939632 + 0.0148823i
\(768\) −31.0148 7.34138i −1.11915 0.264909i
\(769\) −17.0696 + 23.4943i −0.615545 + 0.847225i −0.997019 0.0771542i \(-0.975417\pi\)
0.381474 + 0.924380i \(0.375417\pi\)
\(770\) 0 0
\(771\) −4.01070 + 9.77079i −0.144442 + 0.351886i
\(772\) −34.6798 5.49273i −1.24815 0.197688i
\(773\) −17.9588 + 35.2461i −0.645933 + 1.26771i 0.303227 + 0.952918i \(0.401936\pi\)
−0.949159 + 0.314796i \(0.898064\pi\)
\(774\) 18.3781 36.6455i 0.660587 1.31720i
\(775\) 0 0
\(776\) 1.89162i 0.0679051i
\(777\) −5.48756 + 0.449510i −0.196865 + 0.0161261i
\(778\) −3.32511 + 20.9939i −0.119211 + 0.752669i
\(779\) 21.3656 15.5230i 0.765503 0.556170i
\(780\) 0 0
\(781\) 6.89839 + 5.01197i 0.246844 + 0.179342i
\(782\) −4.54683 + 4.54683i −0.162594 + 0.162594i
\(783\) 12.9510 + 51.7564i 0.462832 + 1.84962i
\(784\) −26.2406 8.52609i −0.937165 0.304503i
\(785\) 0 0
\(786\) −3.17134 + 3.73725i −0.113118 + 0.133303i
\(787\) 11.8192 6.02216i 0.421307 0.214667i −0.230466 0.973080i \(-0.574025\pi\)
0.651774 + 0.758413i \(0.274025\pi\)
\(788\) −3.48151 + 1.77392i −0.124024 + 0.0631931i
\(789\) 34.9314 41.1648i 1.24359 1.46551i
\(790\) 0 0
\(791\) −2.41892 0.785955i −0.0860069 0.0279453i
\(792\) 0.954698 + 0.303476i 0.0339237 + 0.0107835i
\(793\) −31.8878 + 31.8878i −1.13237 + 1.13237i
\(794\) 12.1294 + 8.81254i 0.430457 + 0.312745i
\(795\) 0 0
\(796\) −27.8811 + 20.2568i −0.988220 + 0.717984i
\(797\) −3.63324 + 22.9393i −0.128696 + 0.812553i 0.835912 + 0.548864i \(0.184939\pi\)
−0.964608 + 0.263690i \(0.915061\pi\)
\(798\) 16.9787 1.39080i 0.601040 0.0492339i
\(799\) 16.0256i 0.566945i
\(800\) 0 0
\(801\) −26.4158 13.2478i −0.933355 0.468087i
\(802\) −18.4031 + 36.1181i −0.649836 + 1.27538i
\(803\) −8.78194 1.39092i −0.309908 0.0490846i
\(804\) −8.29838 + 20.2163i −0.292661 + 0.712975i
\(805\) 0 0
\(806\) 18.3339 25.2344i 0.645783 0.888844i
\(807\) 24.8627 + 5.88513i 0.875208 + 0.207166i
\(808\) 1.14875 0.181945i 0.0404130 0.00640080i
\(809\) −7.57984 + 23.3283i −0.266493 + 0.820181i 0.724853 + 0.688904i \(0.241908\pi\)
−0.991346 + 0.131277i \(0.958092\pi\)
\(810\) 0 0
\(811\) −7.17737 22.0897i −0.252032 0.775674i −0.994400 0.105682i \(-0.966298\pi\)
0.742368 0.669992i \(-0.233702\pi\)
\(812\) 6.63873 + 13.0292i 0.232974 + 0.457237i
\(813\) 22.1380 36.3861i 0.776413 1.27612i
\(814\) −7.47852 + 2.42992i −0.262122 + 0.0851686i
\(815\) 0 0
\(816\) 6.05286 + 24.8621i 0.211893 + 0.870347i
\(817\) 7.04756 + 44.4965i 0.246563 + 1.55674i
\(818\) −44.1115 44.1115i −1.54232 1.54232i
\(819\) −5.07144 9.79812i −0.177211 0.342374i
\(820\) 0 0
\(821\) 14.1182 + 19.4320i 0.492729 + 0.678183i 0.980888 0.194572i \(-0.0623317\pi\)
−0.488160 + 0.872754i \(0.662332\pi\)
\(822\) −12.3831 29.6277i −0.431912 1.03339i
\(823\) 26.7301 + 13.6197i 0.931752 + 0.474751i 0.852865 0.522132i \(-0.174863\pi\)
0.0788873 + 0.996884i \(0.474863\pi\)
\(824\) −1.67382 −0.0583102
\(825\) 0 0
\(826\) 0.851776 0.0296371
\(827\) −6.22861 3.17364i −0.216590 0.110358i 0.342330 0.939580i \(-0.388784\pi\)
−0.558920 + 0.829222i \(0.688784\pi\)
\(828\) 3.06645 4.27778i 0.106567 0.148663i
\(829\) −4.72836 6.50802i −0.164223 0.226033i 0.718973 0.695038i \(-0.244613\pi\)
−0.883195 + 0.469005i \(0.844613\pi\)
\(830\) 0 0
\(831\) 0.436935 5.78793i 0.0151571 0.200781i
\(832\) 21.8818 + 21.8818i 0.758617 + 0.758617i
\(833\) 3.42256 + 21.6092i 0.118585 + 0.748715i
\(834\) 21.8049 5.30856i 0.755042 0.183821i
\(835\) 0 0
\(836\) 11.0459 3.58904i 0.382031 0.124129i
\(837\) −14.8864 + 9.31964i −0.514549 + 0.322134i
\(838\) −11.4811 22.5328i −0.396606 0.778384i
\(839\) 3.47947 + 10.7087i 0.120125 + 0.369706i 0.992981 0.118271i \(-0.0377351\pi\)
−0.872857 + 0.487977i \(0.837735\pi\)
\(840\) 0 0
\(841\) 23.6164 72.6838i 0.814358 2.50634i
\(842\) −23.7118 + 3.75557i −0.817161 + 0.129426i
\(843\) −0.197749 + 0.835423i −0.00681084 + 0.0287735i
\(844\) 5.37223 7.39424i 0.184920 0.254520i
\(845\) 0 0
\(846\) −4.47173 27.1120i −0.153741 0.932130i
\(847\) 7.72166 + 1.22299i 0.265319 + 0.0420224i
\(848\) 6.80150 13.3487i 0.233565 0.458396i
\(849\) −33.7589 + 20.8360i −1.15860 + 0.715089i
\(850\) 0 0
\(851\) 3.91599i 0.134238i
\(852\) −2.23447 27.2781i −0.0765517 0.934533i
\(853\) −2.39903 + 15.1469i −0.0821411 + 0.518619i 0.911970 + 0.410256i \(0.134561\pi\)
−0.994111 + 0.108362i \(0.965439\pi\)
\(854\) 11.7947 8.56936i 0.403607 0.293237i
\(855\) 0 0
\(856\) 0.948489 + 0.689118i 0.0324187 + 0.0235536i
\(857\) −2.97404 + 2.97404i −0.101591 + 0.101591i −0.756076 0.654484i \(-0.772886\pi\)
0.654484 + 0.756076i \(0.272886\pi\)
\(858\) −10.2713 11.9487i −0.350657 0.407923i
\(859\) 24.1552 + 7.84850i 0.824165 + 0.267787i 0.690585 0.723251i \(-0.257353\pi\)
0.133579 + 0.991038i \(0.457353\pi\)
\(860\) 0 0
\(861\) 4.21601 + 3.57760i 0.143681 + 0.121924i
\(862\) −70.1681 + 35.7524i −2.38993 + 1.21773i
\(863\) 12.0203 6.12466i 0.409177 0.208486i −0.237272 0.971443i \(-0.576253\pi\)
0.646449 + 0.762957i \(0.276253\pi\)
\(864\) −15.7994 37.1333i −0.537507 1.26330i
\(865\) 0 0
\(866\) 1.29689 + 0.421384i 0.0440700 + 0.0143192i
\(867\) −6.94203 + 5.96748i −0.235764 + 0.202666i
\(868\) −3.40385 + 3.40385i −0.115534 + 0.115534i
\(869\) −5.21474 3.78873i −0.176898 0.128524i
\(870\) 0 0
\(871\) −26.3578 + 19.1501i −0.893100 + 0.648875i
\(872\) 0.122800 0.775327i 0.00415852 0.0262559i
\(873\) 13.4903 9.93350i 0.456578 0.336198i
\(874\) 12.1162i 0.409837i
\(875\) 0 0
\(876\) 14.9895 + 24.2862i 0.506447 + 0.820556i
\(877\) 6.83909 13.4225i 0.230940 0.453245i −0.746235 0.665683i \(-0.768140\pi\)
0.977175 + 0.212438i \(0.0681404\pi\)
\(878\) 66.2600 + 10.4946i 2.23617 + 0.354174i
\(879\) 16.7679 + 6.88286i 0.565567 + 0.232153i
\(880\) 0 0
\(881\) 26.2832 36.1757i 0.885504 1.21879i −0.0893619 0.995999i \(-0.528483\pi\)
0.974866 0.222792i \(-0.0715172\pi\)
\(882\) −11.8200 35.6033i −0.398001 1.19883i
\(883\) 17.2484 2.73187i 0.580454 0.0919349i 0.140699 0.990052i \(-0.455065\pi\)
0.439755 + 0.898118i \(0.355065\pi\)
\(884\) 9.11480 28.0525i 0.306564 0.943506i
\(885\) 0 0
\(886\) 17.3227 + 53.3138i 0.581968 + 1.79111i
\(887\) 19.0088 + 37.3069i 0.638253 + 1.25264i 0.952857 + 0.303420i \(0.0981284\pi\)
−0.314604 + 0.949223i \(0.601872\pi\)
\(888\) −2.04380 1.24349i −0.0685855 0.0417287i
\(889\) −11.2727 + 3.66273i −0.378075 + 0.122844i
\(890\) 0 0
\(891\) 2.84915 + 8.40220i 0.0954501 + 0.281484i
\(892\) 3.47904 + 21.9658i 0.116487 + 0.735468i
\(893\) 21.3522 + 21.3522i 0.714524 + 0.714524i
\(894\) 34.9578 + 2.63899i 1.16916 + 0.0882610i
\(895\) 0 0
\(896\) 1.23711 + 1.70273i 0.0413288 + 0.0568842i
\(897\) 7.23993 3.02599i 0.241734 0.101035i
\(898\) −31.8143 16.2102i −1.06166 0.540941i
\(899\) 34.7047 1.15747
\(900\) 0 0
\(901\) −11.8798 −0.395774
\(902\) 7.03615 + 3.58510i 0.234278 + 0.119371i
\(903\) −8.70288 + 3.63744i −0.289614 + 0.121046i
\(904\) −0.649574 0.894062i −0.0216045 0.0297361i
\(905\) 0 0
\(906\) 18.9307 + 1.42909i 0.628930 + 0.0474783i
\(907\) 3.29748 + 3.29748i 0.109491 + 0.109491i 0.759730 0.650239i \(-0.225331\pi\)
−0.650239 + 0.759730i \(0.725331\pi\)
\(908\) 4.28379 + 27.0468i 0.142162 + 0.897578i
\(909\) 7.33004 + 7.23704i 0.243122 + 0.240038i
\(910\) 0 0
\(911\) −32.2491 + 10.4784i −1.06846 + 0.347164i −0.789888 0.613251i \(-0.789861\pi\)
−0.278573 + 0.960415i \(0.589861\pi\)
\(912\) 41.1905 + 25.0611i 1.36395 + 0.829855i
\(913\) −0.639354 1.25480i −0.0211595 0.0415279i
\(914\) −12.9928 39.9877i −0.429763 1.32267i
\(915\) 0 0
\(916\) 8.64822 26.6165i 0.285745 0.879433i
\(917\) 1.11387 0.176419i 0.0367831 0.00582587i
\(918\) −22.3406 + 26.6705i −0.737351 + 0.880258i
\(919\) 26.7422 36.8075i 0.882144 1.21417i −0.0936779 0.995603i \(-0.529862\pi\)
0.975822 0.218565i \(-0.0701376\pi\)
\(920\) 0 0
\(921\) −15.7663 6.47171i −0.519516 0.213250i
\(922\) −34.8887 5.52582i −1.14900 0.181983i
\(923\) 18.5246 36.3566i 0.609745 1.19669i
\(924\) 1.27718 + 2.06932i 0.0420162 + 0.0680755i
\(925\) 0 0
\(926\) 19.9005i 0.653972i
\(927\) −8.78976 11.9371i −0.288693 0.392064i
\(928\) −12.4743 + 78.7595i −0.409488 + 2.58541i
\(929\) 28.1643 20.4626i 0.924041 0.671355i −0.0204855 0.999790i \(-0.506521\pi\)
0.944527 + 0.328435i \(0.106521\pi\)
\(930\) 0 0
\(931\) 33.3519 + 24.2315i 1.09306 + 0.794157i
\(932\) 2.79651 2.79651i 0.0916027 0.0916027i
\(933\) 2.90978 2.50130i 0.0952619 0.0818887i
\(934\) 20.9334 + 6.80167i 0.684962 + 0.222558i
\(935\) 0 0
\(936\) 0.719674 4.73948i 0.0235233 0.154915i
\(937\) 25.5737 13.0305i 0.835458 0.425687i 0.0167239 0.999860i \(-0.494676\pi\)
0.818734 + 0.574173i \(0.194676\pi\)
\(938\) 9.38474 4.78176i 0.306422 0.156130i
\(939\) 31.7183 + 26.9154i 1.03509 + 0.878351i
\(940\) 0 0
\(941\) −48.7206 15.8303i −1.58825 0.516053i −0.624083 0.781358i \(-0.714527\pi\)
−0.964164 + 0.265305i \(0.914527\pi\)
\(942\) 22.4440 + 26.1093i 0.731266 + 0.850688i
\(943\) −2.78081 + 2.78081i −0.0905556 + 0.0905556i
\(944\) 1.95034 + 1.41701i 0.0634782 + 0.0461196i
\(945\) 0 0
\(946\) −10.8983 + 7.91810i −0.354335 + 0.257440i
\(947\) −4.38792 + 27.7042i −0.142588 + 0.900267i 0.807858 + 0.589377i \(0.200627\pi\)
−0.950446 + 0.310890i \(0.899373\pi\)
\(948\) 1.68912 + 20.6205i 0.0548600 + 0.669723i
\(949\) 42.5484i 1.38118i
\(950\) 0 0
\(951\) −1.14835 + 0.708762i −0.0372378 + 0.0229832i
\(952\) 0.410338 0.805334i 0.0132991 0.0261010i
\(953\) −3.32321 0.526345i −0.107649 0.0170500i 0.102377 0.994746i \(-0.467355\pi\)
−0.210027 + 0.977696i \(0.567355\pi\)
\(954\) 20.0982 3.31490i 0.650702 0.107324i
\(955\) 0 0
\(956\) 24.4748 33.6867i 0.791573 1.08951i
\(957\) 4.03818 17.0600i 0.130536 0.551470i
\(958\) 33.4475 5.29756i 1.08064 0.171156i
\(959\) −2.28312 + 7.02671i −0.0737257 + 0.226904i
\(960\) 0 0
\(961\) −6.04918 18.6175i −0.195135 0.600563i
\(962\) 17.0832 + 33.5276i 0.550783 + 1.08097i
\(963\) 0.0662881 + 10.3831i 0.00213610 + 0.334589i
\(964\) −3.97032 + 1.29003i −0.127875 + 0.0415492i
\(965\) 0 0
\(966\) −2.46480 + 0.600074i −0.0793036 + 0.0193071i
\(967\) −4.46829 28.2117i −0.143690 0.907226i −0.949207 0.314653i \(-0.898112\pi\)
0.805516 0.592573i \(-0.201888\pi\)
\(968\) 2.40199 + 2.40199i 0.0772028 + 0.0772028i
\(969\) 2.87803 38.1243i 0.0924556 1.22473i
\(970\) 0 0
\(971\) −18.4852 25.4427i −0.593218 0.816495i 0.401848 0.915706i \(-0.368368\pi\)
−0.995066 + 0.0992113i \(0.968368\pi\)
\(972\) 14.4901 24.5156i 0.464771 0.786337i
\(973\) −4.60071 2.34418i −0.147492 0.0751509i
\(974\) 20.7829 0.665926
\(975\) 0 0
\(976\) 41.2627 1.32079
\(977\) 4.10325 + 2.09071i 0.131275 + 0.0668877i 0.518394 0.855142i \(-0.326530\pi\)
−0.387120 + 0.922029i \(0.626530\pi\)
\(978\) −25.4761 60.9537i −0.814636 1.94909i
\(979\) 5.70773 + 7.85601i 0.182420 + 0.251079i
\(980\) 0 0
\(981\) 6.17421 3.19573i 0.197127 0.102032i
\(982\) −10.2872 10.2872i −0.328277 0.328277i
\(983\) 2.00270 + 12.6446i 0.0638763 + 0.403299i 0.998823 + 0.0485102i \(0.0154473\pi\)
−0.934946 + 0.354789i \(0.884553\pi\)
\(984\) 0.568317 + 2.33436i 0.0181173 + 0.0744166i
\(985\) 0 0
\(986\) 65.3827 21.2441i 2.08221 0.676551i
\(987\) −3.28617 + 5.40117i −0.104600 + 0.171921i
\(988\) −25.2322 49.5210i −0.802743 1.57547i
\(989\) −2.07308 6.38029i −0.0659202 0.202882i
\(990\) 0 0
\(991\) −14.7045 + 45.2557i −0.467103 + 1.43759i 0.389216 + 0.921147i \(0.372746\pi\)
−0.856319 + 0.516448i \(0.827254\pi\)
\(992\) −25.9269 + 4.10641i −0.823179 + 0.130379i
\(993\) −25.2636 5.98003i −0.801717 0.189771i
\(994\) −7.75373 + 10.6721i −0.245933 + 0.338498i
\(995\) 0 0
\(996\) −1.71652 + 4.18175i −0.0543900 + 0.132504i
\(997\) 20.1708 + 3.19474i 0.638816 + 0.101179i 0.467437 0.884027i \(-0.345178\pi\)
0.171379 + 0.985205i \(0.445178\pi\)
\(998\) 20.3541 39.9472i 0.644297 1.26451i
\(999\) −1.86457 21.1056i −0.0589924 0.667751i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.2.l.a.107.7 64
3.2 odd 2 inner 375.2.l.a.107.2 64
5.2 odd 4 375.2.l.c.143.2 64
5.3 odd 4 75.2.l.a.8.7 yes 64
5.4 even 2 375.2.l.b.107.2 64
15.2 even 4 375.2.l.c.143.7 64
15.8 even 4 75.2.l.a.8.2 64
15.14 odd 2 375.2.l.b.107.7 64
25.3 odd 20 inner 375.2.l.a.368.2 64
25.4 even 10 375.2.l.c.257.7 64
25.21 even 5 75.2.l.a.47.2 yes 64
25.22 odd 20 375.2.l.b.368.7 64
75.29 odd 10 375.2.l.c.257.2 64
75.47 even 20 375.2.l.b.368.2 64
75.53 even 20 inner 375.2.l.a.368.7 64
75.71 odd 10 75.2.l.a.47.7 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.l.a.8.2 64 15.8 even 4
75.2.l.a.8.7 yes 64 5.3 odd 4
75.2.l.a.47.2 yes 64 25.21 even 5
75.2.l.a.47.7 yes 64 75.71 odd 10
375.2.l.a.107.2 64 3.2 odd 2 inner
375.2.l.a.107.7 64 1.1 even 1 trivial
375.2.l.a.368.2 64 25.3 odd 20 inner
375.2.l.a.368.7 64 75.53 even 20 inner
375.2.l.b.107.2 64 5.4 even 2
375.2.l.b.107.7 64 15.14 odd 2
375.2.l.b.368.2 64 75.47 even 20
375.2.l.b.368.7 64 25.22 odd 20
375.2.l.c.143.2 64 5.2 odd 4
375.2.l.c.143.7 64 15.2 even 4
375.2.l.c.257.2 64 75.29 odd 10
375.2.l.c.257.7 64 25.4 even 10