Properties

Label 375.2.e.c.182.8
Level $375$
Weight $2$
Character 375.182
Analytic conductor $2.994$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,2,Mod(68,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 182.8
Character \(\chi\) \(=\) 375.182
Dual form 375.2.e.c.68.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.413570 + 0.413570i) q^{2} +(1.69938 + 0.334821i) q^{3} +1.65792i q^{4} +(-0.841285 + 0.564341i) q^{6} +(2.93422 + 2.93422i) q^{7} +(-1.51281 - 1.51281i) q^{8} +(2.77579 + 1.13798i) q^{9} -5.05566i q^{11} +(-0.555106 + 2.81744i) q^{12} +(-0.394459 + 0.394459i) q^{13} -2.42701 q^{14} -2.06454 q^{16} +(-4.21618 + 4.21618i) q^{17} +(-1.61862 + 0.677351i) q^{18} -3.72246i q^{19} +(4.00391 + 5.96879i) q^{21} +(2.09087 + 2.09087i) q^{22} +(1.85974 + 1.85974i) q^{23} +(-2.06431 - 3.07735i) q^{24} -0.326273i q^{26} +(4.33611 + 2.86325i) q^{27} +(-4.86469 + 4.86469i) q^{28} -2.32216 q^{29} +0.707221 q^{31} +(3.87944 - 3.87944i) q^{32} +(1.69274 - 8.59150i) q^{33} -3.48737i q^{34} +(-1.88667 + 4.60204i) q^{36} +(-2.33466 - 2.33466i) q^{37} +(1.53950 + 1.53950i) q^{38} +(-0.802409 + 0.538263i) q^{39} -4.45490i q^{41} +(-4.12441 - 0.812613i) q^{42} +(4.74766 - 4.74766i) q^{43} +8.38188 q^{44} -1.53826 q^{46} +(-2.25881 + 2.25881i) q^{47} +(-3.50843 - 0.691250i) q^{48} +10.2192i q^{49} +(-8.57656 + 5.75323i) q^{51} +(-0.653981 - 0.653981i) q^{52} +(5.26793 + 5.26793i) q^{53} +(-2.97744 + 0.609130i) q^{54} -8.87780i q^{56} +(1.24636 - 6.32587i) q^{57} +(0.960377 - 0.960377i) q^{58} -0.326273 q^{59} +1.14590 q^{61} +(-0.292485 + 0.292485i) q^{62} +(4.80570 + 11.4838i) q^{63} -0.920229i q^{64} +(2.85312 + 4.25325i) q^{66} +(-7.14493 - 7.14493i) q^{67} +(-6.99008 - 6.99008i) q^{68} +(2.53772 + 3.78308i) q^{69} -3.12457i q^{71} +(-2.47769 - 5.92077i) q^{72} +(1.44290 - 1.44290i) q^{73} +1.93109 q^{74} +6.17153 q^{76} +(14.8344 - 14.8344i) q^{77} +(0.109243 - 0.554462i) q^{78} -0.0493012i q^{79} +(6.41002 + 6.31757i) q^{81} +(1.84241 + 1.84241i) q^{82} +(-8.20345 - 8.20345i) q^{83} +(-9.89577 + 6.63816i) q^{84} +3.92698i q^{86} +(-3.94624 - 0.777509i) q^{87} +(-7.64824 + 7.64824i) q^{88} +5.75323 q^{89} -2.31486 q^{91} +(-3.08329 + 3.08329i) q^{92} +(1.20184 + 0.236792i) q^{93} -1.86835i q^{94} +(7.89157 - 5.29373i) q^{96} +(-9.64599 - 9.64599i) q^{97} +(-4.22637 - 4.22637i) q^{98} +(5.75323 - 14.0335i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 12 q^{6} - 24 q^{16} + 32 q^{21} - 56 q^{31} - 116 q^{36} - 96 q^{46} - 48 q^{51} + 144 q^{61} + 120 q^{66} + 168 q^{76} + 132 q^{81} - 56 q^{91} + 76 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.413570 + 0.413570i −0.292438 + 0.292438i −0.838043 0.545605i \(-0.816300\pi\)
0.545605 + 0.838043i \(0.316300\pi\)
\(3\) 1.69938 + 0.334821i 0.981138 + 0.193309i
\(4\) 1.65792i 0.828960i
\(5\) 0 0
\(6\) −0.841285 + 0.564341i −0.343453 + 0.230391i
\(7\) 2.93422 + 2.93422i 1.10903 + 1.10903i 0.993278 + 0.115751i \(0.0369275\pi\)
0.115751 + 0.993278i \(0.463073\pi\)
\(8\) −1.51281 1.51281i −0.534858 0.534858i
\(9\) 2.77579 + 1.13798i 0.925263 + 0.379326i
\(10\) 0 0
\(11\) 5.05566i 1.52434i −0.647377 0.762170i \(-0.724134\pi\)
0.647377 0.762170i \(-0.275866\pi\)
\(12\) −0.555106 + 2.81744i −0.160245 + 0.813324i
\(13\) −0.394459 + 0.394459i −0.109403 + 0.109403i −0.759689 0.650286i \(-0.774649\pi\)
0.650286 + 0.759689i \(0.274649\pi\)
\(14\) −2.42701 −0.648645
\(15\) 0 0
\(16\) −2.06454 −0.516134
\(17\) −4.21618 + 4.21618i −1.02257 + 1.02257i −0.0228342 + 0.999739i \(0.507269\pi\)
−0.999739 + 0.0228342i \(0.992731\pi\)
\(18\) −1.61862 + 0.677351i −0.381512 + 0.159653i
\(19\) 3.72246i 0.853990i −0.904254 0.426995i \(-0.859572\pi\)
0.904254 0.426995i \(-0.140428\pi\)
\(20\) 0 0
\(21\) 4.00391 + 5.96879i 0.873725 + 1.30250i
\(22\) 2.09087 + 2.09087i 0.445775 + 0.445775i
\(23\) 1.85974 + 1.85974i 0.387782 + 0.387782i 0.873896 0.486114i \(-0.161586\pi\)
−0.486114 + 0.873896i \(0.661586\pi\)
\(24\) −2.06431 3.07735i −0.421376 0.628162i
\(25\) 0 0
\(26\) 0.326273i 0.0639874i
\(27\) 4.33611 + 2.86325i 0.834484 + 0.551032i
\(28\) −4.86469 + 4.86469i −0.919341 + 0.919341i
\(29\) −2.32216 −0.431215 −0.215607 0.976480i \(-0.569173\pi\)
−0.215607 + 0.976480i \(0.569173\pi\)
\(30\) 0 0
\(31\) 0.707221 0.127021 0.0635103 0.997981i \(-0.479770\pi\)
0.0635103 + 0.997981i \(0.479770\pi\)
\(32\) 3.87944 3.87944i 0.685795 0.685795i
\(33\) 1.69274 8.59150i 0.294669 1.49559i
\(34\) 3.48737i 0.598079i
\(35\) 0 0
\(36\) −1.88667 + 4.60204i −0.314446 + 0.767006i
\(37\) −2.33466 2.33466i −0.383816 0.383816i 0.488659 0.872475i \(-0.337486\pi\)
−0.872475 + 0.488659i \(0.837486\pi\)
\(38\) 1.53950 + 1.53950i 0.249739 + 0.249739i
\(39\) −0.802409 + 0.538263i −0.128488 + 0.0861911i
\(40\) 0 0
\(41\) 4.45490i 0.695739i −0.937543 0.347869i \(-0.886905\pi\)
0.937543 0.347869i \(-0.113095\pi\)
\(42\) −4.12441 0.812613i −0.636410 0.125389i
\(43\) 4.74766 4.74766i 0.724011 0.724011i −0.245408 0.969420i \(-0.578922\pi\)
0.969420 + 0.245408i \(0.0789220\pi\)
\(44\) 8.38188 1.26362
\(45\) 0 0
\(46\) −1.53826 −0.226804
\(47\) −2.25881 + 2.25881i −0.329481 + 0.329481i −0.852389 0.522908i \(-0.824847\pi\)
0.522908 + 0.852389i \(0.324847\pi\)
\(48\) −3.50843 0.691250i −0.506399 0.0997734i
\(49\) 10.2192i 1.45989i
\(50\) 0 0
\(51\) −8.57656 + 5.75323i −1.20096 + 0.805613i
\(52\) −0.653981 0.653981i −0.0906909 0.0906909i
\(53\) 5.26793 + 5.26793i 0.723606 + 0.723606i 0.969338 0.245732i \(-0.0790284\pi\)
−0.245732 + 0.969338i \(0.579028\pi\)
\(54\) −2.97744 + 0.609130i −0.405178 + 0.0828920i
\(55\) 0 0
\(56\) 8.87780i 1.18635i
\(57\) 1.24636 6.32587i 0.165084 0.837882i
\(58\) 0.960377 0.960377i 0.126104 0.126104i
\(59\) −0.326273 −0.0424771 −0.0212386 0.999774i \(-0.506761\pi\)
−0.0212386 + 0.999774i \(0.506761\pi\)
\(60\) 0 0
\(61\) 1.14590 0.146717 0.0733586 0.997306i \(-0.476628\pi\)
0.0733586 + 0.997306i \(0.476628\pi\)
\(62\) −0.292485 + 0.292485i −0.0371457 + 0.0371457i
\(63\) 4.80570 + 11.4838i 0.605461 + 1.44683i
\(64\) 0.920229i 0.115029i
\(65\) 0 0
\(66\) 2.85312 + 4.25325i 0.351195 + 0.523539i
\(67\) −7.14493 7.14493i −0.872892 0.872892i 0.119895 0.992787i \(-0.461744\pi\)
−0.992787 + 0.119895i \(0.961744\pi\)
\(68\) −6.99008 6.99008i −0.847672 0.847672i
\(69\) 2.53772 + 3.78308i 0.305506 + 0.455429i
\(70\) 0 0
\(71\) 3.12457i 0.370818i −0.982661 0.185409i \(-0.940639\pi\)
0.982661 0.185409i \(-0.0593611\pi\)
\(72\) −2.47769 5.92077i −0.291999 0.697769i
\(73\) 1.44290 1.44290i 0.168879 0.168879i −0.617608 0.786486i \(-0.711898\pi\)
0.786486 + 0.617608i \(0.211898\pi\)
\(74\) 1.93109 0.224485
\(75\) 0 0
\(76\) 6.17153 0.707923
\(77\) 14.8344 14.8344i 1.69054 1.69054i
\(78\) 0.109243 0.554462i 0.0123693 0.0627805i
\(79\) 0.0493012i 0.00554682i −0.999996 0.00277341i \(-0.999117\pi\)
0.999996 0.00277341i \(-0.000882805\pi\)
\(80\) 0 0
\(81\) 6.41002 + 6.31757i 0.712224 + 0.701952i
\(82\) 1.84241 + 1.84241i 0.203461 + 0.203461i
\(83\) −8.20345 8.20345i −0.900445 0.900445i 0.0950292 0.995474i \(-0.469706\pi\)
−0.995474 + 0.0950292i \(0.969706\pi\)
\(84\) −9.89577 + 6.63816i −1.07972 + 0.724283i
\(85\) 0 0
\(86\) 3.92698i 0.423457i
\(87\) −3.94624 0.777509i −0.423081 0.0833577i
\(88\) −7.64824 + 7.64824i −0.815305 + 0.815305i
\(89\) 5.75323 0.609841 0.304920 0.952378i \(-0.401370\pi\)
0.304920 + 0.952378i \(0.401370\pi\)
\(90\) 0 0
\(91\) −2.31486 −0.242663
\(92\) −3.08329 + 3.08329i −0.321456 + 0.321456i
\(93\) 1.20184 + 0.236792i 0.124625 + 0.0245542i
\(94\) 1.86835i 0.192706i
\(95\) 0 0
\(96\) 7.89157 5.29373i 0.805430 0.540289i
\(97\) −9.64599 9.64599i −0.979402 0.979402i 0.0203901 0.999792i \(-0.493509\pi\)
−0.999792 + 0.0203901i \(0.993509\pi\)
\(98\) −4.22637 4.22637i −0.426928 0.426928i
\(99\) 5.75323 14.0335i 0.578221 1.41042i
\(100\) 0 0
\(101\) 12.4137i 1.23521i −0.786488 0.617605i \(-0.788103\pi\)
0.786488 0.617605i \(-0.211897\pi\)
\(102\) 1.16765 5.92637i 0.115614 0.586798i
\(103\) 3.87068 3.87068i 0.381389 0.381389i −0.490213 0.871603i \(-0.663081\pi\)
0.871603 + 0.490213i \(0.163081\pi\)
\(104\) 1.19348 0.117030
\(105\) 0 0
\(106\) −4.35732 −0.423220
\(107\) −1.23052 + 1.23052i −0.118958 + 0.118958i −0.764080 0.645122i \(-0.776807\pi\)
0.645122 + 0.764080i \(0.276807\pi\)
\(108\) −4.74704 + 7.18891i −0.456784 + 0.691754i
\(109\) 4.43225i 0.424533i −0.977212 0.212266i \(-0.931916\pi\)
0.977212 0.212266i \(-0.0680844\pi\)
\(110\) 0 0
\(111\) −3.18578 4.74917i −0.302381 0.450771i
\(112\) −6.05779 6.05779i −0.572408 0.572408i
\(113\) 8.78129 + 8.78129i 0.826074 + 0.826074i 0.986971 0.160897i \(-0.0514387\pi\)
−0.160897 + 0.986971i \(0.551439\pi\)
\(114\) 2.10073 + 3.13165i 0.196752 + 0.293306i
\(115\) 0 0
\(116\) 3.84996i 0.357460i
\(117\) −1.54382 + 0.646050i −0.142726 + 0.0597274i
\(118\) 0.134937 0.134937i 0.0124219 0.0124219i
\(119\) −24.7424 −2.26813
\(120\) 0 0
\(121\) −14.5597 −1.32361
\(122\) −0.473909 + 0.473909i −0.0429057 + 0.0429057i
\(123\) 1.49159 7.57057i 0.134493 0.682616i
\(124\) 1.17252i 0.105295i
\(125\) 0 0
\(126\) −6.73686 2.76188i −0.600167 0.246048i
\(127\) 11.2543 + 11.2543i 0.998661 + 0.998661i 0.999999 0.00133793i \(-0.000425876\pi\)
−0.00133793 + 0.999999i \(0.500426\pi\)
\(128\) 8.13946 + 8.13946i 0.719434 + 0.719434i
\(129\) 9.65770 6.47847i 0.850313 0.570397i
\(130\) 0 0
\(131\) 14.4294i 1.26070i 0.776311 + 0.630350i \(0.217089\pi\)
−0.776311 + 0.630350i \(0.782911\pi\)
\(132\) 14.2440 + 2.80643i 1.23978 + 0.244268i
\(133\) 10.9225 10.9225i 0.947100 0.947100i
\(134\) 5.90986 0.510534
\(135\) 0 0
\(136\) 12.7565 1.09386
\(137\) 2.07415 2.07415i 0.177207 0.177207i −0.612930 0.790137i \(-0.710009\pi\)
0.790137 + 0.612930i \(0.210009\pi\)
\(138\) −2.61409 0.515043i −0.222526 0.0438434i
\(139\) 17.1389i 1.45370i −0.686797 0.726850i \(-0.740984\pi\)
0.686797 0.726850i \(-0.259016\pi\)
\(140\) 0 0
\(141\) −4.59488 + 3.08228i −0.386959 + 0.259575i
\(142\) 1.29223 + 1.29223i 0.108441 + 0.108441i
\(143\) 1.99425 + 1.99425i 0.166768 + 0.166768i
\(144\) −5.73072 2.34939i −0.477560 0.195783i
\(145\) 0 0
\(146\) 1.19348i 0.0987731i
\(147\) −3.42162 + 17.3664i −0.282210 + 1.43236i
\(148\) 3.87068 3.87068i 0.318168 0.318168i
\(149\) −12.8646 −1.05391 −0.526955 0.849893i \(-0.676666\pi\)
−0.526955 + 0.849893i \(0.676666\pi\)
\(150\) 0 0
\(151\) 18.4690 1.50298 0.751491 0.659743i \(-0.229335\pi\)
0.751491 + 0.659743i \(0.229335\pi\)
\(152\) −5.63135 + 5.63135i −0.456763 + 0.456763i
\(153\) −16.5011 + 6.90531i −1.33404 + 0.558261i
\(154\) 12.2701i 0.988756i
\(155\) 0 0
\(156\) −0.892397 1.33033i −0.0714489 0.106512i
\(157\) −5.05406 5.05406i −0.403358 0.403358i 0.476057 0.879414i \(-0.342066\pi\)
−0.879414 + 0.476057i \(0.842066\pi\)
\(158\) 0.0203895 + 0.0203895i 0.00162210 + 0.00162210i
\(159\) 7.18840 + 10.7160i 0.570077 + 0.849836i
\(160\) 0 0
\(161\) 10.9137i 0.860123i
\(162\) −5.26375 + 0.0382343i −0.413559 + 0.00300397i
\(163\) 1.49132 1.49132i 0.116809 0.116809i −0.646286 0.763095i \(-0.723679\pi\)
0.763095 + 0.646286i \(0.223679\pi\)
\(164\) 7.38587 0.576739
\(165\) 0 0
\(166\) 6.78540 0.526649
\(167\) −10.9448 + 10.9448i −0.846932 + 0.846932i −0.989749 0.142817i \(-0.954384\pi\)
0.142817 + 0.989749i \(0.454384\pi\)
\(168\) 2.97247 15.0868i 0.229331 1.16397i
\(169\) 12.6888i 0.976062i
\(170\) 0 0
\(171\) 4.23607 10.3328i 0.323940 0.790165i
\(172\) 7.87124 + 7.87124i 0.600176 + 0.600176i
\(173\) 4.06251 + 4.06251i 0.308867 + 0.308867i 0.844470 0.535603i \(-0.179916\pi\)
−0.535603 + 0.844470i \(0.679916\pi\)
\(174\) 1.95360 1.31049i 0.148102 0.0993481i
\(175\) 0 0
\(176\) 10.4376i 0.786764i
\(177\) −0.554462 0.109243i −0.0416759 0.00821121i
\(178\) −2.37936 + 2.37936i −0.178341 + 0.178341i
\(179\) 11.9574 0.893735 0.446867 0.894600i \(-0.352540\pi\)
0.446867 + 0.894600i \(0.352540\pi\)
\(180\) 0 0
\(181\) −16.1242 −1.19851 −0.599253 0.800560i \(-0.704535\pi\)
−0.599253 + 0.800560i \(0.704535\pi\)
\(182\) 0.957355 0.957355i 0.0709639 0.0709639i
\(183\) 1.94732 + 0.383671i 0.143950 + 0.0283618i
\(184\) 5.62684i 0.414816i
\(185\) 0 0
\(186\) −0.594974 + 0.399114i −0.0436256 + 0.0292644i
\(187\) 21.3156 + 21.3156i 1.55875 + 1.55875i
\(188\) −3.74493 3.74493i −0.273127 0.273127i
\(189\) 4.32168 + 21.1245i 0.314356 + 1.53658i
\(190\) 0 0
\(191\) 16.8114i 1.21643i 0.793773 + 0.608214i \(0.208114\pi\)
−0.793773 + 0.608214i \(0.791886\pi\)
\(192\) 0.308112 1.56382i 0.0222361 0.112859i
\(193\) −14.8604 + 14.8604i −1.06968 + 1.06968i −0.0722946 + 0.997383i \(0.523032\pi\)
−0.997383 + 0.0722946i \(0.976968\pi\)
\(194\) 7.97859 0.572829
\(195\) 0 0
\(196\) −16.9427 −1.21019
\(197\) 3.43288 3.43288i 0.244583 0.244583i −0.574160 0.818743i \(-0.694671\pi\)
0.818743 + 0.574160i \(0.194671\pi\)
\(198\) 3.42446 + 8.18318i 0.243366 + 0.581553i
\(199\) 17.1084i 1.21278i 0.795167 + 0.606391i \(0.207383\pi\)
−0.795167 + 0.606391i \(0.792617\pi\)
\(200\) 0 0
\(201\) −9.74968 14.5342i −0.687689 1.02517i
\(202\) 5.13394 + 5.13394i 0.361223 + 0.361223i
\(203\) −6.81373 6.81373i −0.478230 0.478230i
\(204\) −9.53839 14.2192i −0.667821 0.995546i
\(205\) 0 0
\(206\) 3.20159i 0.223066i
\(207\) 3.04590 + 7.27857i 0.211705 + 0.505896i
\(208\) 0.814375 0.814375i 0.0564667 0.0564667i
\(209\) −18.8195 −1.30177
\(210\) 0 0
\(211\) −7.12265 −0.490343 −0.245172 0.969480i \(-0.578844\pi\)
−0.245172 + 0.969480i \(0.578844\pi\)
\(212\) −8.73380 + 8.73380i −0.599840 + 0.599840i
\(213\) 1.04617 5.30984i 0.0716825 0.363824i
\(214\) 1.01781i 0.0695760i
\(215\) 0 0
\(216\) −2.22815 10.8912i −0.151606 0.741054i
\(217\) 2.07514 + 2.07514i 0.140870 + 0.140870i
\(218\) 1.83305 + 1.83305i 0.124150 + 0.124150i
\(219\) 2.93515 1.96892i 0.198339 0.133047i
\(220\) 0 0
\(221\) 3.32622i 0.223746i
\(222\) 3.28166 + 0.646570i 0.220251 + 0.0433949i
\(223\) −14.3937 + 14.3937i −0.963870 + 0.963870i −0.999370 0.0354995i \(-0.988698\pi\)
0.0354995 + 0.999370i \(0.488698\pi\)
\(224\) 22.7662 1.52113
\(225\) 0 0
\(226\) −7.26336 −0.483151
\(227\) −5.29262 + 5.29262i −0.351283 + 0.351283i −0.860587 0.509304i \(-0.829903\pi\)
0.509304 + 0.860587i \(0.329903\pi\)
\(228\) 10.4878 + 2.06636i 0.694570 + 0.136848i
\(229\) 12.4848i 0.825019i −0.910953 0.412509i \(-0.864652\pi\)
0.910953 0.412509i \(-0.135348\pi\)
\(230\) 0 0
\(231\) 30.1762 20.2424i 1.98545 1.33185i
\(232\) 3.51298 + 3.51298i 0.230639 + 0.230639i
\(233\) −8.88711 8.88711i −0.582214 0.582214i 0.353297 0.935511i \(-0.385060\pi\)
−0.935511 + 0.353297i \(0.885060\pi\)
\(234\) 0.371291 0.905665i 0.0242721 0.0592052i
\(235\) 0 0
\(236\) 0.540934i 0.0352118i
\(237\) 0.0165071 0.0837815i 0.00107225 0.00544220i
\(238\) 10.2327 10.2327i 0.663287 0.663287i
\(239\) −18.6949 −1.20927 −0.604635 0.796503i \(-0.706681\pi\)
−0.604635 + 0.796503i \(0.706681\pi\)
\(240\) 0 0
\(241\) 20.6840 1.33237 0.666186 0.745786i \(-0.267926\pi\)
0.666186 + 0.745786i \(0.267926\pi\)
\(242\) 6.02147 6.02147i 0.387075 0.387075i
\(243\) 8.77781 + 12.8822i 0.563097 + 0.826391i
\(244\) 1.89981i 0.121623i
\(245\) 0 0
\(246\) 2.51408 + 3.74784i 0.160292 + 0.238954i
\(247\) 1.46836 + 1.46836i 0.0934293 + 0.0934293i
\(248\) −1.06989 1.06989i −0.0679380 0.0679380i
\(249\) −11.1941 16.6875i −0.709397 1.05753i
\(250\) 0 0
\(251\) 26.0079i 1.64160i 0.571213 + 0.820802i \(0.306473\pi\)
−0.571213 + 0.820802i \(0.693527\pi\)
\(252\) −19.0393 + 7.96746i −1.19936 + 0.501903i
\(253\) 9.40220 9.40220i 0.591111 0.591111i
\(254\) −9.30892 −0.584093
\(255\) 0 0
\(256\) −4.89202 −0.305751
\(257\) −14.1375 + 14.1375i −0.881872 + 0.881872i −0.993725 0.111853i \(-0.964321\pi\)
0.111853 + 0.993725i \(0.464321\pi\)
\(258\) −1.31484 + 6.67344i −0.0818581 + 0.415470i
\(259\) 13.7008i 0.851326i
\(260\) 0 0
\(261\) −6.44583 2.64257i −0.398987 0.163571i
\(262\) −5.96756 5.96756i −0.368677 0.368677i
\(263\) −16.8482 16.8482i −1.03891 1.03891i −0.999212 0.0396938i \(-0.987362\pi\)
−0.0396938 0.999212i \(-0.512638\pi\)
\(264\) −15.5581 + 10.4365i −0.957532 + 0.642321i
\(265\) 0 0
\(266\) 9.03443i 0.553936i
\(267\) 9.77692 + 1.92630i 0.598338 + 0.117888i
\(268\) 11.8457 11.8457i 0.723592 0.723592i
\(269\) 29.3947 1.79223 0.896114 0.443824i \(-0.146379\pi\)
0.896114 + 0.443824i \(0.146379\pi\)
\(270\) 0 0
\(271\) 16.2670 0.988147 0.494073 0.869420i \(-0.335507\pi\)
0.494073 + 0.869420i \(0.335507\pi\)
\(272\) 8.70445 8.70445i 0.527785 0.527785i
\(273\) −3.93382 0.775062i −0.238086 0.0469089i
\(274\) 1.71561i 0.103644i
\(275\) 0 0
\(276\) −6.27204 + 4.20734i −0.377533 + 0.253252i
\(277\) −15.3735 15.3735i −0.923703 0.923703i 0.0735862 0.997289i \(-0.476556\pi\)
−0.997289 + 0.0735862i \(0.976556\pi\)
\(278\) 7.08812 + 7.08812i 0.425117 + 0.425117i
\(279\) 1.96310 + 0.804801i 0.117527 + 0.0481822i
\(280\) 0 0
\(281\) 9.28914i 0.554143i −0.960849 0.277072i \(-0.910636\pi\)
0.960849 0.277072i \(-0.0893640\pi\)
\(282\) 0.625564 3.17504i 0.0372518 0.189071i
\(283\) −13.2632 + 13.2632i −0.788413 + 0.788413i −0.981234 0.192821i \(-0.938236\pi\)
0.192821 + 0.981234i \(0.438236\pi\)
\(284\) 5.18029 0.307394
\(285\) 0 0
\(286\) −1.64953 −0.0975385
\(287\) 13.0716 13.0716i 0.771595 0.771595i
\(288\) 15.1832 6.35380i 0.894681 0.374401i
\(289\) 18.5523i 1.09131i
\(290\) 0 0
\(291\) −13.1625 19.6219i −0.771601 1.15026i
\(292\) 2.39221 + 2.39221i 0.139994 + 0.139994i
\(293\) 3.72347 + 3.72347i 0.217528 + 0.217528i 0.807456 0.589928i \(-0.200844\pi\)
−0.589928 + 0.807456i \(0.700844\pi\)
\(294\) −5.76714 8.59730i −0.336346 0.501404i
\(295\) 0 0
\(296\) 7.06378i 0.410574i
\(297\) 14.4756 21.9219i 0.839961 1.27204i
\(298\) 5.32042 5.32042i 0.308203 0.308203i
\(299\) −1.46718 −0.0848492
\(300\) 0 0
\(301\) 27.8613 1.60590
\(302\) −7.63821 + 7.63821i −0.439529 + 0.439529i
\(303\) 4.15637 21.0956i 0.238777 1.21191i
\(304\) 7.68514i 0.440773i
\(305\) 0 0
\(306\) 3.96855 9.68021i 0.226867 0.553381i
\(307\) −6.96157 6.96157i −0.397318 0.397318i 0.479968 0.877286i \(-0.340648\pi\)
−0.877286 + 0.479968i \(0.840648\pi\)
\(308\) 24.5943 + 24.5943i 1.40139 + 1.40139i
\(309\) 7.87374 5.28177i 0.447922 0.300470i
\(310\) 0 0
\(311\) 11.5915i 0.657295i −0.944453 0.328647i \(-0.893407\pi\)
0.944453 0.328647i \(-0.106593\pi\)
\(312\) 2.02818 + 0.399602i 0.114823 + 0.0226230i
\(313\) −12.9715 + 12.9715i −0.733195 + 0.733195i −0.971251 0.238056i \(-0.923490\pi\)
0.238056 + 0.971251i \(0.423490\pi\)
\(314\) 4.18041 0.235914
\(315\) 0 0
\(316\) 0.0817375 0.00459809
\(317\) 19.6531 19.6531i 1.10383 1.10383i 0.109885 0.993944i \(-0.464952\pi\)
0.993944 0.109885i \(-0.0350481\pi\)
\(318\) −7.40474 1.45892i −0.415237 0.0818122i
\(319\) 11.7401i 0.657318i
\(320\) 0 0
\(321\) −2.50312 + 1.67911i −0.139710 + 0.0937189i
\(322\) −4.51360 4.51360i −0.251533 0.251533i
\(323\) 15.6945 + 15.6945i 0.873267 + 0.873267i
\(324\) −10.4740 + 10.6273i −0.581890 + 0.590405i
\(325\) 0 0
\(326\) 1.23353i 0.0683188i
\(327\) 1.48401 7.53208i 0.0820660 0.416525i
\(328\) −6.73940 + 6.73940i −0.372121 + 0.372121i
\(329\) −13.2557 −0.730809
\(330\) 0 0
\(331\) −35.7936 −1.96739 −0.983697 0.179833i \(-0.942444\pi\)
−0.983697 + 0.179833i \(0.942444\pi\)
\(332\) 13.6007 13.6007i 0.746433 0.746433i
\(333\) −3.82374 9.13732i −0.209540 0.500722i
\(334\) 9.05286i 0.495350i
\(335\) 0 0
\(336\) −8.26622 12.3228i −0.450959 0.672263i
\(337\) −20.6773 20.6773i −1.12637 1.12637i −0.990763 0.135603i \(-0.956703\pi\)
−0.135603 0.990763i \(-0.543297\pi\)
\(338\) −5.24771 5.24771i −0.285438 0.285438i
\(339\) 11.9826 + 17.8629i 0.650805 + 0.970180i
\(340\) 0 0
\(341\) 3.57547i 0.193623i
\(342\) 2.52141 + 6.02523i 0.136342 + 0.325807i
\(343\) −9.44595 + 9.44595i −0.510033 + 0.510033i
\(344\) −14.3646 −0.774486
\(345\) 0 0
\(346\) −3.36027 −0.180649
\(347\) −15.1348 + 15.1348i −0.812481 + 0.812481i −0.985005 0.172525i \(-0.944808\pi\)
0.172525 + 0.985005i \(0.444808\pi\)
\(348\) 1.28905 6.54255i 0.0691002 0.350717i
\(349\) 7.13165i 0.381748i 0.981615 + 0.190874i \(0.0611322\pi\)
−0.981615 + 0.190874i \(0.938868\pi\)
\(350\) 0 0
\(351\) −2.83985 + 0.580982i −0.151580 + 0.0310105i
\(352\) −19.6132 19.6132i −1.04538 1.04538i
\(353\) −24.2562 24.2562i −1.29103 1.29103i −0.934153 0.356873i \(-0.883843\pi\)
−0.356873 0.934153i \(-0.616157\pi\)
\(354\) 0.274489 0.184129i 0.0145889 0.00978636i
\(355\) 0 0
\(356\) 9.53839i 0.505534i
\(357\) −42.0467 8.28426i −2.22535 0.438450i
\(358\) −4.94520 + 4.94520i −0.261362 + 0.261362i
\(359\) 29.7210 1.56861 0.784307 0.620373i \(-0.213019\pi\)
0.784307 + 0.620373i \(0.213019\pi\)
\(360\) 0 0
\(361\) 5.14332 0.270701
\(362\) 6.66850 6.66850i 0.350489 0.350489i
\(363\) −24.7425 4.87490i −1.29865 0.255866i
\(364\) 3.83784i 0.201158i
\(365\) 0 0
\(366\) −0.964027 + 0.646677i −0.0503905 + 0.0338024i
\(367\) 10.1723 + 10.1723i 0.530988 + 0.530988i 0.920866 0.389879i \(-0.127483\pi\)
−0.389879 + 0.920866i \(0.627483\pi\)
\(368\) −3.83949 3.83949i −0.200147 0.200147i
\(369\) 5.06957 12.3659i 0.263912 0.643742i
\(370\) 0 0
\(371\) 30.9145i 1.60500i
\(372\) −0.392583 + 1.99255i −0.0203545 + 0.103309i
\(373\) 4.69106 4.69106i 0.242894 0.242894i −0.575152 0.818046i \(-0.695057\pi\)
0.818046 + 0.575152i \(0.195057\pi\)
\(374\) −17.6310 −0.911676
\(375\) 0 0
\(376\) 6.83429 0.352451
\(377\) 0.915998 0.915998i 0.0471763 0.0471763i
\(378\) −10.5238 6.94913i −0.541284 0.357424i
\(379\) 31.0115i 1.59295i 0.604670 + 0.796476i \(0.293305\pi\)
−0.604670 + 0.796476i \(0.706695\pi\)
\(380\) 0 0
\(381\) 15.3572 + 22.8936i 0.786774 + 1.17287i
\(382\) −6.95268 6.95268i −0.355730 0.355730i
\(383\) 18.4939 + 18.4939i 0.944994 + 0.944994i 0.998564 0.0535701i \(-0.0170600\pi\)
−0.0535701 + 0.998564i \(0.517060\pi\)
\(384\) 11.1068 + 16.5573i 0.566791 + 0.844937i
\(385\) 0 0
\(386\) 12.2917i 0.625629i
\(387\) 18.5812 7.77578i 0.944537 0.395265i
\(388\) 15.9923 15.9923i 0.811885 0.811885i
\(389\) −20.2104 −1.02471 −0.512355 0.858774i \(-0.671227\pi\)
−0.512355 + 0.858774i \(0.671227\pi\)
\(390\) 0 0
\(391\) −15.6820 −0.793071
\(392\) 15.4597 15.4597i 0.780834 0.780834i
\(393\) −4.83126 + 24.5210i −0.243705 + 1.23692i
\(394\) 2.83947i 0.143051i
\(395\) 0 0
\(396\) 23.2663 + 9.53839i 1.16918 + 0.479322i
\(397\) 5.99364 + 5.99364i 0.300812 + 0.300812i 0.841332 0.540519i \(-0.181772\pi\)
−0.540519 + 0.841332i \(0.681772\pi\)
\(398\) −7.07552 7.07552i −0.354664 0.354664i
\(399\) 22.2185 14.9044i 1.11232 0.746153i
\(400\) 0 0
\(401\) 9.27612i 0.463228i −0.972808 0.231614i \(-0.925599\pi\)
0.972808 0.231614i \(-0.0744006\pi\)
\(402\) 10.0431 + 1.97874i 0.500904 + 0.0986908i
\(403\) −0.278970 + 0.278970i −0.0138965 + 0.0138965i
\(404\) 20.5809 1.02394
\(405\) 0 0
\(406\) 5.63591 0.279705
\(407\) −11.8033 + 11.8033i −0.585066 + 0.585066i
\(408\) 21.6782 + 4.27115i 1.07323 + 0.211454i
\(409\) 23.9842i 1.18594i 0.805224 + 0.592970i \(0.202045\pi\)
−0.805224 + 0.592970i \(0.797955\pi\)
\(410\) 0 0
\(411\) 4.21924 2.83030i 0.208120 0.139609i
\(412\) 6.41727 + 6.41727i 0.316156 + 0.316156i
\(413\) −0.957355 0.957355i −0.0471084 0.0471084i
\(414\) −4.26989 1.75051i −0.209854 0.0860327i
\(415\) 0 0
\(416\) 3.06056i 0.150056i
\(417\) 5.73845 29.1255i 0.281013 1.42628i
\(418\) 7.78318 7.78318i 0.380688 0.380688i
\(419\) −11.2278 −0.548513 −0.274257 0.961657i \(-0.588432\pi\)
−0.274257 + 0.961657i \(0.588432\pi\)
\(420\) 0 0
\(421\) −7.29021 −0.355303 −0.177651 0.984093i \(-0.556850\pi\)
−0.177651 + 0.984093i \(0.556850\pi\)
\(422\) 2.94571 2.94571i 0.143395 0.143395i
\(423\) −8.84046 + 3.69951i −0.429838 + 0.179876i
\(424\) 15.9387i 0.774052i
\(425\) 0 0
\(426\) 1.76332 + 2.62866i 0.0854333 + 0.127359i
\(427\) 3.36231 + 3.36231i 0.162714 + 0.162714i
\(428\) −2.04010 2.04010i −0.0986118 0.0986118i
\(429\) 2.72128 + 4.05671i 0.131384 + 0.195860i
\(430\) 0 0
\(431\) 4.78196i 0.230339i −0.993346 0.115170i \(-0.963259\pi\)
0.993346 0.115170i \(-0.0367411\pi\)
\(432\) −8.95205 5.91128i −0.430706 0.284407i
\(433\) −19.4008 + 19.4008i −0.932345 + 0.932345i −0.997852 0.0655075i \(-0.979133\pi\)
0.0655075 + 0.997852i \(0.479133\pi\)
\(434\) −1.71643 −0.0823913
\(435\) 0 0
\(436\) 7.34831 0.351920
\(437\) 6.92279 6.92279i 0.331162 0.331162i
\(438\) −0.399602 + 2.02818i −0.0190937 + 0.0969101i
\(439\) 6.83368i 0.326154i −0.986613 0.163077i \(-0.947858\pi\)
0.986613 0.163077i \(-0.0521419\pi\)
\(440\) 0 0
\(441\) −11.6293 + 28.3665i −0.553774 + 1.35078i
\(442\) 1.37563 + 1.37563i 0.0654318 + 0.0654318i
\(443\) 14.7737 + 14.7737i 0.701918 + 0.701918i 0.964822 0.262904i \(-0.0846803\pi\)
−0.262904 + 0.964822i \(0.584680\pi\)
\(444\) 7.87374 5.28177i 0.373671 0.250662i
\(445\) 0 0
\(446\) 11.9056i 0.563745i
\(447\) −21.8619 4.30734i −1.03403 0.203730i
\(448\) 2.70015 2.70015i 0.127570 0.127570i
\(449\) 3.39827 0.160374 0.0801872 0.996780i \(-0.474448\pi\)
0.0801872 + 0.996780i \(0.474448\pi\)
\(450\) 0 0
\(451\) −22.5225 −1.06054
\(452\) −14.5587 + 14.5587i −0.684782 + 0.684782i
\(453\) 31.3858 + 6.18379i 1.47463 + 0.290540i
\(454\) 4.37774i 0.205457i
\(455\) 0 0
\(456\) −11.4553 + 7.68432i −0.536444 + 0.359851i
\(457\) −0.0418176 0.0418176i −0.00195614 0.00195614i 0.706128 0.708084i \(-0.250440\pi\)
−0.708084 + 0.706128i \(0.750440\pi\)
\(458\) 5.16334 + 5.16334i 0.241267 + 0.241267i
\(459\) −30.3538 + 6.20983i −1.41679 + 0.289850i
\(460\) 0 0
\(461\) 10.9465i 0.509831i 0.966963 + 0.254915i \(0.0820476\pi\)
−0.966963 + 0.254915i \(0.917952\pi\)
\(462\) −4.10830 + 20.8516i −0.191135 + 0.970106i
\(463\) 25.0327 25.0327i 1.16337 1.16337i 0.179635 0.983733i \(-0.442508\pi\)
0.983733 0.179635i \(-0.0574917\pi\)
\(464\) 4.79419 0.222565
\(465\) 0 0
\(466\) 7.35089 0.340523
\(467\) 2.57209 2.57209i 0.119022 0.119022i −0.645087 0.764109i \(-0.723179\pi\)
0.764109 + 0.645087i \(0.223179\pi\)
\(468\) −1.07110 2.55953i −0.0495116 0.118314i
\(469\) 41.9295i 1.93613i
\(470\) 0 0
\(471\) −6.89656 10.2810i −0.317777 0.473722i
\(472\) 0.493588 + 0.493588i 0.0227192 + 0.0227192i
\(473\) −24.0026 24.0026i −1.10364 1.10364i
\(474\) 0.0278227 + 0.0414764i 0.00127794 + 0.00190507i
\(475\) 0 0
\(476\) 41.0208i 1.88019i
\(477\) 8.62788 + 20.6174i 0.395044 + 0.944008i
\(478\) 7.73163 7.73163i 0.353637 0.353637i
\(479\) −26.5358 −1.21245 −0.606226 0.795292i \(-0.707317\pi\)
−0.606226 + 0.795292i \(0.707317\pi\)
\(480\) 0 0
\(481\) 1.84186 0.0839814
\(482\) −8.55427 + 8.55427i −0.389636 + 0.389636i
\(483\) −3.65415 + 18.5466i −0.166269 + 0.843899i
\(484\) 24.1389i 1.09722i
\(485\) 0 0
\(486\) −8.95792 1.69744i −0.406339 0.0769974i
\(487\) 14.7208 + 14.7208i 0.667065 + 0.667065i 0.957036 0.289971i \(-0.0936456\pi\)
−0.289971 + 0.957036i \(0.593646\pi\)
\(488\) −1.73352 1.73352i −0.0784728 0.0784728i
\(489\) 3.03364 2.03499i 0.137186 0.0920254i
\(490\) 0 0
\(491\) 35.8455i 1.61769i −0.588025 0.808843i \(-0.700094\pi\)
0.588025 0.808843i \(-0.299906\pi\)
\(492\) 12.5514 + 2.47294i 0.565861 + 0.111489i
\(493\) 9.79065 9.79065i 0.440949 0.440949i
\(494\) −1.21454 −0.0546446
\(495\) 0 0
\(496\) −1.46008 −0.0655597
\(497\) 9.16817 9.16817i 0.411249 0.411249i
\(498\) 11.5310 + 2.27189i 0.516716 + 0.101806i
\(499\) 23.6239i 1.05755i 0.848762 + 0.528774i \(0.177348\pi\)
−0.848762 + 0.528774i \(0.822652\pi\)
\(500\) 0 0
\(501\) −22.2639 + 14.9348i −0.994676 + 0.667237i
\(502\) −10.7561 10.7561i −0.480068 0.480068i
\(503\) −28.1904 28.1904i −1.25695 1.25695i −0.952542 0.304406i \(-0.901542\pi\)
−0.304406 0.952542i \(-0.598458\pi\)
\(504\) 10.1027 24.6429i 0.450011 1.09768i
\(505\) 0 0
\(506\) 7.77694i 0.345727i
\(507\) −4.24848 + 21.5631i −0.188682 + 0.957651i
\(508\) −18.6588 + 18.6588i −0.827850 + 0.827850i
\(509\) −22.2063 −0.984278 −0.492139 0.870517i \(-0.663785\pi\)
−0.492139 + 0.870517i \(0.663785\pi\)
\(510\) 0 0
\(511\) 8.46756 0.374583
\(512\) −14.2557 + 14.2557i −0.630020 + 0.630020i
\(513\) 10.6583 16.1410i 0.470576 0.712641i
\(514\) 11.6937i 0.515786i
\(515\) 0 0
\(516\) 10.7408 + 16.0117i 0.472836 + 0.704875i
\(517\) 11.4198 + 11.4198i 0.502242 + 0.502242i
\(518\) 5.66624 + 5.66624i 0.248960 + 0.248960i
\(519\) 5.54354 + 8.26396i 0.243334 + 0.362748i
\(520\) 0 0
\(521\) 23.2104i 1.01687i −0.861102 0.508433i \(-0.830225\pi\)
0.861102 0.508433i \(-0.169775\pi\)
\(522\) 3.75869 1.57292i 0.164513 0.0688448i
\(523\) 1.61807 1.61807i 0.0707534 0.0707534i −0.670845 0.741598i \(-0.734068\pi\)
0.741598 + 0.670845i \(0.234068\pi\)
\(524\) −23.9227 −1.04507
\(525\) 0 0
\(526\) 13.9358 0.607631
\(527\) −2.98177 + 2.98177i −0.129888 + 0.129888i
\(528\) −3.49473 + 17.7375i −0.152088 + 0.771924i
\(529\) 16.0828i 0.699250i
\(530\) 0 0
\(531\) −0.905665 0.371291i −0.0393025 0.0161127i
\(532\) 18.1086 + 18.1086i 0.785108 + 0.785108i
\(533\) 1.75728 + 1.75728i 0.0761161 + 0.0761161i
\(534\) −4.84010 + 3.24678i −0.209452 + 0.140502i
\(535\) 0 0
\(536\) 21.6178i 0.933746i
\(537\) 20.3201 + 4.00357i 0.876877 + 0.172767i
\(538\) −12.1568 + 12.1568i −0.524116 + 0.524116i
\(539\) 51.6650 2.22537
\(540\) 0 0
\(541\) 18.4747 0.794290 0.397145 0.917756i \(-0.370001\pi\)
0.397145 + 0.917756i \(0.370001\pi\)
\(542\) −6.72753 + 6.72753i −0.288972 + 0.288972i
\(543\) −27.4012 5.39873i −1.17590 0.231682i
\(544\) 32.7128i 1.40255i
\(545\) 0 0
\(546\) 1.94745 1.30637i 0.0833433 0.0559074i
\(547\) 1.59044 + 1.59044i 0.0680025 + 0.0680025i 0.740290 0.672288i \(-0.234688\pi\)
−0.672288 + 0.740290i \(0.734688\pi\)
\(548\) 3.43878 + 3.43878i 0.146897 + 0.146897i
\(549\) 3.18077 + 1.30401i 0.135752 + 0.0556536i
\(550\) 0 0
\(551\) 8.64415i 0.368253i
\(552\) 1.88398 9.56215i 0.0801877 0.406992i
\(553\) 0.144660 0.144660i 0.00615159 0.00615159i
\(554\) 12.7160 0.540252
\(555\) 0 0
\(556\) 28.4149 1.20506
\(557\) −10.0342 + 10.0342i −0.425162 + 0.425162i −0.886977 0.461814i \(-0.847199\pi\)
0.461814 + 0.886977i \(0.347199\pi\)
\(558\) −1.14472 + 0.479036i −0.0484598 + 0.0202792i
\(559\) 3.74552i 0.158418i
\(560\) 0 0
\(561\) 29.0864 + 43.3602i 1.22803 + 1.83067i
\(562\) 3.84171 + 3.84171i 0.162053 + 0.162053i
\(563\) 10.6833 + 10.6833i 0.450246 + 0.450246i 0.895436 0.445190i \(-0.146864\pi\)
−0.445190 + 0.895436i \(0.646864\pi\)
\(564\) −5.11018 7.61794i −0.215177 0.320773i
\(565\) 0 0
\(566\) 10.9705i 0.461124i
\(567\) 0.271266 + 37.3455i 0.0113921 + 1.56836i
\(568\) −4.72687 + 4.72687i −0.198335 + 0.198335i
\(569\) 13.1761 0.552370 0.276185 0.961105i \(-0.410930\pi\)
0.276185 + 0.961105i \(0.410930\pi\)
\(570\) 0 0
\(571\) 4.02363 0.168384 0.0841918 0.996450i \(-0.473169\pi\)
0.0841918 + 0.996450i \(0.473169\pi\)
\(572\) −3.30631 + 3.30631i −0.138244 + 0.138244i
\(573\) −5.62880 + 28.5689i −0.235146 + 1.19348i
\(574\) 10.8121i 0.451288i
\(575\) 0 0
\(576\) 1.04720 2.55436i 0.0436333 0.106432i
\(577\) 19.3178 + 19.3178i 0.804212 + 0.804212i 0.983751 0.179539i \(-0.0574607\pi\)
−0.179539 + 0.983751i \(0.557461\pi\)
\(578\) 7.67269 + 7.67269i 0.319142 + 0.319142i
\(579\) −30.2291 + 20.2780i −1.25628 + 0.842723i
\(580\) 0 0
\(581\) 48.1414i 1.99724i
\(582\) 13.5587 + 2.67140i 0.562024 + 0.110733i
\(583\) 26.6329 26.6329i 1.10302 1.10302i
\(584\) −4.36565 −0.180652
\(585\) 0 0
\(586\) −3.07983 −0.127227
\(587\) −13.9390 + 13.9390i −0.575325 + 0.575325i −0.933612 0.358286i \(-0.883361\pi\)
0.358286 + 0.933612i \(0.383361\pi\)
\(588\) −28.7921 5.67277i −1.18736 0.233941i
\(589\) 2.63260i 0.108474i
\(590\) 0 0
\(591\) 6.98317 4.68437i 0.287249 0.192689i
\(592\) 4.81999 + 4.81999i 0.198100 + 0.198100i
\(593\) 10.6476 + 10.6476i 0.437244 + 0.437244i 0.891083 0.453840i \(-0.149946\pi\)
−0.453840 + 0.891083i \(0.649946\pi\)
\(594\) 3.07955 + 15.0529i 0.126356 + 0.617629i
\(595\) 0 0
\(596\) 21.3285i 0.873649i
\(597\) −5.72825 + 29.0737i −0.234442 + 1.18991i
\(598\) 0.606782 0.606782i 0.0248132 0.0248132i
\(599\) 32.2651 1.31832 0.659158 0.752005i \(-0.270913\pi\)
0.659158 + 0.752005i \(0.270913\pi\)
\(600\) 0 0
\(601\) −19.9758 −0.814828 −0.407414 0.913243i \(-0.633569\pi\)
−0.407414 + 0.913243i \(0.633569\pi\)
\(602\) −11.5226 + 11.5226i −0.469626 + 0.469626i
\(603\) −11.7021 27.9636i −0.476545 1.13876i
\(604\) 30.6200i 1.24591i
\(605\) 0 0
\(606\) 7.00557 + 10.4435i 0.284582 + 0.424237i
\(607\) −6.87505 6.87505i −0.279050 0.279050i 0.553680 0.832730i \(-0.313223\pi\)
−0.832730 + 0.553680i \(0.813223\pi\)
\(608\) −14.4411 14.4411i −0.585662 0.585662i
\(609\) −9.29774 13.8605i −0.376763 0.561655i
\(610\) 0 0
\(611\) 1.78202i 0.0720927i
\(612\) −11.4485 27.3576i −0.462776 1.10586i
\(613\) −10.2685 + 10.2685i −0.414741 + 0.414741i −0.883386 0.468645i \(-0.844742\pi\)
0.468645 + 0.883386i \(0.344742\pi\)
\(614\) 5.75820 0.232382
\(615\) 0 0
\(616\) −44.8832 −1.80839
\(617\) 9.53217 9.53217i 0.383751 0.383751i −0.488701 0.872451i \(-0.662529\pi\)
0.872451 + 0.488701i \(0.162529\pi\)
\(618\) −1.07196 + 5.44073i −0.0431206 + 0.218858i
\(619\) 1.10503i 0.0444149i −0.999753 0.0222074i \(-0.992931\pi\)
0.999753 0.0222074i \(-0.00706943\pi\)
\(620\) 0 0
\(621\) 2.73913 + 13.3889i 0.109917 + 0.537278i
\(622\) 4.79391 + 4.79391i 0.192218 + 0.192218i
\(623\) 16.8812 + 16.8812i 0.676331 + 0.676331i
\(624\) 1.65660 1.11126i 0.0663172 0.0444861i
\(625\) 0 0
\(626\) 10.7293i 0.428828i
\(627\) −31.9815 6.30116i −1.27722 0.251644i
\(628\) 8.37922 8.37922i 0.334367 0.334367i
\(629\) 19.6867 0.784960
\(630\) 0 0
\(631\) 2.54536 0.101329 0.0506646 0.998716i \(-0.483866\pi\)
0.0506646 + 0.998716i \(0.483866\pi\)
\(632\) −0.0745832 + 0.0745832i −0.00296676 + 0.00296676i
\(633\) −12.1041 2.38481i −0.481094 0.0947877i
\(634\) 16.2559i 0.645604i
\(635\) 0 0
\(636\) −17.7663 + 11.9178i −0.704480 + 0.472571i
\(637\) −4.03107 4.03107i −0.159717 0.159717i
\(638\) −4.85534 4.85534i −0.192225 0.192225i
\(639\) 3.55569 8.67315i 0.140661 0.343105i
\(640\) 0 0
\(641\) 15.4810i 0.611464i −0.952118 0.305732i \(-0.901099\pi\)
0.952118 0.305732i \(-0.0989012\pi\)
\(642\) 0.340784 1.72964i 0.0134497 0.0682636i
\(643\) −9.51828 + 9.51828i −0.375364 + 0.375364i −0.869427 0.494062i \(-0.835512\pi\)
0.494062 + 0.869427i \(0.335512\pi\)
\(644\) −18.0941 −0.713007
\(645\) 0 0
\(646\) −12.9816 −0.510754
\(647\) 0.268453 0.268453i 0.0105540 0.0105540i −0.701810 0.712364i \(-0.747624\pi\)
0.712364 + 0.701810i \(0.247624\pi\)
\(648\) −0.139858 19.2544i −0.00549414 0.756383i
\(649\) 1.64953i 0.0647496i
\(650\) 0 0
\(651\) 2.83165 + 4.22125i 0.110981 + 0.165444i
\(652\) 2.47248 + 2.47248i 0.0968299 + 0.0968299i
\(653\) 30.6239 + 30.6239i 1.19841 + 1.19841i 0.974644 + 0.223763i \(0.0718341\pi\)
0.223763 + 0.974644i \(0.428166\pi\)
\(654\) 2.50130 + 3.72879i 0.0978086 + 0.145807i
\(655\) 0 0
\(656\) 9.19731i 0.359094i
\(657\) 5.64717 2.36320i 0.220317 0.0921972i
\(658\) 5.48215 5.48215i 0.213717 0.213717i
\(659\) −21.7554 −0.847471 −0.423735 0.905786i \(-0.639281\pi\)
−0.423735 + 0.905786i \(0.639281\pi\)
\(660\) 0 0
\(661\) −18.9468 −0.736947 −0.368473 0.929638i \(-0.620119\pi\)
−0.368473 + 0.929638i \(0.620119\pi\)
\(662\) 14.8032 14.8032i 0.575341 0.575341i
\(663\) 1.11369 5.65251i 0.0432521 0.219525i
\(664\) 24.8205i 0.963220i
\(665\) 0 0
\(666\) 5.36030 + 2.19754i 0.207708 + 0.0851528i
\(667\) −4.31861 4.31861i −0.167217 0.167217i
\(668\) −18.1455 18.1455i −0.702072 0.702072i
\(669\) −29.2796 + 19.6410i −1.13201 + 0.759365i
\(670\) 0 0
\(671\) 5.79327i 0.223647i
\(672\) 38.6885 + 7.62262i 1.49244 + 0.294049i
\(673\) 9.85460 9.85460i 0.379867 0.379867i −0.491187 0.871054i \(-0.663437\pi\)
0.871054 + 0.491187i \(0.163437\pi\)
\(674\) 17.1031 0.658785
\(675\) 0 0
\(676\) −21.0370 −0.809116
\(677\) 3.21474 3.21474i 0.123553 0.123553i −0.642627 0.766179i \(-0.722155\pi\)
0.766179 + 0.642627i \(0.222155\pi\)
\(678\) −12.3432 2.43192i −0.474038 0.0933975i
\(679\) 56.6068i 2.17237i
\(680\) 0 0
\(681\) −10.7663 + 7.22209i −0.412564 + 0.276751i
\(682\) 1.47871 + 1.47871i 0.0566226 + 0.0566226i
\(683\) 7.28232 + 7.28232i 0.278650 + 0.278650i 0.832570 0.553920i \(-0.186869\pi\)
−0.553920 + 0.832570i \(0.686869\pi\)
\(684\) 17.1309 + 7.02306i 0.655015 + 0.268533i
\(685\) 0 0
\(686\) 7.81313i 0.298307i
\(687\) 4.18017 21.2164i 0.159484 0.809457i
\(688\) −9.80172 + 9.80172i −0.373687 + 0.373687i
\(689\) −4.15596 −0.158330
\(690\) 0 0
\(691\) 16.9029 0.643015 0.321508 0.946907i \(-0.395810\pi\)
0.321508 + 0.946907i \(0.395810\pi\)
\(692\) −6.73531 + 6.73531i −0.256038 + 0.256038i
\(693\) 58.0584 24.2960i 2.20546 0.922928i
\(694\) 12.5186i 0.475201i
\(695\) 0 0
\(696\) 4.79367 + 7.14611i 0.181704 + 0.270873i
\(697\) 18.7827 + 18.7827i 0.711444 + 0.711444i
\(698\) −2.94944 2.94944i −0.111638 0.111638i
\(699\) −12.1270 18.0782i −0.458685 0.683780i
\(700\) 0 0
\(701\) 8.63610i 0.326181i −0.986611 0.163091i \(-0.947854\pi\)
0.986611 0.163091i \(-0.0521463\pi\)
\(702\) 0.934201 1.41475i 0.0352591 0.0533964i
\(703\) −8.69067 + 8.69067i −0.327775 + 0.327775i
\(704\) −4.65237 −0.175343
\(705\) 0 0
\(706\) 20.0633 0.755091
\(707\) 36.4245 36.4245i 1.36988 1.36988i
\(708\) 0.181116 0.919253i 0.00680676 0.0345477i
\(709\) 9.14503i 0.343449i 0.985145 + 0.171724i \(0.0549339\pi\)
−0.985145 + 0.171724i \(0.945066\pi\)
\(710\) 0 0
\(711\) 0.0561036 0.136850i 0.00210405 0.00513227i
\(712\) −8.70352 8.70352i −0.326178 0.326178i
\(713\) 1.31524 + 1.31524i 0.0492563 + 0.0492563i
\(714\) 20.8154 13.9631i 0.778996 0.522557i
\(715\) 0 0
\(716\) 19.8243i 0.740870i
\(717\) −31.7697 6.25943i −1.18646 0.233763i
\(718\) −12.2917 + 12.2917i −0.458723 + 0.458723i
\(719\) 7.96557 0.297066 0.148533 0.988907i \(-0.452545\pi\)
0.148533 + 0.988907i \(0.452545\pi\)
\(720\) 0 0
\(721\) 22.7148 0.845944
\(722\) −2.12713 + 2.12713i −0.0791634 + 0.0791634i
\(723\) 35.1499 + 6.92543i 1.30724 + 0.257559i
\(724\) 26.7327i 0.993512i
\(725\) 0 0
\(726\) 12.2489 8.21666i 0.454599 0.304949i
\(727\) −2.95813 2.95813i −0.109711 0.109711i 0.650120 0.759831i \(-0.274718\pi\)
−0.759831 + 0.650120i \(0.774718\pi\)
\(728\) 3.50193 + 3.50193i 0.129790 + 0.129790i
\(729\) 10.6036 + 24.8307i 0.392727 + 0.919655i
\(730\) 0 0
\(731\) 40.0340i 1.48071i
\(732\) −0.636095 + 3.22849i −0.0235108 + 0.119329i
\(733\) 36.7526 36.7526i 1.35749 1.35749i 0.480487 0.877002i \(-0.340460\pi\)
0.877002 0.480487i \(-0.159540\pi\)
\(734\) −8.41389 −0.310562
\(735\) 0 0
\(736\) 14.4295 0.531878
\(737\) −36.1223 + 36.1223i −1.33058 + 1.33058i
\(738\) 3.01753 + 7.21078i 0.111077 + 0.265432i
\(739\) 25.2371i 0.928362i 0.885740 + 0.464181i \(0.153651\pi\)
−0.885740 + 0.464181i \(0.846349\pi\)
\(740\) 0 0
\(741\) 2.00366 + 2.98693i 0.0736063 + 0.109728i
\(742\) −12.7853 12.7853i −0.469363 0.469363i
\(743\) −9.19220 9.19220i −0.337229 0.337229i 0.518094 0.855323i \(-0.326642\pi\)
−0.855323 + 0.518094i \(0.826642\pi\)
\(744\) −1.45993 2.17637i −0.0535235 0.0797895i
\(745\) 0 0
\(746\) 3.88017i 0.142063i
\(747\) −13.4357 32.1064i −0.491587 1.17471i
\(748\) −35.3395 + 35.3395i −1.29214 + 1.29214i
\(749\) −7.22120 −0.263857
\(750\) 0 0
\(751\) 51.7120 1.88700 0.943500 0.331373i \(-0.107512\pi\)
0.943500 + 0.331373i \(0.107512\pi\)
\(752\) 4.66340 4.66340i 0.170057 0.170057i
\(753\) −8.70799 + 44.1973i −0.317337 + 1.61064i
\(754\) 0.757659i 0.0275923i
\(755\) 0 0
\(756\) −35.0226 + 7.16500i −1.27376 + 0.260588i
\(757\) −31.2767 31.2767i −1.13677 1.13677i −0.989025 0.147747i \(-0.952798\pi\)
−0.147747 0.989025i \(-0.547202\pi\)
\(758\) −12.8254 12.8254i −0.465840 0.465840i
\(759\) 19.1260 12.8299i 0.694229 0.465695i
\(760\) 0 0
\(761\) 34.2727i 1.24238i −0.783658 0.621192i \(-0.786649\pi\)
0.783658 0.621192i \(-0.213351\pi\)
\(762\) −15.8194 3.11682i −0.573076 0.112911i
\(763\) 13.0052 13.0052i 0.470819 0.470819i
\(764\) −27.8719 −1.00837
\(765\) 0 0
\(766\) −15.2970 −0.552705
\(767\) 0.128701 0.128701i 0.00464714 0.00464714i
\(768\) −8.31341 1.63795i −0.299984 0.0591045i
\(769\) 18.2156i 0.656873i −0.944526 0.328436i \(-0.893478\pi\)
0.944526 0.328436i \(-0.106522\pi\)
\(770\) 0 0
\(771\) −28.7585 + 19.2914i −1.03571 + 0.694764i
\(772\) −24.6374 24.6374i −0.886720 0.886720i
\(773\) −5.91299 5.91299i −0.212675 0.212675i 0.592728 0.805403i \(-0.298051\pi\)
−0.805403 + 0.592728i \(0.798051\pi\)
\(774\) −4.46881 + 10.9005i −0.160628 + 0.391809i
\(775\) 0 0
\(776\) 29.1850i 1.04768i
\(777\) 4.58731 23.2829i 0.164569 0.835268i
\(778\) 8.35843 8.35843i 0.299664 0.299664i
\(779\) −16.5832 −0.594154
\(780\) 0 0
\(781\) −15.7968 −0.565253
\(782\) 6.48559 6.48559i 0.231924 0.231924i
\(783\) −10.0691 6.64893i −0.359842 0.237613i
\(784\) 21.0980i 0.753500i
\(785\) 0 0
\(786\) −8.14309 12.1392i −0.290454 0.432992i
\(787\) 12.0178 + 12.0178i 0.428388 + 0.428388i 0.888079 0.459691i \(-0.152040\pi\)
−0.459691 + 0.888079i \(0.652040\pi\)
\(788\) 5.69144 + 5.69144i 0.202749 + 0.202749i
\(789\) −22.9904 34.2727i −0.818480 1.22014i
\(790\) 0 0
\(791\) 51.5324i 1.83228i
\(792\) −29.9334 + 12.5264i −1.06364 + 0.445106i
\(793\) −0.452010 + 0.452010i −0.0160513 + 0.0160513i
\(794\) −4.95758 −0.175938
\(795\) 0 0
\(796\) −28.3643 −1.00535
\(797\) 22.2558 22.2558i 0.788341 0.788341i −0.192881 0.981222i \(-0.561783\pi\)
0.981222 + 0.192881i \(0.0617833\pi\)
\(798\) −3.02492 + 15.3529i −0.107081 + 0.543488i
\(799\) 19.0471i 0.673838i
\(800\) 0 0
\(801\) 15.9697 + 6.54704i 0.564263 + 0.231328i
\(802\) 3.83633 + 3.83633i 0.135465 + 0.135465i
\(803\) −7.29481 7.29481i −0.257428 0.257428i
\(804\) 24.0966 16.1642i 0.849821 0.570067i
\(805\) 0 0
\(806\) 0.230747i 0.00812772i
\(807\) 49.9528 + 9.84197i 1.75842 + 0.346454i
\(808\) −18.7795 + 18.7795i −0.660662 + 0.660662i
\(809\) 40.6465 1.42905 0.714527 0.699608i \(-0.246642\pi\)
0.714527 + 0.699608i \(0.246642\pi\)
\(810\) 0 0
\(811\) 6.04647 0.212320 0.106160 0.994349i \(-0.466144\pi\)
0.106160 + 0.994349i \(0.466144\pi\)
\(812\) 11.2966 11.2966i 0.396433 0.396433i
\(813\) 27.6437 + 5.44652i 0.969508 + 0.191018i
\(814\) 9.76295i 0.342191i
\(815\) 0 0
\(816\) 17.7066 11.8777i 0.619855 0.415804i
\(817\) −17.6730 17.6730i −0.618298 0.618298i
\(818\) −9.91913 9.91913i −0.346814 0.346814i
\(819\) −6.42555 2.63425i −0.224527 0.0920482i
\(820\) 0 0
\(821\) 34.7316i 1.21214i −0.795410 0.606071i \(-0.792745\pi\)
0.795410 0.606071i \(-0.207255\pi\)
\(822\) −0.574424 + 2.91548i −0.0200353 + 0.101689i
\(823\) −11.9810 + 11.9810i −0.417633 + 0.417633i −0.884387 0.466754i \(-0.845423\pi\)
0.466754 + 0.884387i \(0.345423\pi\)
\(824\) −11.7112 −0.407978
\(825\) 0 0
\(826\) 0.791867 0.0275526
\(827\) 34.6408 34.6408i 1.20458 1.20458i 0.231821 0.972758i \(-0.425531\pi\)
0.972758 0.231821i \(-0.0744685\pi\)
\(828\) −12.0673 + 5.04986i −0.419367 + 0.175495i
\(829\) 29.4830i 1.02399i 0.858989 + 0.511994i \(0.171093\pi\)
−0.858989 + 0.511994i \(0.828907\pi\)
\(830\) 0 0
\(831\) −20.9780 31.2728i −0.727720 1.08484i
\(832\) 0.362993 + 0.362993i 0.0125845 + 0.0125845i
\(833\) −43.0861 43.0861i −1.49285 1.49285i
\(834\) 9.67217 + 14.4187i 0.334920 + 0.499278i
\(835\) 0 0
\(836\) 31.2012i 1.07912i
\(837\) 3.06658 + 2.02495i 0.105997 + 0.0699925i
\(838\) 4.64348 4.64348i 0.160406 0.160406i
\(839\) −44.7027 −1.54331 −0.771655 0.636041i \(-0.780571\pi\)
−0.771655 + 0.636041i \(0.780571\pi\)
\(840\) 0 0
\(841\) −23.6076 −0.814054
\(842\) 3.01501 3.01501i 0.103904 0.103904i
\(843\) 3.11020 15.7858i 0.107121 0.543691i
\(844\) 11.8088i 0.406475i
\(845\) 0 0
\(846\) 2.12614 5.18616i 0.0730983 0.178304i
\(847\) −42.7214 42.7214i −1.46792 1.46792i
\(848\) −10.8758 10.8758i −0.373477 0.373477i
\(849\) −26.9799 + 18.0984i −0.925949 + 0.621134i
\(850\) 0 0
\(851\) 8.68371i 0.297674i
\(852\) 8.80328 + 1.73447i 0.301595 + 0.0594219i
\(853\) −9.76148 + 9.76148i −0.334227 + 0.334227i −0.854189 0.519962i \(-0.825946\pi\)
0.519962 + 0.854189i \(0.325946\pi\)
\(854\) −2.78110 −0.0951674
\(855\) 0 0
\(856\) 3.72306 0.127252
\(857\) −1.82209 + 1.82209i −0.0622413 + 0.0622413i −0.737542 0.675301i \(-0.764014\pi\)
0.675301 + 0.737542i \(0.264014\pi\)
\(858\) −2.80317 0.552296i −0.0956988 0.0188551i
\(859\) 17.6971i 0.603818i 0.953337 + 0.301909i \(0.0976239\pi\)
−0.953337 + 0.301909i \(0.902376\pi\)
\(860\) 0 0
\(861\) 26.5904 17.8370i 0.906197 0.607885i
\(862\) 1.97768 + 1.97768i 0.0673600 + 0.0673600i
\(863\) 27.9161 + 27.9161i 0.950274 + 0.950274i 0.998821 0.0485468i \(-0.0154590\pi\)
−0.0485468 + 0.998821i \(0.515459\pi\)
\(864\) 27.9295 5.71386i 0.950180 0.194390i
\(865\) 0 0
\(866\) 16.0472i 0.545306i
\(867\) 6.21171 31.5275i 0.210961 1.07073i
\(868\) −3.44041 + 3.44041i −0.116775 + 0.116775i
\(869\) −0.249250 −0.00845524
\(870\) 0 0
\(871\) 5.63676 0.190994
\(872\) −6.70514 + 6.70514i −0.227065 + 0.227065i
\(873\) −15.7983 37.7522i −0.534692 1.27772i
\(874\) 5.72612i 0.193689i
\(875\) 0 0
\(876\) 3.26432 + 4.86624i 0.110291 + 0.164415i
\(877\) 5.52180 + 5.52180i 0.186458 + 0.186458i 0.794163 0.607705i \(-0.207910\pi\)
−0.607705 + 0.794163i \(0.707910\pi\)
\(878\) 2.82621 + 2.82621i 0.0953798 + 0.0953798i
\(879\) 5.08090 + 7.57430i 0.171375 + 0.255475i
\(880\) 0 0
\(881\) 10.4696i 0.352730i −0.984325 0.176365i \(-0.943566\pi\)
0.984325 0.176365i \(-0.0564339\pi\)
\(882\) −6.92201 16.5410i −0.233076 0.556966i
\(883\) 8.41420 8.41420i 0.283160 0.283160i −0.551208 0.834368i \(-0.685833\pi\)
0.834368 + 0.551208i \(0.185833\pi\)
\(884\) 5.51460 0.185476
\(885\) 0 0
\(886\) −12.2199 −0.410535
\(887\) 10.9900 10.9900i 0.369007 0.369007i −0.498108 0.867115i \(-0.665972\pi\)
0.867115 + 0.498108i \(0.165972\pi\)
\(888\) −2.36510 + 12.0040i −0.0793676 + 0.402829i
\(889\) 66.0453i 2.21509i
\(890\) 0 0
\(891\) 31.9395 32.4069i 1.07001 1.08567i
\(892\) −23.8635 23.8635i −0.799010 0.799010i
\(893\) 8.40832 + 8.40832i 0.281374 + 0.281374i
\(894\) 10.8228 7.26003i 0.361969 0.242812i
\(895\) 0 0
\(896\) 47.7659i 1.59575i
\(897\) −2.49330 0.491243i −0.0832488 0.0164021i
\(898\) −1.40542 + 1.40542i −0.0468996 + 0.0468996i
\(899\) −1.64228 −0.0547732
\(900\) 0 0
\(901\) −44.4211 −1.47988
\(902\) 9.31463 9.31463i 0.310143 0.310143i
\(903\) 47.3470 + 9.32856i 1.57561 + 0.310435i
\(904\) 26.5688i 0.883664i
\(905\) 0 0
\(906\) −15.5377 + 10.4228i −0.516204 + 0.346274i
\(907\) 10.2557 + 10.2557i 0.340534 + 0.340534i 0.856568 0.516034i \(-0.172592\pi\)
−0.516034 + 0.856568i \(0.672592\pi\)
\(908\) −8.77474 8.77474i −0.291200 0.291200i
\(909\) 14.1265 34.4578i 0.468547 1.14289i
\(910\) 0 0
\(911\) 30.4901i 1.01018i 0.863066 + 0.505091i \(0.168541\pi\)
−0.863066 + 0.505091i \(0.831459\pi\)
\(912\) −2.57315 + 13.0600i −0.0852054 + 0.432459i
\(913\) −41.4739 + 41.4739i −1.37258 + 1.37258i
\(914\) 0.0345890 0.00114410
\(915\) 0 0
\(916\) 20.6988 0.683907
\(917\) −42.3389 + 42.3389i −1.39815 + 1.39815i
\(918\) 9.98521 15.1216i 0.329561 0.499087i
\(919\) 9.67738i 0.319227i 0.987180 + 0.159614i \(0.0510249\pi\)
−0.987180 + 0.159614i \(0.948975\pi\)
\(920\) 0 0
\(921\) −9.49948 14.1612i −0.313019 0.466629i
\(922\) −4.52716 4.52716i −0.149094 0.149094i
\(923\) 1.23252 + 1.23252i 0.0405687 + 0.0405687i
\(924\) 33.5603 + 50.0297i 1.10405 + 1.64586i
\(925\) 0 0
\(926\) 20.7056i 0.680427i
\(927\) 15.1489 6.33945i 0.497556 0.208215i
\(928\) −9.00870 + 9.00870i −0.295725 + 0.295725i
\(929\) 36.4054 1.19442 0.597212 0.802084i \(-0.296275\pi\)
0.597212 + 0.802084i \(0.296275\pi\)
\(930\) 0 0
\(931\) 38.0407 1.24673
\(932\) 14.7341 14.7341i 0.482632 0.482632i
\(933\) 3.88108 19.6984i 0.127061 0.644897i
\(934\) 2.12748i 0.0696133i
\(935\) 0 0
\(936\) 3.31285 + 1.35815i 0.108284 + 0.0443926i
\(937\) −21.5242 21.5242i −0.703165 0.703165i 0.261924 0.965089i \(-0.415643\pi\)
−0.965089 + 0.261924i \(0.915643\pi\)
\(938\) 17.3408 + 17.3408i 0.566197 + 0.566197i
\(939\) −26.3867 + 17.7004i −0.861098 + 0.577632i
\(940\) 0 0
\(941\) 32.4342i 1.05733i 0.848832 + 0.528663i \(0.177306\pi\)
−0.848832 + 0.528663i \(0.822694\pi\)
\(942\) 7.10411 + 1.39969i 0.231465 + 0.0456044i
\(943\) 8.28494 8.28494i 0.269795 0.269795i
\(944\) 0.673602 0.0219239
\(945\) 0 0
\(946\) 19.8535 0.645493
\(947\) −28.8440 + 28.8440i −0.937305 + 0.937305i −0.998147 0.0608424i \(-0.980621\pi\)
0.0608424 + 0.998147i \(0.480621\pi\)
\(948\) 0.138903 + 0.0273674i 0.00451136 + 0.000888852i
\(949\) 1.13833i 0.0369517i
\(950\) 0 0
\(951\) 39.9784 26.8178i 1.29639 0.869628i
\(952\) 37.4304 + 37.4304i 1.21313 + 1.21313i
\(953\) 28.3783 + 28.3783i 0.919264 + 0.919264i 0.996976 0.0777121i \(-0.0247615\pi\)
−0.0777121 + 0.996976i \(0.524761\pi\)
\(954\) −12.0950 4.95852i −0.391590 0.160538i
\(955\) 0 0
\(956\) 30.9946i 1.00244i
\(957\) −3.93082 + 19.9509i −0.127065 + 0.644919i
\(958\) 10.9744 10.9744i 0.354567 0.354567i
\(959\) 12.1720 0.393055
\(960\) 0 0
\(961\) −30.4998 −0.983866
\(962\) −0.761737 + 0.761737i −0.0245594 + 0.0245594i
\(963\) −4.81595 + 2.01535i −0.155192 + 0.0649439i
\(964\) 34.2924i 1.10448i
\(965\) 0 0
\(966\) −6.15907 9.18156i −0.198165 0.295412i
\(967\) −11.9954 11.9954i −0.385747 0.385747i 0.487420 0.873167i \(-0.337938\pi\)
−0.873167 + 0.487420i \(0.837938\pi\)
\(968\) 22.0261 + 22.0261i 0.707944 + 0.707944i
\(969\) 21.4161 + 31.9259i 0.687985 + 1.02561i
\(970\) 0 0
\(971\) 52.7584i 1.69310i 0.532312 + 0.846548i \(0.321323\pi\)
−0.532312 + 0.846548i \(0.678677\pi\)
\(972\) −21.3576 + 14.5529i −0.685045 + 0.466784i
\(973\) 50.2891 50.2891i 1.61220 1.61220i
\(974\) −12.1762 −0.390150
\(975\) 0 0
\(976\) −2.36575 −0.0757257
\(977\) −2.24479 + 2.24479i −0.0718171 + 0.0718171i −0.742103 0.670286i \(-0.766171\pi\)
0.670286 + 0.742103i \(0.266171\pi\)
\(978\) −0.413011 + 2.09623i −0.0132066 + 0.0670301i
\(979\) 29.0864i 0.929605i
\(980\) 0 0
\(981\) 5.04380 12.3030i 0.161036 0.392804i
\(982\) 14.8246 + 14.8246i 0.473073 + 0.473073i
\(983\) 33.5271 + 33.5271i 1.06935 + 1.06935i 0.997409 + 0.0719395i \(0.0229188\pi\)
0.0719395 + 0.997409i \(0.477081\pi\)
\(984\) −13.7093 + 9.19632i −0.437037 + 0.293168i
\(985\) 0 0
\(986\) 8.09824i 0.257901i
\(987\) −22.5264 4.43828i −0.717025 0.141272i
\(988\) −2.43442 + 2.43442i −0.0774491 + 0.0774491i
\(989\) 17.6588 0.561517
\(990\) 0 0
\(991\) 11.5062 0.365507 0.182753 0.983159i \(-0.441499\pi\)
0.182753 + 0.983159i \(0.441499\pi\)
\(992\) 2.74362 2.74362i 0.0871101 0.0871101i
\(993\) −60.8270 11.9844i −1.93029 0.380315i
\(994\) 7.58336i 0.240530i
\(995\) 0 0
\(996\) 27.6665 18.5589i 0.876646 0.588061i
\(997\) 36.3683 + 36.3683i 1.15179 + 1.15179i 0.986193 + 0.165602i \(0.0529567\pi\)
0.165602 + 0.986193i \(0.447043\pi\)
\(998\) −9.77012 9.77012i −0.309268 0.309268i
\(999\) −3.43862 16.8080i −0.108793 0.531783i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.2.e.c.182.8 yes 32
3.2 odd 2 inner 375.2.e.c.182.10 yes 32
5.2 odd 4 inner 375.2.e.c.68.7 32
5.3 odd 4 inner 375.2.e.c.68.10 yes 32
5.4 even 2 inner 375.2.e.c.182.9 yes 32
15.2 even 4 inner 375.2.e.c.68.9 yes 32
15.8 even 4 inner 375.2.e.c.68.8 yes 32
15.14 odd 2 inner 375.2.e.c.182.7 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
375.2.e.c.68.7 32 5.2 odd 4 inner
375.2.e.c.68.8 yes 32 15.8 even 4 inner
375.2.e.c.68.9 yes 32 15.2 even 4 inner
375.2.e.c.68.10 yes 32 5.3 odd 4 inner
375.2.e.c.182.7 yes 32 15.14 odd 2 inner
375.2.e.c.182.8 yes 32 1.1 even 1 trivial
375.2.e.c.182.9 yes 32 5.4 even 2 inner
375.2.e.c.182.10 yes 32 3.2 odd 2 inner