Newspace parameters
| Level: | \( N \) | \(=\) | \( 375 = 3 \cdot 5^{3} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 375.e (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(2.99439007580\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Relative dimension: | \(16\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 68.1 | −1.73446 | − | 1.73446i | −0.992284 | − | 1.41964i | 4.01670i | 0 | −0.741229 | + | 4.18338i | −2.24842 | + | 2.24842i | 3.49789 | − | 3.49789i | −1.03075 | + | 2.81737i | 0 | ||||||
| 68.2 | −1.73446 | − | 1.73446i | 1.41964 | + | 0.992284i | 4.01670i | 0 | −0.741229 | − | 4.18338i | 2.24842 | − | 2.24842i | 3.49789 | − | 3.49789i | 1.03075 | + | 2.81737i | 0 | ||||||
| 68.3 | −1.42125 | − | 1.42125i | −1.71967 | − | 0.206704i | 2.03989i | 0 | 2.15030 | + | 2.73786i | 1.62063 | − | 1.62063i | 0.0566872 | − | 0.0566872i | 2.91455 | + | 0.710926i | 0 | ||||||
| 68.4 | −1.42125 | − | 1.42125i | 0.206704 | + | 1.71967i | 2.03989i | 0 | 2.15030 | − | 2.73786i | −1.62063 | + | 1.62063i | 0.0566872 | − | 0.0566872i | −2.91455 | + | 0.710926i | 0 | ||||||
| 68.5 | −0.548330 | − | 0.548330i | −1.73176 | − | 0.0316680i | − | 1.39867i | 0 | 0.932212 | + | 0.966941i | 1.30711 | − | 1.30711i | −1.86359 | + | 1.86359i | 2.99799 | + | 0.109683i | 0 | |||||
| 68.6 | −0.548330 | − | 0.548330i | 0.0316680 | + | 1.73176i | − | 1.39867i | 0 | 0.932212 | − | 0.966941i | −1.30711 | + | 1.30711i | −1.86359 | + | 1.86359i | −2.99799 | + | 0.109683i | 0 | |||||
| 68.7 | −0.413570 | − | 0.413570i | 0.334821 | − | 1.69938i | − | 1.65792i | 0 | −0.841285 | + | 0.564341i | −2.93422 | + | 2.93422i | −1.51281 | + | 1.51281i | −2.77579 | − | 1.13798i | 0 | |||||
| 68.8 | −0.413570 | − | 0.413570i | 1.69938 | − | 0.334821i | − | 1.65792i | 0 | −0.841285 | − | 0.564341i | 2.93422 | − | 2.93422i | −1.51281 | + | 1.51281i | 2.77579 | − | 1.13798i | 0 | |||||
| 68.9 | 0.413570 | + | 0.413570i | −1.69938 | + | 0.334821i | − | 1.65792i | 0 | −0.841285 | − | 0.564341i | −2.93422 | + | 2.93422i | 1.51281 | − | 1.51281i | 2.77579 | − | 1.13798i | 0 | |||||
| 68.10 | 0.413570 | + | 0.413570i | −0.334821 | + | 1.69938i | − | 1.65792i | 0 | −0.841285 | + | 0.564341i | 2.93422 | − | 2.93422i | 1.51281 | − | 1.51281i | −2.77579 | − | 1.13798i | 0 | |||||
| 68.11 | 0.548330 | + | 0.548330i | −0.0316680 | − | 1.73176i | − | 1.39867i | 0 | 0.932212 | − | 0.966941i | 1.30711 | − | 1.30711i | 1.86359 | − | 1.86359i | −2.99799 | + | 0.109683i | 0 | |||||
| 68.12 | 0.548330 | + | 0.548330i | 1.73176 | + | 0.0316680i | − | 1.39867i | 0 | 0.932212 | + | 0.966941i | −1.30711 | + | 1.30711i | 1.86359 | − | 1.86359i | 2.99799 | + | 0.109683i | 0 | |||||
| 68.13 | 1.42125 | + | 1.42125i | −0.206704 | − | 1.71967i | 2.03989i | 0 | 2.15030 | − | 2.73786i | 1.62063 | − | 1.62063i | −0.0566872 | + | 0.0566872i | −2.91455 | + | 0.710926i | 0 | ||||||
| 68.14 | 1.42125 | + | 1.42125i | 1.71967 | + | 0.206704i | 2.03989i | 0 | 2.15030 | + | 2.73786i | −1.62063 | + | 1.62063i | −0.0566872 | + | 0.0566872i | 2.91455 | + | 0.710926i | 0 | ||||||
| 68.15 | 1.73446 | + | 1.73446i | −1.41964 | − | 0.992284i | 4.01670i | 0 | −0.741229 | − | 4.18338i | −2.24842 | + | 2.24842i | −3.49789 | + | 3.49789i | 1.03075 | + | 2.81737i | 0 | ||||||
| 68.16 | 1.73446 | + | 1.73446i | 0.992284 | + | 1.41964i | 4.01670i | 0 | −0.741229 | + | 4.18338i | 2.24842 | − | 2.24842i | −3.49789 | + | 3.49789i | −1.03075 | + | 2.81737i | 0 | ||||||
| 182.1 | −1.73446 | + | 1.73446i | −0.992284 | + | 1.41964i | − | 4.01670i | 0 | −0.741229 | − | 4.18338i | −2.24842 | − | 2.24842i | 3.49789 | + | 3.49789i | −1.03075 | − | 2.81737i | 0 | |||||
| 182.2 | −1.73446 | + | 1.73446i | 1.41964 | − | 0.992284i | − | 4.01670i | 0 | −0.741229 | + | 4.18338i | 2.24842 | + | 2.24842i | 3.49789 | + | 3.49789i | 1.03075 | − | 2.81737i | 0 | |||||
| 182.3 | −1.42125 | + | 1.42125i | −1.71967 | + | 0.206704i | − | 2.03989i | 0 | 2.15030 | − | 2.73786i | 1.62063 | + | 1.62063i | 0.0566872 | + | 0.0566872i | 2.91455 | − | 0.710926i | 0 | |||||
| 182.4 | −1.42125 | + | 1.42125i | 0.206704 | − | 1.71967i | − | 2.03989i | 0 | 2.15030 | + | 2.73786i | −1.62063 | − | 1.62063i | 0.0566872 | + | 0.0566872i | −2.91455 | − | 0.710926i | 0 | |||||
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 5.b | even | 2 | 1 | inner |
| 5.c | odd | 4 | 2 | inner |
| 15.d | odd | 2 | 1 | inner |
| 15.e | even | 4 | 2 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 375.2.e.c | ✓ | 32 |
| 3.b | odd | 2 | 1 | inner | 375.2.e.c | ✓ | 32 |
| 5.b | even | 2 | 1 | inner | 375.2.e.c | ✓ | 32 |
| 5.c | odd | 4 | 2 | inner | 375.2.e.c | ✓ | 32 |
| 15.d | odd | 2 | 1 | inner | 375.2.e.c | ✓ | 32 |
| 15.e | even | 4 | 2 | inner | 375.2.e.c | ✓ | 32 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 375.2.e.c | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
| 375.2.e.c | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
| 375.2.e.c | ✓ | 32 | 5.b | even | 2 | 1 | inner |
| 375.2.e.c | ✓ | 32 | 5.c | odd | 4 | 2 | inner |
| 375.2.e.c | ✓ | 32 | 15.d | odd | 2 | 1 | inner |
| 375.2.e.c | ✓ | 32 | 15.e | even | 4 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} + 53T_{2}^{12} + 616T_{2}^{8} + 285T_{2}^{4} + 25 \)
acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\).