Properties

Label 375.2.e.c
Level $375$
Weight $2$
Character orbit 375.e
Analytic conductor $2.994$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,2,Mod(68,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q + 12 q^{6} - 24 q^{16} + 32 q^{21} - 56 q^{31} - 116 q^{36} - 96 q^{46} - 48 q^{51} + 144 q^{61} + 120 q^{66} + 168 q^{76} + 132 q^{81} - 56 q^{91} + 76 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
68.1 −1.73446 1.73446i −0.992284 1.41964i 4.01670i 0 −0.741229 + 4.18338i −2.24842 + 2.24842i 3.49789 3.49789i −1.03075 + 2.81737i 0
68.2 −1.73446 1.73446i 1.41964 + 0.992284i 4.01670i 0 −0.741229 4.18338i 2.24842 2.24842i 3.49789 3.49789i 1.03075 + 2.81737i 0
68.3 −1.42125 1.42125i −1.71967 0.206704i 2.03989i 0 2.15030 + 2.73786i 1.62063 1.62063i 0.0566872 0.0566872i 2.91455 + 0.710926i 0
68.4 −1.42125 1.42125i 0.206704 + 1.71967i 2.03989i 0 2.15030 2.73786i −1.62063 + 1.62063i 0.0566872 0.0566872i −2.91455 + 0.710926i 0
68.5 −0.548330 0.548330i −1.73176 0.0316680i 1.39867i 0 0.932212 + 0.966941i 1.30711 1.30711i −1.86359 + 1.86359i 2.99799 + 0.109683i 0
68.6 −0.548330 0.548330i 0.0316680 + 1.73176i 1.39867i 0 0.932212 0.966941i −1.30711 + 1.30711i −1.86359 + 1.86359i −2.99799 + 0.109683i 0
68.7 −0.413570 0.413570i 0.334821 1.69938i 1.65792i 0 −0.841285 + 0.564341i −2.93422 + 2.93422i −1.51281 + 1.51281i −2.77579 1.13798i 0
68.8 −0.413570 0.413570i 1.69938 0.334821i 1.65792i 0 −0.841285 0.564341i 2.93422 2.93422i −1.51281 + 1.51281i 2.77579 1.13798i 0
68.9 0.413570 + 0.413570i −1.69938 + 0.334821i 1.65792i 0 −0.841285 0.564341i −2.93422 + 2.93422i 1.51281 1.51281i 2.77579 1.13798i 0
68.10 0.413570 + 0.413570i −0.334821 + 1.69938i 1.65792i 0 −0.841285 + 0.564341i 2.93422 2.93422i 1.51281 1.51281i −2.77579 1.13798i 0
68.11 0.548330 + 0.548330i −0.0316680 1.73176i 1.39867i 0 0.932212 0.966941i 1.30711 1.30711i 1.86359 1.86359i −2.99799 + 0.109683i 0
68.12 0.548330 + 0.548330i 1.73176 + 0.0316680i 1.39867i 0 0.932212 + 0.966941i −1.30711 + 1.30711i 1.86359 1.86359i 2.99799 + 0.109683i 0
68.13 1.42125 + 1.42125i −0.206704 1.71967i 2.03989i 0 2.15030 2.73786i 1.62063 1.62063i −0.0566872 + 0.0566872i −2.91455 + 0.710926i 0
68.14 1.42125 + 1.42125i 1.71967 + 0.206704i 2.03989i 0 2.15030 + 2.73786i −1.62063 + 1.62063i −0.0566872 + 0.0566872i 2.91455 + 0.710926i 0
68.15 1.73446 + 1.73446i −1.41964 0.992284i 4.01670i 0 −0.741229 4.18338i −2.24842 + 2.24842i −3.49789 + 3.49789i 1.03075 + 2.81737i 0
68.16 1.73446 + 1.73446i 0.992284 + 1.41964i 4.01670i 0 −0.741229 + 4.18338i 2.24842 2.24842i −3.49789 + 3.49789i −1.03075 + 2.81737i 0
182.1 −1.73446 + 1.73446i −0.992284 + 1.41964i 4.01670i 0 −0.741229 4.18338i −2.24842 2.24842i 3.49789 + 3.49789i −1.03075 2.81737i 0
182.2 −1.73446 + 1.73446i 1.41964 0.992284i 4.01670i 0 −0.741229 + 4.18338i 2.24842 + 2.24842i 3.49789 + 3.49789i 1.03075 2.81737i 0
182.3 −1.42125 + 1.42125i −1.71967 + 0.206704i 2.03989i 0 2.15030 2.73786i 1.62063 + 1.62063i 0.0566872 + 0.0566872i 2.91455 0.710926i 0
182.4 −1.42125 + 1.42125i 0.206704 1.71967i 2.03989i 0 2.15030 + 2.73786i −1.62063 1.62063i 0.0566872 + 0.0566872i −2.91455 0.710926i 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 68.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
15.d odd 2 1 inner
15.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 375.2.e.c 32
3.b odd 2 1 inner 375.2.e.c 32
5.b even 2 1 inner 375.2.e.c 32
5.c odd 4 2 inner 375.2.e.c 32
15.d odd 2 1 inner 375.2.e.c 32
15.e even 4 2 inner 375.2.e.c 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
375.2.e.c 32 1.a even 1 1 trivial
375.2.e.c 32 3.b odd 2 1 inner
375.2.e.c 32 5.b even 2 1 inner
375.2.e.c 32 5.c odd 4 2 inner
375.2.e.c 32 15.d odd 2 1 inner
375.2.e.c 32 15.e even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{16} + 53T_{2}^{12} + 616T_{2}^{8} + 285T_{2}^{4} + 25 \) acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\). Copy content Toggle raw display