| L(s) = 1 | + (−0.548 + 0.548i)2-s + (−1.73 + 0.0316i)3-s + 1.39i·4-s + (0.932 − 0.966i)6-s + (1.30 + 1.30i)7-s + (−1.86 − 1.86i)8-s + (2.99 − 0.109i)9-s + 2.81i·11-s + (−0.0442 − 2.42i)12-s + (−3.20 + 3.20i)13-s − 1.43·14-s − 0.753·16-s + (0.175 − 0.175i)17-s + (−1.58 + 1.70i)18-s − 2.15i·19-s + ⋯ |
| L(s) = 1 | + (−0.387 + 0.387i)2-s + (−0.999 + 0.0182i)3-s + 0.699i·4-s + (0.380 − 0.394i)6-s + (0.494 + 0.494i)7-s + (−0.658 − 0.658i)8-s + (0.999 − 0.0365i)9-s + 0.850i·11-s + (−0.0127 − 0.699i)12-s + (−0.888 + 0.888i)13-s − 0.383·14-s − 0.188·16-s + (0.0425 − 0.0425i)17-s + (−0.373 + 0.401i)18-s − 0.493i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0182i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 375 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0182i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.00409279 - 0.447665i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.00409279 - 0.447665i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (1.73 - 0.0316i)T \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + (0.548 - 0.548i)T - 2iT^{2} \) |
| 7 | \( 1 + (-1.30 - 1.30i)T + 7iT^{2} \) |
| 11 | \( 1 - 2.81iT - 11T^{2} \) |
| 13 | \( 1 + (3.20 - 3.20i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.175 + 0.175i)T - 17iT^{2} \) |
| 19 | \( 1 + 2.15iT - 19T^{2} \) |
| 23 | \( 1 + (4.24 + 4.24i)T + 23iT^{2} \) |
| 29 | \( 1 + 10.0T + 29T^{2} \) |
| 31 | \( 1 + 6.12T + 31T^{2} \) |
| 37 | \( 1 + (-6.73 - 6.73i)T + 37iT^{2} \) |
| 41 | \( 1 - 3.05iT - 41T^{2} \) |
| 43 | \( 1 + (0.807 - 0.807i)T - 43iT^{2} \) |
| 47 | \( 1 + (6.38 - 6.38i)T - 47iT^{2} \) |
| 53 | \( 1 + (-9.01 - 9.01i)T + 53iT^{2} \) |
| 59 | \( 1 + 3.51T + 59T^{2} \) |
| 61 | \( 1 - 7.85T + 61T^{2} \) |
| 67 | \( 1 + (-1.34 - 1.34i)T + 67iT^{2} \) |
| 71 | \( 1 + 4.56iT - 71T^{2} \) |
| 73 | \( 1 + (-10.8 + 10.8i)T - 73iT^{2} \) |
| 79 | \( 1 - 6.52iT - 79T^{2} \) |
| 83 | \( 1 + (-0.146 - 0.146i)T + 83iT^{2} \) |
| 89 | \( 1 - 0.309T + 89T^{2} \) |
| 97 | \( 1 + (6.77 + 6.77i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85300211327401735450692620416, −11.13677821692003679498555474081, −9.804924996298133860811870736435, −9.196667018225868277961601209238, −7.895430747617281841189982743561, −7.16273874611138890650142137056, −6.29492973028872686911763621913, −5.00503571965225468648255597718, −4.10419792836871419506183301608, −2.16028072044720482791509653939,
0.37416438706007661388986098015, 1.86664501541885132731469763470, 3.86375644412081998438374960946, 5.42489298798715473352668569029, 5.67712289199087435340985857943, 7.13421413691059358744100819179, 8.073022608720199465228780109234, 9.484177387573772015575674597238, 10.12730566795325202497600471111, 11.04028664656723526501183366467