Properties

Label 3744.2.j.a.2159.14
Level $3744$
Weight $2$
Character 3744.2159
Analytic conductor $29.896$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3744,2,Mod(2159,3744)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3744, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3744.2159"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2159.14
Character \(\chi\) \(=\) 3744.2159
Dual form 3744.2.j.a.2159.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.22260 q^{5} +0.534598i q^{7} -2.35523i q^{11} -1.00000i q^{13} +4.78791i q^{17} +4.25343 q^{19} +2.55292 q^{23} -0.0600300 q^{25} -8.32790 q^{29} -0.284086i q^{31} -1.18820i q^{35} -6.30002i q^{37} +4.33386i q^{41} +0.666197 q^{43} +1.10114 q^{47} +6.71421 q^{49} -1.42724 q^{53} +5.23475i q^{55} -3.21354i q^{59} +4.98877i q^{61} +2.22260i q^{65} -0.658322 q^{67} -12.3352 q^{71} +14.1390 q^{73} +1.25910 q^{77} -11.8382i q^{79} -14.7707i q^{83} -10.6416i q^{85} +1.91146i q^{89} +0.534598 q^{91} -9.45368 q^{95} -7.69682 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 32 q^{19} + 48 q^{25} + 32 q^{43} - 48 q^{49} - 32 q^{67} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.22260 −0.993979 −0.496989 0.867757i \(-0.665561\pi\)
−0.496989 + 0.867757i \(0.665561\pi\)
\(6\) 0 0
\(7\) 0.534598i 0.202059i 0.994883 + 0.101029i \(0.0322136\pi\)
−0.994883 + 0.101029i \(0.967786\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 2.35523i − 0.710129i −0.934842 0.355065i \(-0.884459\pi\)
0.934842 0.355065i \(-0.115541\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.78791i 1.16124i 0.814176 + 0.580619i \(0.197189\pi\)
−0.814176 + 0.580619i \(0.802811\pi\)
\(18\) 0 0
\(19\) 4.25343 0.975803 0.487901 0.872899i \(-0.337763\pi\)
0.487901 + 0.872899i \(0.337763\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.55292 0.532320 0.266160 0.963929i \(-0.414245\pi\)
0.266160 + 0.963929i \(0.414245\pi\)
\(24\) 0 0
\(25\) −0.0600300 −0.0120060
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.32790 −1.54645 −0.773226 0.634130i \(-0.781358\pi\)
−0.773226 + 0.634130i \(0.781358\pi\)
\(30\) 0 0
\(31\) − 0.284086i − 0.0510234i −0.999675 0.0255117i \(-0.991878\pi\)
0.999675 0.0255117i \(-0.00812150\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 1.18820i − 0.200842i
\(36\) 0 0
\(37\) − 6.30002i − 1.03572i −0.855467 0.517858i \(-0.826730\pi\)
0.855467 0.517858i \(-0.173270\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.33386i 0.676835i 0.940996 + 0.338417i \(0.109892\pi\)
−0.940996 + 0.338417i \(0.890108\pi\)
\(42\) 0 0
\(43\) 0.666197 0.101594 0.0507970 0.998709i \(-0.483824\pi\)
0.0507970 + 0.998709i \(0.483824\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.10114 0.160618 0.0803092 0.996770i \(-0.474409\pi\)
0.0803092 + 0.996770i \(0.474409\pi\)
\(48\) 0 0
\(49\) 6.71421 0.959172
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.42724 −0.196047 −0.0980233 0.995184i \(-0.531252\pi\)
−0.0980233 + 0.995184i \(0.531252\pi\)
\(54\) 0 0
\(55\) 5.23475i 0.705853i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 3.21354i − 0.418368i −0.977876 0.209184i \(-0.932919\pi\)
0.977876 0.209184i \(-0.0670807\pi\)
\(60\) 0 0
\(61\) 4.98877i 0.638747i 0.947629 + 0.319373i \(0.103472\pi\)
−0.947629 + 0.319373i \(0.896528\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.22260i 0.275680i
\(66\) 0 0
\(67\) −0.658322 −0.0804268 −0.0402134 0.999191i \(-0.512804\pi\)
−0.0402134 + 0.999191i \(0.512804\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.3352 −1.46391 −0.731957 0.681350i \(-0.761393\pi\)
−0.731957 + 0.681350i \(0.761393\pi\)
\(72\) 0 0
\(73\) 14.1390 1.65485 0.827423 0.561579i \(-0.189806\pi\)
0.827423 + 0.561579i \(0.189806\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.25910 0.143488
\(78\) 0 0
\(79\) − 11.8382i − 1.33190i −0.745998 0.665948i \(-0.768027\pi\)
0.745998 0.665948i \(-0.231973\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 14.7707i − 1.62130i −0.585531 0.810650i \(-0.699114\pi\)
0.585531 0.810650i \(-0.300886\pi\)
\(84\) 0 0
\(85\) − 10.6416i − 1.15425i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.91146i 0.202614i 0.994855 + 0.101307i \(0.0323025\pi\)
−0.994855 + 0.101307i \(0.967697\pi\)
\(90\) 0 0
\(91\) 0.534598 0.0560411
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −9.45368 −0.969927
\(96\) 0 0
\(97\) −7.69682 −0.781493 −0.390747 0.920498i \(-0.627783\pi\)
−0.390747 + 0.920498i \(0.627783\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.87035 −0.186106 −0.0930532 0.995661i \(-0.529663\pi\)
−0.0930532 + 0.995661i \(0.529663\pi\)
\(102\) 0 0
\(103\) 0.952030i 0.0938063i 0.998899 + 0.0469031i \(0.0149352\pi\)
−0.998899 + 0.0469031i \(0.985065\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 16.5895i − 1.60377i −0.597481 0.801883i \(-0.703832\pi\)
0.597481 0.801883i \(-0.296168\pi\)
\(108\) 0 0
\(109\) − 9.32470i − 0.893144i −0.894748 0.446572i \(-0.852645\pi\)
0.894748 0.446572i \(-0.147355\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 3.63306i − 0.341770i −0.985291 0.170885i \(-0.945337\pi\)
0.985291 0.170885i \(-0.0546626\pi\)
\(114\) 0 0
\(115\) −5.67413 −0.529115
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.55960 −0.234638
\(120\) 0 0
\(121\) 5.45288 0.495717
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.2464 1.00591
\(126\) 0 0
\(127\) − 13.2516i − 1.17589i −0.808902 0.587943i \(-0.799938\pi\)
0.808902 0.587943i \(-0.200062\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 10.2828i − 0.898409i −0.893429 0.449204i \(-0.851708\pi\)
0.893429 0.449204i \(-0.148292\pi\)
\(132\) 0 0
\(133\) 2.27387i 0.197170i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 19.8206i − 1.69339i −0.532081 0.846694i \(-0.678590\pi\)
0.532081 0.846694i \(-0.321410\pi\)
\(138\) 0 0
\(139\) 21.6113 1.83304 0.916522 0.399983i \(-0.130984\pi\)
0.916522 + 0.399983i \(0.130984\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.35523 −0.196954
\(144\) 0 0
\(145\) 18.5096 1.53714
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.98437 0.326413 0.163206 0.986592i \(-0.447816\pi\)
0.163206 + 0.986592i \(0.447816\pi\)
\(150\) 0 0
\(151\) − 6.03988i − 0.491518i −0.969331 0.245759i \(-0.920963\pi\)
0.969331 0.245759i \(-0.0790372\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.631411i 0.0507162i
\(156\) 0 0
\(157\) 9.13676i 0.729193i 0.931166 + 0.364597i \(0.118793\pi\)
−0.931166 + 0.364597i \(0.881207\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.36478i 0.107560i
\(162\) 0 0
\(163\) −21.7664 −1.70487 −0.852437 0.522829i \(-0.824876\pi\)
−0.852437 + 0.522829i \(0.824876\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.7137 1.13858 0.569291 0.822136i \(-0.307218\pi\)
0.569291 + 0.822136i \(0.307218\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.1757 −1.07776 −0.538881 0.842382i \(-0.681153\pi\)
−0.538881 + 0.842382i \(0.681153\pi\)
\(174\) 0 0
\(175\) − 0.0320919i − 0.00242592i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 17.7742i 1.32851i 0.747506 + 0.664255i \(0.231251\pi\)
−0.747506 + 0.664255i \(0.768749\pi\)
\(180\) 0 0
\(181\) − 15.3188i − 1.13864i −0.822117 0.569318i \(-0.807207\pi\)
0.822117 0.569318i \(-0.192793\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 14.0024i 1.02948i
\(186\) 0 0
\(187\) 11.2766 0.824629
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.40080 0.246073 0.123037 0.992402i \(-0.460737\pi\)
0.123037 + 0.992402i \(0.460737\pi\)
\(192\) 0 0
\(193\) 9.94428 0.715805 0.357902 0.933759i \(-0.383492\pi\)
0.357902 + 0.933759i \(0.383492\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.736457 0.0524704 0.0262352 0.999656i \(-0.491648\pi\)
0.0262352 + 0.999656i \(0.491648\pi\)
\(198\) 0 0
\(199\) − 14.0332i − 0.994789i −0.867524 0.497395i \(-0.834290\pi\)
0.867524 0.497395i \(-0.165710\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 4.45208i − 0.312475i
\(204\) 0 0
\(205\) − 9.63245i − 0.672760i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 10.0178i − 0.692946i
\(210\) 0 0
\(211\) 1.55071 0.106756 0.0533778 0.998574i \(-0.483001\pi\)
0.0533778 + 0.998574i \(0.483001\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.48069 −0.100982
\(216\) 0 0
\(217\) 0.151872 0.0103097
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.78791 0.322069
\(222\) 0 0
\(223\) − 3.64245i − 0.243917i −0.992535 0.121958i \(-0.961083\pi\)
0.992535 0.121958i \(-0.0389174\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.9635i 0.860417i 0.902730 + 0.430208i \(0.141560\pi\)
−0.902730 + 0.430208i \(0.858440\pi\)
\(228\) 0 0
\(229\) − 3.85891i − 0.255004i −0.991838 0.127502i \(-0.959304\pi\)
0.991838 0.127502i \(-0.0406959\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 17.6243i − 1.15461i −0.816529 0.577304i \(-0.804105\pi\)
0.816529 0.577304i \(-0.195895\pi\)
\(234\) 0 0
\(235\) −2.44741 −0.159651
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 19.4649 1.25908 0.629540 0.776968i \(-0.283243\pi\)
0.629540 + 0.776968i \(0.283243\pi\)
\(240\) 0 0
\(241\) 9.66859 0.622809 0.311404 0.950278i \(-0.399201\pi\)
0.311404 + 0.950278i \(0.399201\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −14.9230 −0.953397
\(246\) 0 0
\(247\) − 4.25343i − 0.270639i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 10.1660i − 0.641670i −0.947135 0.320835i \(-0.896036\pi\)
0.947135 0.320835i \(-0.103964\pi\)
\(252\) 0 0
\(253\) − 6.01271i − 0.378016i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 11.2601i − 0.702386i −0.936303 0.351193i \(-0.885776\pi\)
0.936303 0.351193i \(-0.114224\pi\)
\(258\) 0 0
\(259\) 3.36797 0.209276
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −29.3228 −1.80812 −0.904061 0.427404i \(-0.859428\pi\)
−0.904061 + 0.427404i \(0.859428\pi\)
\(264\) 0 0
\(265\) 3.17219 0.194866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.81250 −0.110510 −0.0552551 0.998472i \(-0.517597\pi\)
−0.0552551 + 0.998472i \(0.517597\pi\)
\(270\) 0 0
\(271\) − 28.5969i − 1.73714i −0.495566 0.868570i \(-0.665039\pi\)
0.495566 0.868570i \(-0.334961\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.141385i 0.00852581i
\(276\) 0 0
\(277\) 18.6565i 1.12096i 0.828168 + 0.560480i \(0.189383\pi\)
−0.828168 + 0.560480i \(0.810617\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 10.2308i − 0.610317i −0.952302 0.305159i \(-0.901291\pi\)
0.952302 0.305159i \(-0.0987095\pi\)
\(282\) 0 0
\(283\) 6.27100 0.372772 0.186386 0.982477i \(-0.440322\pi\)
0.186386 + 0.982477i \(0.440322\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.31687 −0.136761
\(288\) 0 0
\(289\) −5.92404 −0.348473
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.3609 −0.838971 −0.419486 0.907762i \(-0.637790\pi\)
−0.419486 + 0.907762i \(0.637790\pi\)
\(294\) 0 0
\(295\) 7.14243i 0.415849i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 2.55292i − 0.147639i
\(300\) 0 0
\(301\) 0.356147i 0.0205280i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 11.0881i − 0.634901i
\(306\) 0 0
\(307\) −20.5030 −1.17017 −0.585083 0.810973i \(-0.698938\pi\)
−0.585083 + 0.810973i \(0.698938\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −21.8586 −1.23949 −0.619744 0.784804i \(-0.712764\pi\)
−0.619744 + 0.784804i \(0.712764\pi\)
\(312\) 0 0
\(313\) −16.6056 −0.938605 −0.469302 0.883038i \(-0.655495\pi\)
−0.469302 + 0.883038i \(0.655495\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.8968 1.39834 0.699171 0.714954i \(-0.253553\pi\)
0.699171 + 0.714954i \(0.253553\pi\)
\(318\) 0 0
\(319\) 19.6141i 1.09818i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.3650i 1.13314i
\(324\) 0 0
\(325\) 0.0600300i 0.00332987i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.588669i 0.0324544i
\(330\) 0 0
\(331\) 29.5671 1.62515 0.812577 0.582854i \(-0.198064\pi\)
0.812577 + 0.582854i \(0.198064\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.46319 0.0799425
\(336\) 0 0
\(337\) 0.297033 0.0161804 0.00809022 0.999967i \(-0.497425\pi\)
0.00809022 + 0.999967i \(0.497425\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.669089 −0.0362332
\(342\) 0 0
\(343\) 7.33158i 0.395868i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 7.16773i − 0.384784i −0.981318 0.192392i \(-0.938375\pi\)
0.981318 0.192392i \(-0.0616245\pi\)
\(348\) 0 0
\(349\) − 3.32515i − 0.177991i −0.996032 0.0889955i \(-0.971634\pi\)
0.996032 0.0889955i \(-0.0283657\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.31174i 0.123041i 0.998106 + 0.0615207i \(0.0195950\pi\)
−0.998106 + 0.0615207i \(0.980405\pi\)
\(354\) 0 0
\(355\) 27.4162 1.45510
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −30.0147 −1.58411 −0.792057 0.610448i \(-0.790990\pi\)
−0.792057 + 0.610448i \(0.790990\pi\)
\(360\) 0 0
\(361\) −0.908366 −0.0478087
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −31.4254 −1.64488
\(366\) 0 0
\(367\) − 26.3530i − 1.37562i −0.725893 0.687808i \(-0.758573\pi\)
0.725893 0.687808i \(-0.241427\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 0.763000i − 0.0396130i
\(372\) 0 0
\(373\) 22.9710i 1.18939i 0.803951 + 0.594696i \(0.202727\pi\)
−0.803951 + 0.594696i \(0.797273\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.32790i 0.428909i
\(378\) 0 0
\(379\) 16.2876 0.836637 0.418318 0.908301i \(-0.362620\pi\)
0.418318 + 0.908301i \(0.362620\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.6718 0.596404 0.298202 0.954503i \(-0.403613\pi\)
0.298202 + 0.954503i \(0.403613\pi\)
\(384\) 0 0
\(385\) −2.79848 −0.142624
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.0270 −0.508387 −0.254193 0.967153i \(-0.581810\pi\)
−0.254193 + 0.967153i \(0.581810\pi\)
\(390\) 0 0
\(391\) 12.2231i 0.618150i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 26.3115i 1.32388i
\(396\) 0 0
\(397\) 18.9924i 0.953201i 0.879120 + 0.476601i \(0.158131\pi\)
−0.879120 + 0.476601i \(0.841869\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 23.9527i 1.19614i 0.801444 + 0.598070i \(0.204065\pi\)
−0.801444 + 0.598070i \(0.795935\pi\)
\(402\) 0 0
\(403\) −0.284086 −0.0141513
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −14.8380 −0.735492
\(408\) 0 0
\(409\) −19.3336 −0.955985 −0.477993 0.878364i \(-0.658635\pi\)
−0.477993 + 0.878364i \(0.658635\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.71795 0.0845349
\(414\) 0 0
\(415\) 32.8295i 1.61154i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.67129i 0.0816477i 0.999166 + 0.0408239i \(0.0129982\pi\)
−0.999166 + 0.0408239i \(0.987002\pi\)
\(420\) 0 0
\(421\) − 18.7410i − 0.913380i −0.889626 0.456690i \(-0.849035\pi\)
0.889626 0.456690i \(-0.150965\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 0.287418i − 0.0139418i
\(426\) 0 0
\(427\) −2.66699 −0.129065
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.7512 0.855043 0.427522 0.904005i \(-0.359387\pi\)
0.427522 + 0.904005i \(0.359387\pi\)
\(432\) 0 0
\(433\) −35.1148 −1.68751 −0.843754 0.536729i \(-0.819660\pi\)
−0.843754 + 0.536729i \(0.819660\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.8586 0.519440
\(438\) 0 0
\(439\) − 2.03379i − 0.0970674i −0.998822 0.0485337i \(-0.984545\pi\)
0.998822 0.0485337i \(-0.0154548\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 5.40321i − 0.256714i −0.991728 0.128357i \(-0.959030\pi\)
0.991728 0.128357i \(-0.0409704\pi\)
\(444\) 0 0
\(445\) − 4.24842i − 0.201394i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 23.2885i − 1.09905i −0.835477 0.549525i \(-0.814809\pi\)
0.835477 0.549525i \(-0.185191\pi\)
\(450\) 0 0
\(451\) 10.2072 0.480640
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.18820 −0.0557036
\(456\) 0 0
\(457\) 21.0679 0.985515 0.492758 0.870167i \(-0.335989\pi\)
0.492758 + 0.870167i \(0.335989\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.7196 1.01158 0.505792 0.862655i \(-0.331200\pi\)
0.505792 + 0.862655i \(0.331200\pi\)
\(462\) 0 0
\(463\) 31.7599i 1.47601i 0.674798 + 0.738003i \(0.264231\pi\)
−0.674798 + 0.738003i \(0.735769\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 40.1071i 1.85594i 0.372660 + 0.927968i \(0.378446\pi\)
−0.372660 + 0.927968i \(0.621554\pi\)
\(468\) 0 0
\(469\) − 0.351937i − 0.0162510i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 1.56905i − 0.0721449i
\(474\) 0 0
\(475\) −0.255333 −0.0117155
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 40.3160 1.84208 0.921042 0.389463i \(-0.127339\pi\)
0.921042 + 0.389463i \(0.127339\pi\)
\(480\) 0 0
\(481\) −6.30002 −0.287256
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.1070 0.776788
\(486\) 0 0
\(487\) − 6.50924i − 0.294962i −0.989065 0.147481i \(-0.952883\pi\)
0.989065 0.147481i \(-0.0471165\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 30.1527i 1.36077i 0.732854 + 0.680386i \(0.238188\pi\)
−0.732854 + 0.680386i \(0.761812\pi\)
\(492\) 0 0
\(493\) − 39.8732i − 1.79580i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 6.59435i − 0.295797i
\(498\) 0 0
\(499\) 25.4542 1.13949 0.569744 0.821822i \(-0.307043\pi\)
0.569744 + 0.821822i \(0.307043\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.7136 1.28028 0.640138 0.768260i \(-0.278877\pi\)
0.640138 + 0.768260i \(0.278877\pi\)
\(504\) 0 0
\(505\) 4.15704 0.184986
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.0695 0.490645 0.245323 0.969441i \(-0.421106\pi\)
0.245323 + 0.969441i \(0.421106\pi\)
\(510\) 0 0
\(511\) 7.55869i 0.334377i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 2.11599i − 0.0932414i
\(516\) 0 0
\(517\) − 2.59345i − 0.114060i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 13.6152i − 0.596493i −0.954489 0.298246i \(-0.903598\pi\)
0.954489 0.298246i \(-0.0964017\pi\)
\(522\) 0 0
\(523\) −30.2130 −1.32112 −0.660561 0.750772i \(-0.729682\pi\)
−0.660561 + 0.750772i \(0.729682\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.36018 0.0592503
\(528\) 0 0
\(529\) −16.4826 −0.716635
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.33386 0.187720
\(534\) 0 0
\(535\) 36.8719i 1.59411i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 15.8135i − 0.681136i
\(540\) 0 0
\(541\) − 21.4574i − 0.922527i −0.887263 0.461264i \(-0.847396\pi\)
0.887263 0.461264i \(-0.152604\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 20.7251i 0.887766i
\(546\) 0 0
\(547\) 5.45515 0.233245 0.116623 0.993176i \(-0.462793\pi\)
0.116623 + 0.993176i \(0.462793\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −35.4221 −1.50903
\(552\) 0 0
\(553\) 6.32865 0.269122
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −35.6007 −1.50845 −0.754225 0.656616i \(-0.771987\pi\)
−0.754225 + 0.656616i \(0.771987\pi\)
\(558\) 0 0
\(559\) − 0.666197i − 0.0281771i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 17.7813i − 0.749392i −0.927148 0.374696i \(-0.877747\pi\)
0.927148 0.374696i \(-0.122253\pi\)
\(564\) 0 0
\(565\) 8.07486i 0.339712i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.00142i 0.293515i 0.989173 + 0.146757i \(0.0468837\pi\)
−0.989173 + 0.146757i \(0.953116\pi\)
\(570\) 0 0
\(571\) −32.3791 −1.35502 −0.677511 0.735513i \(-0.736941\pi\)
−0.677511 + 0.735513i \(0.736941\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.153252 −0.00639104
\(576\) 0 0
\(577\) 43.8685 1.82627 0.913135 0.407657i \(-0.133654\pi\)
0.913135 + 0.407657i \(0.133654\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.89641 0.327598
\(582\) 0 0
\(583\) 3.36148i 0.139218i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 18.5529i − 0.765758i −0.923798 0.382879i \(-0.874933\pi\)
0.923798 0.382879i \(-0.125067\pi\)
\(588\) 0 0
\(589\) − 1.20834i − 0.0497888i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.1700i 0.951479i 0.879586 + 0.475739i \(0.157819\pi\)
−0.879586 + 0.475739i \(0.842181\pi\)
\(594\) 0 0
\(595\) 5.68899 0.233226
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 41.7546 1.70605 0.853024 0.521871i \(-0.174766\pi\)
0.853024 + 0.521871i \(0.174766\pi\)
\(600\) 0 0
\(601\) −44.9068 −1.83179 −0.915894 0.401420i \(-0.868517\pi\)
−0.915894 + 0.401420i \(0.868517\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −12.1196 −0.492732
\(606\) 0 0
\(607\) − 48.1964i − 1.95623i −0.208066 0.978115i \(-0.566717\pi\)
0.208066 0.978115i \(-0.433283\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.10114i − 0.0445475i
\(612\) 0 0
\(613\) 27.5841i 1.11411i 0.830475 + 0.557056i \(0.188069\pi\)
−0.830475 + 0.557056i \(0.811931\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.8625i 0.960668i 0.877086 + 0.480334i \(0.159485\pi\)
−0.877086 + 0.480334i \(0.840515\pi\)
\(618\) 0 0
\(619\) 20.4340 0.821312 0.410656 0.911790i \(-0.365300\pi\)
0.410656 + 0.911790i \(0.365300\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.02186 −0.0409401
\(624\) 0 0
\(625\) −24.6962 −0.987850
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 30.1639 1.20271
\(630\) 0 0
\(631\) 43.7874i 1.74315i 0.490265 + 0.871574i \(0.336900\pi\)
−0.490265 + 0.871574i \(0.663100\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 29.4530i 1.16881i
\(636\) 0 0
\(637\) − 6.71421i − 0.266026i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 26.4737i − 1.04565i −0.852441 0.522824i \(-0.824878\pi\)
0.852441 0.522824i \(-0.175122\pi\)
\(642\) 0 0
\(643\) −30.3343 −1.19627 −0.598134 0.801396i \(-0.704091\pi\)
−0.598134 + 0.801396i \(0.704091\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.4455 0.449971 0.224985 0.974362i \(-0.427767\pi\)
0.224985 + 0.974362i \(0.427767\pi\)
\(648\) 0 0
\(649\) −7.56864 −0.297095
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.80591 −0.227203 −0.113601 0.993526i \(-0.536239\pi\)
−0.113601 + 0.993526i \(0.536239\pi\)
\(654\) 0 0
\(655\) 22.8545i 0.892999i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 14.6774i − 0.571752i −0.958267 0.285876i \(-0.907715\pi\)
0.958267 0.285876i \(-0.0922845\pi\)
\(660\) 0 0
\(661\) − 3.77769i − 0.146935i −0.997298 0.0734676i \(-0.976593\pi\)
0.997298 0.0734676i \(-0.0234065\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 5.05392i − 0.195983i
\(666\) 0 0
\(667\) −21.2605 −0.823208
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.7497 0.453593
\(672\) 0 0
\(673\) −37.6779 −1.45238 −0.726188 0.687496i \(-0.758710\pi\)
−0.726188 + 0.687496i \(0.758710\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −34.4215 −1.32292 −0.661462 0.749979i \(-0.730064\pi\)
−0.661462 + 0.749979i \(0.730064\pi\)
\(678\) 0 0
\(679\) − 4.11470i − 0.157908i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 15.2294i − 0.582739i −0.956611 0.291369i \(-0.905889\pi\)
0.956611 0.291369i \(-0.0941108\pi\)
\(684\) 0 0
\(685\) 44.0533i 1.68319i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.42724i 0.0543736i
\(690\) 0 0
\(691\) −0.308783 −0.0117467 −0.00587334 0.999983i \(-0.501870\pi\)
−0.00587334 + 0.999983i \(0.501870\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −48.0333 −1.82201
\(696\) 0 0
\(697\) −20.7501 −0.785966
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0.0310215 0.00117166 0.000585832 1.00000i \(-0.499814\pi\)
0.000585832 1.00000i \(0.499814\pi\)
\(702\) 0 0
\(703\) − 26.7967i − 1.01065i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 0.999883i − 0.0376045i
\(708\) 0 0
\(709\) 23.9935i 0.901094i 0.892753 + 0.450547i \(0.148771\pi\)
−0.892753 + 0.450547i \(0.851229\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 0.725249i − 0.0271608i
\(714\) 0 0
\(715\) 5.23475 0.195768
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 28.8021 1.07414 0.537069 0.843538i \(-0.319532\pi\)
0.537069 + 0.843538i \(0.319532\pi\)
\(720\) 0 0
\(721\) −0.508953 −0.0189544
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.499924 0.0185667
\(726\) 0 0
\(727\) 11.5476i 0.428277i 0.976803 + 0.214138i \(0.0686943\pi\)
−0.976803 + 0.214138i \(0.931306\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.18969i 0.117975i
\(732\) 0 0
\(733\) 34.4289i 1.27166i 0.771830 + 0.635830i \(0.219342\pi\)
−0.771830 + 0.635830i \(0.780658\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.55050i 0.0571134i
\(738\) 0 0
\(739\) −47.2448 −1.73793 −0.868964 0.494876i \(-0.835214\pi\)
−0.868964 + 0.494876i \(0.835214\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 40.8575 1.49892 0.749459 0.662051i \(-0.230314\pi\)
0.749459 + 0.662051i \(0.230314\pi\)
\(744\) 0 0
\(745\) −8.85568 −0.324447
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.86870 0.324055
\(750\) 0 0
\(751\) − 54.4523i − 1.98699i −0.113859 0.993497i \(-0.536321\pi\)
0.113859 0.993497i \(-0.463679\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.4243i 0.488559i
\(756\) 0 0
\(757\) 10.5247i 0.382527i 0.981539 + 0.191263i \(0.0612585\pi\)
−0.981539 + 0.191263i \(0.938742\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 1.22084i − 0.0442555i −0.999755 0.0221278i \(-0.992956\pi\)
0.999755 0.0221278i \(-0.00704406\pi\)
\(762\) 0 0
\(763\) 4.98496 0.180468
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.21354 −0.116034
\(768\) 0 0
\(769\) −6.42116 −0.231553 −0.115777 0.993275i \(-0.536936\pi\)
−0.115777 + 0.993275i \(0.536936\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 43.3705 1.55993 0.779964 0.625825i \(-0.215238\pi\)
0.779964 + 0.625825i \(0.215238\pi\)
\(774\) 0 0
\(775\) 0.0170537i 0 0.000612587i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.4337i 0.660457i
\(780\) 0 0
\(781\) 29.0522i 1.03957i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 20.3074i − 0.724803i
\(786\) 0 0
\(787\) −4.57163 −0.162961 −0.0814804 0.996675i \(-0.525965\pi\)
−0.0814804 + 0.996675i \(0.525965\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.94223 0.0690576
\(792\) 0 0
\(793\) 4.98877 0.177157
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 45.1833 1.60047 0.800237 0.599684i \(-0.204707\pi\)
0.800237 + 0.599684i \(0.204707\pi\)
\(798\) 0 0
\(799\) 5.27217i 0.186516i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 33.3007i − 1.17515i
\(804\) 0 0
\(805\) − 3.03338i − 0.106912i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.51903i 0.158881i 0.996840 + 0.0794403i \(0.0253133\pi\)
−0.996840 + 0.0794403i \(0.974687\pi\)
\(810\) 0 0
\(811\) −51.7819 −1.81831 −0.909154 0.416460i \(-0.863271\pi\)
−0.909154 + 0.416460i \(0.863271\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 48.3781 1.69461
\(816\) 0 0
\(817\) 2.83362 0.0991358
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 46.7224 1.63062 0.815312 0.579022i \(-0.196566\pi\)
0.815312 + 0.579022i \(0.196566\pi\)
\(822\) 0 0
\(823\) 0.605003i 0.0210891i 0.999944 + 0.0105445i \(0.00335649\pi\)
−0.999944 + 0.0105445i \(0.996644\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.96743i 0.277055i 0.990359 + 0.138527i \(0.0442369\pi\)
−0.990359 + 0.138527i \(0.955763\pi\)
\(828\) 0 0
\(829\) 11.5924i 0.402622i 0.979527 + 0.201311i \(0.0645202\pi\)
−0.979527 + 0.201311i \(0.935480\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 32.1470i 1.11383i
\(834\) 0 0
\(835\) −32.7028 −1.13173
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −29.8351 −1.03002 −0.515012 0.857183i \(-0.672212\pi\)
−0.515012 + 0.857183i \(0.672212\pi\)
\(840\) 0 0
\(841\) 40.3539 1.39152
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.22260 0.0764599
\(846\) 0 0
\(847\) 2.91510i 0.100164i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 16.0834i − 0.551333i
\(852\) 0 0
\(853\) − 27.9548i − 0.957155i −0.878045 0.478578i \(-0.841152\pi\)
0.878045 0.478578i \(-0.158848\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 5.72159i − 0.195446i −0.995214 0.0977229i \(-0.968844\pi\)
0.995214 0.0977229i \(-0.0311559\pi\)
\(858\) 0 0
\(859\) −18.9201 −0.645544 −0.322772 0.946477i \(-0.604615\pi\)
−0.322772 + 0.946477i \(0.604615\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14.3411 0.488176 0.244088 0.969753i \(-0.421511\pi\)
0.244088 + 0.969753i \(0.421511\pi\)
\(864\) 0 0
\(865\) 31.5071 1.07127
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −27.8816 −0.945819
\(870\) 0 0
\(871\) 0.658322i 0.0223064i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.01232i 0.203254i
\(876\) 0 0
\(877\) 24.2543i 0.819011i 0.912308 + 0.409505i \(0.134299\pi\)
−0.912308 + 0.409505i \(0.865701\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 58.3091i 1.96448i 0.187621 + 0.982241i \(0.439922\pi\)
−0.187621 + 0.982241i \(0.560078\pi\)
\(882\) 0 0
\(883\) −39.8809 −1.34210 −0.671050 0.741412i \(-0.734156\pi\)
−0.671050 + 0.741412i \(0.734156\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30.1897 −1.01367 −0.506836 0.862043i \(-0.669185\pi\)
−0.506836 + 0.862043i \(0.669185\pi\)
\(888\) 0 0
\(889\) 7.08426 0.237598
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.68364 0.156732
\(894\) 0 0
\(895\) − 39.5051i − 1.32051i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.36584i 0.0789052i
\(900\) 0 0
\(901\) − 6.83350i − 0.227657i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 34.0476i 1.13178i
\(906\) 0 0
\(907\) −20.4434 −0.678810 −0.339405 0.940640i \(-0.610226\pi\)
−0.339405 + 0.940640i \(0.610226\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.47336 −0.148209 −0.0741045 0.997250i \(-0.523610\pi\)
−0.0741045 + 0.997250i \(0.523610\pi\)
\(912\) 0 0
\(913\) −34.7885 −1.15133
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.49714 0.181532
\(918\) 0 0
\(919\) 49.2114i 1.62333i 0.584121 + 0.811667i \(0.301439\pi\)
−0.584121 + 0.811667i \(0.698561\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.3352i 0.406017i
\(924\) 0 0
\(925\) 0.378190i 0.0124348i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 10.4660i − 0.343379i −0.985151 0.171690i \(-0.945077\pi\)
0.985151 0.171690i \(-0.0549226\pi\)
\(930\) 0 0
\(931\) 28.5584 0.935963
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −25.0635 −0.819663
\(936\) 0 0
\(937\) 56.2534 1.83772 0.918859 0.394585i \(-0.129112\pi\)
0.918859 + 0.394585i \(0.129112\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.89072 0.126834 0.0634170 0.997987i \(-0.479800\pi\)
0.0634170 + 0.997987i \(0.479800\pi\)
\(942\) 0 0
\(943\) 11.0640i 0.360293i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.4095i 0.728211i 0.931358 + 0.364105i \(0.118625\pi\)
−0.931358 + 0.364105i \(0.881375\pi\)
\(948\) 0 0
\(949\) − 14.1390i − 0.458972i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52.6242i 1.70466i 0.523001 + 0.852332i \(0.324813\pi\)
−0.523001 + 0.852332i \(0.675187\pi\)
\(954\) 0 0
\(955\) −7.55863 −0.244592
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.5960 0.342164
\(960\) 0 0
\(961\) 30.9193 0.997397
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −22.1022 −0.711495
\(966\) 0 0
\(967\) 54.9989i 1.76865i 0.466876 + 0.884323i \(0.345379\pi\)
−0.466876 + 0.884323i \(0.654621\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 38.5659i − 1.23764i −0.785533 0.618820i \(-0.787611\pi\)
0.785533 0.618820i \(-0.212389\pi\)
\(972\) 0 0
\(973\) 11.5533i 0.370383i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 10.8882i − 0.348345i −0.984715 0.174172i \(-0.944275\pi\)
0.984715 0.174172i \(-0.0557250\pi\)
\(978\) 0 0
\(979\) 4.50193 0.143882
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −27.2804 −0.870111 −0.435055 0.900404i \(-0.643271\pi\)
−0.435055 + 0.900404i \(0.643271\pi\)
\(984\) 0 0
\(985\) −1.63685 −0.0521545
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.70075 0.0540806
\(990\) 0 0
\(991\) − 25.6230i − 0.813941i −0.913441 0.406971i \(-0.866585\pi\)
0.913441 0.406971i \(-0.133415\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 31.1903i 0.988799i
\(996\) 0 0
\(997\) 48.5538i 1.53771i 0.639421 + 0.768856i \(0.279174\pi\)
−0.639421 + 0.768856i \(0.720826\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.j.a.2159.14 48
3.2 odd 2 inner 3744.2.j.a.2159.36 48
4.3 odd 2 936.2.j.a.755.38 yes 48
8.3 odd 2 inner 3744.2.j.a.2159.35 48
8.5 even 2 936.2.j.a.755.12 yes 48
12.11 even 2 936.2.j.a.755.11 48
24.5 odd 2 936.2.j.a.755.37 yes 48
24.11 even 2 inner 3744.2.j.a.2159.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.j.a.755.11 48 12.11 even 2
936.2.j.a.755.12 yes 48 8.5 even 2
936.2.j.a.755.37 yes 48 24.5 odd 2
936.2.j.a.755.38 yes 48 4.3 odd 2
3744.2.j.a.2159.13 48 24.11 even 2 inner
3744.2.j.a.2159.14 48 1.1 even 1 trivial
3744.2.j.a.2159.35 48 8.3 odd 2 inner
3744.2.j.a.2159.36 48 3.2 odd 2 inner