Properties

Label 2-3744-24.11-c1-0-30
Degree $2$
Conductor $3744$
Sign $0.188 + 0.982i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.22·5-s + 0.534i·7-s − 2.35i·11-s i·13-s + 4.78i·17-s + 4.25·19-s + 2.55·23-s − 0.0600·25-s − 8.32·29-s − 0.284i·31-s − 1.18i·35-s − 6.30i·37-s + 4.33i·41-s + 0.666·43-s + 1.10·47-s + ⋯
L(s)  = 1  − 0.993·5-s + 0.202i·7-s − 0.710i·11-s − 0.277i·13-s + 1.16i·17-s + 0.975·19-s + 0.532·23-s − 0.0120·25-s − 1.54·29-s − 0.0510i·31-s − 0.200i·35-s − 1.03i·37-s + 0.676i·41-s + 0.101·43-s + 0.160·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 + 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.188 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $0.188 + 0.982i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (2159, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ 0.188 + 0.982i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.033451544\)
\(L(\frac12)\) \(\approx\) \(1.033451544\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + iT \)
good5 \( 1 + 2.22T + 5T^{2} \)
7 \( 1 - 0.534iT - 7T^{2} \)
11 \( 1 + 2.35iT - 11T^{2} \)
17 \( 1 - 4.78iT - 17T^{2} \)
19 \( 1 - 4.25T + 19T^{2} \)
23 \( 1 - 2.55T + 23T^{2} \)
29 \( 1 + 8.32T + 29T^{2} \)
31 \( 1 + 0.284iT - 31T^{2} \)
37 \( 1 + 6.30iT - 37T^{2} \)
41 \( 1 - 4.33iT - 41T^{2} \)
43 \( 1 - 0.666T + 43T^{2} \)
47 \( 1 - 1.10T + 47T^{2} \)
53 \( 1 + 1.42T + 53T^{2} \)
59 \( 1 + 3.21iT - 59T^{2} \)
61 \( 1 - 4.98iT - 61T^{2} \)
67 \( 1 + 0.658T + 67T^{2} \)
71 \( 1 + 12.3T + 71T^{2} \)
73 \( 1 - 14.1T + 73T^{2} \)
79 \( 1 + 11.8iT - 79T^{2} \)
83 \( 1 + 14.7iT - 83T^{2} \)
89 \( 1 - 1.91iT - 89T^{2} \)
97 \( 1 + 7.69T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.270415192431888218842754979809, −7.66444234523587199766108614081, −7.07818484308067553949265976505, −5.94068907088403734564138059679, −5.51726384066065833938760017573, −4.37460838297962152435364064713, −3.66877463139885942654046231812, −3.00324522419839074319712631215, −1.68528864018252893555958484775, −0.37617137899682389364061662356, 0.959187271201361667926670698411, 2.27683798393100452044886359280, 3.32701464028071667796881779485, 4.02967775110571582544559394301, 4.86175879195814680230162633962, 5.52571031986464230914063515906, 6.71297312586865604281589056249, 7.37316481319094681521153956966, 7.67585223858002155356818657023, 8.669875316027393312108013856848

Graph of the $Z$-function along the critical line