L(s) = 1 | − 2.22·5-s − 0.534i·7-s + 2.35i·11-s + i·13-s − 4.78i·17-s + 4.25·19-s + 2.55·23-s − 0.0600·25-s − 8.32·29-s + 0.284i·31-s + 1.18i·35-s + 6.30i·37-s − 4.33i·41-s + 0.666·43-s + 1.10·47-s + ⋯ |
L(s) = 1 | − 0.993·5-s − 0.202i·7-s + 0.710i·11-s + 0.277i·13-s − 1.16i·17-s + 0.975·19-s + 0.532·23-s − 0.0120·25-s − 1.54·29-s + 0.0510i·31-s + 0.200i·35-s + 1.03i·37-s − 0.676i·41-s + 0.101·43-s + 0.160·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 - 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.188 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.033451544\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.033451544\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 + 2.22T + 5T^{2} \) |
| 7 | \( 1 + 0.534iT - 7T^{2} \) |
| 11 | \( 1 - 2.35iT - 11T^{2} \) |
| 17 | \( 1 + 4.78iT - 17T^{2} \) |
| 19 | \( 1 - 4.25T + 19T^{2} \) |
| 23 | \( 1 - 2.55T + 23T^{2} \) |
| 29 | \( 1 + 8.32T + 29T^{2} \) |
| 31 | \( 1 - 0.284iT - 31T^{2} \) |
| 37 | \( 1 - 6.30iT - 37T^{2} \) |
| 41 | \( 1 + 4.33iT - 41T^{2} \) |
| 43 | \( 1 - 0.666T + 43T^{2} \) |
| 47 | \( 1 - 1.10T + 47T^{2} \) |
| 53 | \( 1 + 1.42T + 53T^{2} \) |
| 59 | \( 1 - 3.21iT - 59T^{2} \) |
| 61 | \( 1 + 4.98iT - 61T^{2} \) |
| 67 | \( 1 + 0.658T + 67T^{2} \) |
| 71 | \( 1 + 12.3T + 71T^{2} \) |
| 73 | \( 1 - 14.1T + 73T^{2} \) |
| 79 | \( 1 - 11.8iT - 79T^{2} \) |
| 83 | \( 1 - 14.7iT - 83T^{2} \) |
| 89 | \( 1 + 1.91iT - 89T^{2} \) |
| 97 | \( 1 + 7.69T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.669875316027393312108013856848, −7.67585223858002155356818657023, −7.37316481319094681521153956966, −6.71297312586865604281589056249, −5.52571031986464230914063515906, −4.86175879195814680230162633962, −4.02967775110571582544559394301, −3.32701464028071667796881779485, −2.27683798393100452044886359280, −0.959187271201361667926670698411,
0.37617137899682389364061662356, 1.68528864018252893555958484775, 3.00324522419839074319712631215, 3.66877463139885942654046231812, 4.37460838297962152435364064713, 5.51726384066065833938760017573, 5.94068907088403734564138059679, 7.07818484308067553949265976505, 7.66444234523587199766108614081, 8.270415192431888218842754979809