Properties

Label 936.2.j.a.755.37
Level $936$
Weight $2$
Character 936.755
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(755,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.755"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 755.37
Character \(\chi\) \(=\) 936.755
Dual form 936.2.j.a.755.38

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01985 - 0.979751i) q^{2} +(0.0801759 - 1.99839i) q^{4} -2.22260 q^{5} +0.534598i q^{7} +(-1.87616 - 2.11661i) q^{8} +(-2.26672 + 2.17760i) q^{10} -2.35523i q^{11} +1.00000i q^{13} +(0.523773 + 0.545208i) q^{14} +(-3.98714 - 0.320446i) q^{16} -4.78791i q^{17} -4.25343 q^{19} +(-0.178199 + 4.44164i) q^{20} +(-2.30754 - 2.40198i) q^{22} -2.55292 q^{23} -0.0600300 q^{25} +(0.979751 + 1.01985i) q^{26} +(1.06834 + 0.0428618i) q^{28} -8.32790 q^{29} -0.284086i q^{31} +(-4.38023 + 3.57960i) q^{32} +(-4.69096 - 4.88293i) q^{34} -1.18820i q^{35} +6.30002i q^{37} +(-4.33784 + 4.16730i) q^{38} +(4.16996 + 4.70438i) q^{40} -4.33386i q^{41} -0.666197 q^{43} +(-4.70668 - 0.188833i) q^{44} +(-2.60359 + 2.50122i) q^{46} -1.10114 q^{47} +6.71421 q^{49} +(-0.0612214 + 0.0588145i) q^{50} +(1.99839 + 0.0801759i) q^{52} -1.42724 q^{53} +5.23475i q^{55} +(1.13153 - 1.00299i) q^{56} +(-8.49319 + 8.15927i) q^{58} -3.21354i q^{59} -4.98877i q^{61} +(-0.278334 - 0.289724i) q^{62} +(-0.960049 + 7.94219i) q^{64} -2.22260i q^{65} +0.658322 q^{67} +(-9.56811 - 0.383874i) q^{68} +(-1.16414 - 1.21178i) q^{70} +12.3352 q^{71} +14.1390 q^{73} +(6.17245 + 6.42505i) q^{74} +(-0.341022 + 8.50001i) q^{76} +1.25910 q^{77} -11.8382i q^{79} +(8.86184 + 0.712224i) q^{80} +(-4.24610 - 4.41987i) q^{82} -14.7707i q^{83} +10.6416i q^{85} +(-0.679419 + 0.652707i) q^{86} +(-4.98510 + 4.41879i) q^{88} -1.91146i q^{89} -0.534598 q^{91} +(-0.204682 + 5.10173i) q^{92} +(-1.12300 + 1.07885i) q^{94} +9.45368 q^{95} -7.69682 q^{97} +(6.84746 - 6.57825i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 8 q^{4} + 16 q^{10} + 8 q^{16} + 32 q^{19} + 48 q^{25} - 24 q^{28} + 32 q^{34} - 32 q^{40} - 32 q^{43} + 24 q^{46} - 48 q^{49} + 8 q^{52} - 40 q^{58} + 40 q^{64} + 32 q^{67} - 40 q^{70} + 40 q^{76}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.01985 0.979751i 0.721141 0.692789i
\(3\) 0 0
\(4\) 0.0801759 1.99839i 0.0400879 0.999196i
\(5\) −2.22260 −0.993979 −0.496989 0.867757i \(-0.665561\pi\)
−0.496989 + 0.867757i \(0.665561\pi\)
\(6\) 0 0
\(7\) 0.534598i 0.202059i 0.994883 + 0.101029i \(0.0322136\pi\)
−0.994883 + 0.101029i \(0.967786\pi\)
\(8\) −1.87616 2.11661i −0.663323 0.748334i
\(9\) 0 0
\(10\) −2.26672 + 2.17760i −0.716799 + 0.688617i
\(11\) 2.35523i 0.710129i −0.934842 0.355065i \(-0.884459\pi\)
0.934842 0.355065i \(-0.115541\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0.523773 + 0.545208i 0.139984 + 0.145713i
\(15\) 0 0
\(16\) −3.98714 0.320446i −0.996786 0.0801114i
\(17\) 4.78791i 1.16124i −0.814176 0.580619i \(-0.802811\pi\)
0.814176 0.580619i \(-0.197189\pi\)
\(18\) 0 0
\(19\) −4.25343 −0.975803 −0.487901 0.872899i \(-0.662237\pi\)
−0.487901 + 0.872899i \(0.662237\pi\)
\(20\) −0.178199 + 4.44164i −0.0398466 + 0.993180i
\(21\) 0 0
\(22\) −2.30754 2.40198i −0.491969 0.512103i
\(23\) −2.55292 −0.532320 −0.266160 0.963929i \(-0.585755\pi\)
−0.266160 + 0.963929i \(0.585755\pi\)
\(24\) 0 0
\(25\) −0.0600300 −0.0120060
\(26\) 0.979751 + 1.01985i 0.192145 + 0.200008i
\(27\) 0 0
\(28\) 1.06834 + 0.0428618i 0.201897 + 0.00810013i
\(29\) −8.32790 −1.54645 −0.773226 0.634130i \(-0.781358\pi\)
−0.773226 + 0.634130i \(0.781358\pi\)
\(30\) 0 0
\(31\) 0.284086i 0.0510234i −0.999675 0.0255117i \(-0.991878\pi\)
0.999675 0.0255117i \(-0.00812150\pi\)
\(32\) −4.38023 + 3.57960i −0.774323 + 0.632790i
\(33\) 0 0
\(34\) −4.69096 4.88293i −0.804492 0.837416i
\(35\) 1.18820i 0.200842i
\(36\) 0 0
\(37\) 6.30002i 1.03572i 0.855467 + 0.517858i \(0.173270\pi\)
−0.855467 + 0.517858i \(0.826730\pi\)
\(38\) −4.33784 + 4.16730i −0.703691 + 0.676025i
\(39\) 0 0
\(40\) 4.16996 + 4.70438i 0.659329 + 0.743828i
\(41\) 4.33386i 0.676835i −0.940996 0.338417i \(-0.890108\pi\)
0.940996 0.338417i \(-0.109892\pi\)
\(42\) 0 0
\(43\) −0.666197 −0.101594 −0.0507970 0.998709i \(-0.516176\pi\)
−0.0507970 + 0.998709i \(0.516176\pi\)
\(44\) −4.70668 0.188833i −0.709558 0.0284676i
\(45\) 0 0
\(46\) −2.60359 + 2.50122i −0.383878 + 0.368785i
\(47\) −1.10114 −0.160618 −0.0803092 0.996770i \(-0.525591\pi\)
−0.0803092 + 0.996770i \(0.525591\pi\)
\(48\) 0 0
\(49\) 6.71421 0.959172
\(50\) −0.0612214 + 0.0588145i −0.00865802 + 0.00831762i
\(51\) 0 0
\(52\) 1.99839 + 0.0801759i 0.277127 + 0.0111184i
\(53\) −1.42724 −0.196047 −0.0980233 0.995184i \(-0.531252\pi\)
−0.0980233 + 0.995184i \(0.531252\pi\)
\(54\) 0 0
\(55\) 5.23475i 0.705853i
\(56\) 1.13153 1.00299i 0.151207 0.134030i
\(57\) 0 0
\(58\) −8.49319 + 8.15927i −1.11521 + 1.07136i
\(59\) 3.21354i 0.418368i −0.977876 0.209184i \(-0.932919\pi\)
0.977876 0.209184i \(-0.0670807\pi\)
\(60\) 0 0
\(61\) 4.98877i 0.638747i −0.947629 0.319373i \(-0.896528\pi\)
0.947629 0.319373i \(-0.103472\pi\)
\(62\) −0.278334 0.289724i −0.0353484 0.0367950i
\(63\) 0 0
\(64\) −0.960049 + 7.94219i −0.120006 + 0.992773i
\(65\) 2.22260i 0.275680i
\(66\) 0 0
\(67\) 0.658322 0.0804268 0.0402134 0.999191i \(-0.487196\pi\)
0.0402134 + 0.999191i \(0.487196\pi\)
\(68\) −9.56811 0.383874i −1.16030 0.0465516i
\(69\) 0 0
\(70\) −1.16414 1.21178i −0.139141 0.144836i
\(71\) 12.3352 1.46391 0.731957 0.681350i \(-0.238607\pi\)
0.731957 + 0.681350i \(0.238607\pi\)
\(72\) 0 0
\(73\) 14.1390 1.65485 0.827423 0.561579i \(-0.189806\pi\)
0.827423 + 0.561579i \(0.189806\pi\)
\(74\) 6.17245 + 6.42505i 0.717532 + 0.746897i
\(75\) 0 0
\(76\) −0.341022 + 8.50001i −0.0391179 + 0.975018i
\(77\) 1.25910 0.143488
\(78\) 0 0
\(79\) 11.8382i 1.33190i −0.745998 0.665948i \(-0.768027\pi\)
0.745998 0.665948i \(-0.231973\pi\)
\(80\) 8.86184 + 0.712224i 0.990784 + 0.0796291i
\(81\) 0 0
\(82\) −4.24610 4.41987i −0.468903 0.488093i
\(83\) 14.7707i 1.62130i −0.585531 0.810650i \(-0.699114\pi\)
0.585531 0.810650i \(-0.300886\pi\)
\(84\) 0 0
\(85\) 10.6416i 1.15425i
\(86\) −0.679419 + 0.652707i −0.0732636 + 0.0703832i
\(87\) 0 0
\(88\) −4.98510 + 4.41879i −0.531413 + 0.471045i
\(89\) 1.91146i 0.202614i −0.994855 0.101307i \(-0.967697\pi\)
0.994855 0.101307i \(-0.0323025\pi\)
\(90\) 0 0
\(91\) −0.534598 −0.0560411
\(92\) −0.204682 + 5.10173i −0.0213396 + 0.531892i
\(93\) 0 0
\(94\) −1.12300 + 1.07885i −0.115828 + 0.111275i
\(95\) 9.45368 0.969927
\(96\) 0 0
\(97\) −7.69682 −0.781493 −0.390747 0.920498i \(-0.627783\pi\)
−0.390747 + 0.920498i \(0.627783\pi\)
\(98\) 6.84746 6.57825i 0.691698 0.664504i
\(99\) 0 0
\(100\) −0.00481296 + 0.119964i −0.000481296 + 0.0119964i
\(101\) −1.87035 −0.186106 −0.0930532 0.995661i \(-0.529663\pi\)
−0.0930532 + 0.995661i \(0.529663\pi\)
\(102\) 0 0
\(103\) 0.952030i 0.0938063i 0.998899 + 0.0469031i \(0.0149352\pi\)
−0.998899 + 0.0469031i \(0.985065\pi\)
\(104\) 2.11661 1.87616i 0.207550 0.183973i
\(105\) 0 0
\(106\) −1.45557 + 1.39834i −0.141377 + 0.135819i
\(107\) 16.5895i 1.60377i −0.597481 0.801883i \(-0.703832\pi\)
0.597481 0.801883i \(-0.296168\pi\)
\(108\) 0 0
\(109\) 9.32470i 0.893144i 0.894748 + 0.446572i \(0.147355\pi\)
−0.894748 + 0.446572i \(0.852645\pi\)
\(110\) 5.12875 + 5.33864i 0.489007 + 0.509020i
\(111\) 0 0
\(112\) 0.171310 2.13152i 0.0161872 0.201410i
\(113\) 3.63306i 0.341770i 0.985291 + 0.170885i \(0.0546626\pi\)
−0.985291 + 0.170885i \(0.945337\pi\)
\(114\) 0 0
\(115\) 5.67413 0.529115
\(116\) −0.667697 + 16.6424i −0.0619941 + 1.54521i
\(117\) 0 0
\(118\) −3.14847 3.27732i −0.289840 0.301702i
\(119\) 2.55960 0.234638
\(120\) 0 0
\(121\) 5.45288 0.495717
\(122\) −4.88776 5.08779i −0.442517 0.460626i
\(123\) 0 0
\(124\) −0.567715 0.0227768i −0.0509824 0.00204542i
\(125\) 11.2464 1.00591
\(126\) 0 0
\(127\) 13.2516i 1.17589i −0.808902 0.587943i \(-0.799938\pi\)
0.808902 0.587943i \(-0.200062\pi\)
\(128\) 6.80226 + 9.04042i 0.601241 + 0.799068i
\(129\) 0 0
\(130\) −2.17760 2.26672i −0.190988 0.198804i
\(131\) 10.2828i 0.898409i −0.893429 0.449204i \(-0.851708\pi\)
0.893429 0.449204i \(-0.148292\pi\)
\(132\) 0 0
\(133\) 2.27387i 0.197170i
\(134\) 0.671387 0.644991i 0.0579990 0.0557188i
\(135\) 0 0
\(136\) −10.1341 + 8.98288i −0.868993 + 0.770275i
\(137\) 19.8206i 1.69339i 0.532081 + 0.846694i \(0.321410\pi\)
−0.532081 + 0.846694i \(0.678590\pi\)
\(138\) 0 0
\(139\) −21.6113 −1.83304 −0.916522 0.399983i \(-0.869016\pi\)
−0.916522 + 0.399983i \(0.869016\pi\)
\(140\) −2.37449 0.0952649i −0.200681 0.00805135i
\(141\) 0 0
\(142\) 12.5800 12.0854i 1.05569 1.01418i
\(143\) 2.35523 0.196954
\(144\) 0 0
\(145\) 18.5096 1.53714
\(146\) 14.4196 13.8527i 1.19338 1.14646i
\(147\) 0 0
\(148\) 12.5899 + 0.505109i 1.03488 + 0.0415197i
\(149\) 3.98437 0.326413 0.163206 0.986592i \(-0.447816\pi\)
0.163206 + 0.986592i \(0.447816\pi\)
\(150\) 0 0
\(151\) 6.03988i 0.491518i −0.969331 0.245759i \(-0.920963\pi\)
0.969331 0.245759i \(-0.0790372\pi\)
\(152\) 7.98011 + 9.00283i 0.647272 + 0.730226i
\(153\) 0 0
\(154\) 1.28409 1.23361i 0.103475 0.0994068i
\(155\) 0.631411i 0.0507162i
\(156\) 0 0
\(157\) 9.13676i 0.729193i −0.931166 0.364597i \(-0.881207\pi\)
0.931166 0.364597i \(-0.118793\pi\)
\(158\) −11.5984 12.0731i −0.922723 0.960485i
\(159\) 0 0
\(160\) 9.73553 7.95604i 0.769661 0.628980i
\(161\) 1.36478i 0.107560i
\(162\) 0 0
\(163\) 21.7664 1.70487 0.852437 0.522829i \(-0.175124\pi\)
0.852437 + 0.522829i \(0.175124\pi\)
\(164\) −8.66075 0.347471i −0.676291 0.0271329i
\(165\) 0 0
\(166\) −14.4717 15.0639i −1.12322 1.16919i
\(167\) −14.7137 −1.13858 −0.569291 0.822136i \(-0.692782\pi\)
−0.569291 + 0.822136i \(0.692782\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 10.4261 + 10.8528i 0.799648 + 0.832374i
\(171\) 0 0
\(172\) −0.0534129 + 1.33132i −0.00407270 + 0.101512i
\(173\) −14.1757 −1.07776 −0.538881 0.842382i \(-0.681153\pi\)
−0.538881 + 0.842382i \(0.681153\pi\)
\(174\) 0 0
\(175\) 0.0320919i 0.00242592i
\(176\) −0.754724 + 9.39065i −0.0568894 + 0.707847i
\(177\) 0 0
\(178\) −1.87276 1.94940i −0.140369 0.146114i
\(179\) 17.7742i 1.32851i 0.747506 + 0.664255i \(0.231251\pi\)
−0.747506 + 0.664255i \(0.768749\pi\)
\(180\) 0 0
\(181\) 15.3188i 1.13864i 0.822117 + 0.569318i \(0.192793\pi\)
−0.822117 + 0.569318i \(0.807207\pi\)
\(182\) −0.545208 + 0.523773i −0.0404135 + 0.0388246i
\(183\) 0 0
\(184\) 4.78968 + 5.40352i 0.353100 + 0.398353i
\(185\) 14.0024i 1.02948i
\(186\) 0 0
\(187\) −11.2766 −0.824629
\(188\) −0.0882852 + 2.20052i −0.00643886 + 0.160489i
\(189\) 0 0
\(190\) 9.64131 9.26226i 0.699454 0.671955i
\(191\) −3.40080 −0.246073 −0.123037 0.992402i \(-0.539263\pi\)
−0.123037 + 0.992402i \(0.539263\pi\)
\(192\) 0 0
\(193\) 9.94428 0.715805 0.357902 0.933759i \(-0.383492\pi\)
0.357902 + 0.933759i \(0.383492\pi\)
\(194\) −7.84958 + 7.54096i −0.563567 + 0.541410i
\(195\) 0 0
\(196\) 0.538317 13.4176i 0.0384512 0.958401i
\(197\) 0.736457 0.0524704 0.0262352 0.999656i \(-0.491648\pi\)
0.0262352 + 0.999656i \(0.491648\pi\)
\(198\) 0 0
\(199\) 14.0332i 0.994789i −0.867524 0.497395i \(-0.834290\pi\)
0.867524 0.497395i \(-0.165710\pi\)
\(200\) 0.112626 + 0.127060i 0.00796385 + 0.00898449i
\(201\) 0 0
\(202\) −1.90747 + 1.83247i −0.134209 + 0.128932i
\(203\) 4.45208i 0.312475i
\(204\) 0 0
\(205\) 9.63245i 0.672760i
\(206\) 0.932752 + 0.970925i 0.0649879 + 0.0676475i
\(207\) 0 0
\(208\) 0.320446 3.98714i 0.0222189 0.276459i
\(209\) 10.0178i 0.692946i
\(210\) 0 0
\(211\) −1.55071 −0.106756 −0.0533778 0.998574i \(-0.516999\pi\)
−0.0533778 + 0.998574i \(0.516999\pi\)
\(212\) −0.114430 + 2.85219i −0.00785911 + 0.195889i
\(213\) 0 0
\(214\) −16.2536 16.9187i −1.11107 1.15654i
\(215\) 1.48069 0.100982
\(216\) 0 0
\(217\) 0.151872 0.0103097
\(218\) 9.13588 + 9.50976i 0.618760 + 0.644082i
\(219\) 0 0
\(220\) 10.4611 + 0.419700i 0.705286 + 0.0282962i
\(221\) 4.78791 0.322069
\(222\) 0 0
\(223\) 3.64245i 0.243917i −0.992535 0.121958i \(-0.961083\pi\)
0.992535 0.121958i \(-0.0389174\pi\)
\(224\) −1.91365 2.34166i −0.127861 0.156459i
\(225\) 0 0
\(226\) 3.55950 + 3.70517i 0.236774 + 0.246464i
\(227\) 12.9635i 0.860417i 0.902730 + 0.430208i \(0.141560\pi\)
−0.902730 + 0.430208i \(0.858440\pi\)
\(228\) 0 0
\(229\) 3.85891i 0.255004i 0.991838 + 0.127502i \(0.0406959\pi\)
−0.991838 + 0.127502i \(0.959304\pi\)
\(230\) 5.78674 5.55923i 0.381566 0.366565i
\(231\) 0 0
\(232\) 15.6245 + 17.6269i 1.02580 + 1.15726i
\(233\) 17.6243i 1.15461i 0.816529 + 0.577304i \(0.195895\pi\)
−0.816529 + 0.577304i \(0.804105\pi\)
\(234\) 0 0
\(235\) 2.44741 0.159651
\(236\) −6.42192 0.257649i −0.418031 0.0167715i
\(237\) 0 0
\(238\) 2.61040 2.50777i 0.169207 0.162555i
\(239\) −19.4649 −1.25908 −0.629540 0.776968i \(-0.716757\pi\)
−0.629540 + 0.776968i \(0.716757\pi\)
\(240\) 0 0
\(241\) 9.66859 0.622809 0.311404 0.950278i \(-0.399201\pi\)
0.311404 + 0.950278i \(0.399201\pi\)
\(242\) 5.56111 5.34247i 0.357482 0.343427i
\(243\) 0 0
\(244\) −9.96953 0.399979i −0.638233 0.0256060i
\(245\) −14.9230 −0.953397
\(246\) 0 0
\(247\) 4.25343i 0.270639i
\(248\) −0.601299 + 0.532991i −0.0381825 + 0.0338450i
\(249\) 0 0
\(250\) 11.4697 11.0187i 0.725405 0.696885i
\(251\) 10.1660i 0.641670i −0.947135 0.320835i \(-0.896036\pi\)
0.947135 0.320835i \(-0.103964\pi\)
\(252\) 0 0
\(253\) 6.01271i 0.378016i
\(254\) −12.9832 13.5146i −0.814641 0.847979i
\(255\) 0 0
\(256\) 15.7946 + 2.55533i 0.987164 + 0.159708i
\(257\) 11.2601i 0.702386i 0.936303 + 0.351193i \(0.114224\pi\)
−0.936303 + 0.351193i \(0.885776\pi\)
\(258\) 0 0
\(259\) −3.36797 −0.209276
\(260\) −4.44164 0.178199i −0.275459 0.0110514i
\(261\) 0 0
\(262\) −10.0745 10.4868i −0.622407 0.647879i
\(263\) 29.3228 1.80812 0.904061 0.427404i \(-0.140572\pi\)
0.904061 + 0.427404i \(0.140572\pi\)
\(264\) 0 0
\(265\) 3.17219 0.194866
\(266\) −2.22783 2.31900i −0.136597 0.142187i
\(267\) 0 0
\(268\) 0.0527815 1.31559i 0.00322414 0.0803621i
\(269\) −1.81250 −0.110510 −0.0552551 0.998472i \(-0.517597\pi\)
−0.0552551 + 0.998472i \(0.517597\pi\)
\(270\) 0 0
\(271\) 28.5969i 1.73714i −0.495566 0.868570i \(-0.665039\pi\)
0.495566 0.868570i \(-0.334961\pi\)
\(272\) −1.53426 + 19.0901i −0.0930284 + 1.15751i
\(273\) 0 0
\(274\) 19.4192 + 20.2140i 1.17316 + 1.22117i
\(275\) 0.141385i 0.00852581i
\(276\) 0 0
\(277\) 18.6565i 1.12096i −0.828168 0.560480i \(-0.810617\pi\)
0.828168 0.560480i \(-0.189383\pi\)
\(278\) −22.0402 + 21.1737i −1.32188 + 1.26991i
\(279\) 0 0
\(280\) −2.51495 + 2.22925i −0.150297 + 0.133223i
\(281\) 10.2308i 0.610317i 0.952302 + 0.305159i \(0.0987095\pi\)
−0.952302 + 0.305159i \(0.901291\pi\)
\(282\) 0 0
\(283\) −6.27100 −0.372772 −0.186386 0.982477i \(-0.559678\pi\)
−0.186386 + 0.982477i \(0.559678\pi\)
\(284\) 0.988983 24.6505i 0.0586853 1.46274i
\(285\) 0 0
\(286\) 2.40198 2.30754i 0.142032 0.136448i
\(287\) 2.31687 0.136761
\(288\) 0 0
\(289\) −5.92404 −0.348473
\(290\) 18.8770 18.1348i 1.10850 1.06491i
\(291\) 0 0
\(292\) 1.13361 28.2553i 0.0663394 1.65352i
\(293\) −14.3609 −0.838971 −0.419486 0.907762i \(-0.637790\pi\)
−0.419486 + 0.907762i \(0.637790\pi\)
\(294\) 0 0
\(295\) 7.14243i 0.415849i
\(296\) 13.3347 11.8198i 0.775061 0.687014i
\(297\) 0 0
\(298\) 4.06345 3.90369i 0.235389 0.226135i
\(299\) 2.55292i 0.147639i
\(300\) 0 0
\(301\) 0.356147i 0.0205280i
\(302\) −5.91757 6.15975i −0.340518 0.354454i
\(303\) 0 0
\(304\) 16.9590 + 1.36299i 0.972667 + 0.0781729i
\(305\) 11.0881i 0.634901i
\(306\) 0 0
\(307\) 20.5030 1.17017 0.585083 0.810973i \(-0.301062\pi\)
0.585083 + 0.810973i \(0.301062\pi\)
\(308\) 0.100950 2.51618i 0.00575213 0.143373i
\(309\) 0 0
\(310\) 0.618626 + 0.643943i 0.0351356 + 0.0365735i
\(311\) 21.8586 1.23949 0.619744 0.784804i \(-0.287236\pi\)
0.619744 + 0.784804i \(0.287236\pi\)
\(312\) 0 0
\(313\) −16.6056 −0.938605 −0.469302 0.883038i \(-0.655495\pi\)
−0.469302 + 0.883038i \(0.655495\pi\)
\(314\) −8.95175 9.31810i −0.505177 0.525851i
\(315\) 0 0
\(316\) −23.6573 0.949134i −1.33083 0.0533930i
\(317\) 24.8968 1.39834 0.699171 0.714954i \(-0.253553\pi\)
0.699171 + 0.714954i \(0.253553\pi\)
\(318\) 0 0
\(319\) 19.6141i 1.09818i
\(320\) 2.13381 17.6523i 0.119284 0.986796i
\(321\) 0 0
\(322\) −1.33715 1.39187i −0.0745164 0.0775659i
\(323\) 20.3650i 1.13314i
\(324\) 0 0
\(325\) 0.0600300i 0.00332987i
\(326\) 22.1984 21.3256i 1.22945 1.18112i
\(327\) 0 0
\(328\) −9.17307 + 8.13101i −0.506498 + 0.448960i
\(329\) 0.588669i 0.0324544i
\(330\) 0 0
\(331\) −29.5671 −1.62515 −0.812577 0.582854i \(-0.801936\pi\)
−0.812577 + 0.582854i \(0.801936\pi\)
\(332\) −29.5177 1.18426i −1.62000 0.0649945i
\(333\) 0 0
\(334\) −15.0058 + 14.4158i −0.821078 + 0.788797i
\(335\) −1.46319 −0.0799425
\(336\) 0 0
\(337\) 0.297033 0.0161804 0.00809022 0.999967i \(-0.497425\pi\)
0.00809022 + 0.999967i \(0.497425\pi\)
\(338\) −1.01985 + 0.979751i −0.0554724 + 0.0532914i
\(339\) 0 0
\(340\) 21.2661 + 0.853201i 1.15332 + 0.0462713i
\(341\) −0.669089 −0.0362332
\(342\) 0 0
\(343\) 7.33158i 0.395868i
\(344\) 1.24989 + 1.41008i 0.0673896 + 0.0760262i
\(345\) 0 0
\(346\) −14.4571 + 13.8887i −0.777218 + 0.746661i
\(347\) 7.16773i 0.384784i −0.981318 0.192392i \(-0.938375\pi\)
0.981318 0.192392i \(-0.0616245\pi\)
\(348\) 0 0
\(349\) 3.32515i 0.177991i 0.996032 + 0.0889955i \(0.0283657\pi\)
−0.996032 + 0.0889955i \(0.971634\pi\)
\(350\) −0.0314421 0.0327288i −0.00168065 0.00174943i
\(351\) 0 0
\(352\) 8.43079 + 10.3165i 0.449363 + 0.549869i
\(353\) 2.31174i 0.123041i −0.998106 0.0615207i \(-0.980405\pi\)
0.998106 0.0615207i \(-0.0195950\pi\)
\(354\) 0 0
\(355\) −27.4162 −1.45510
\(356\) −3.81985 0.153253i −0.202452 0.00812239i
\(357\) 0 0
\(358\) 17.4143 + 18.1270i 0.920376 + 0.958042i
\(359\) 30.0147 1.58411 0.792057 0.610448i \(-0.209010\pi\)
0.792057 + 0.610448i \(0.209010\pi\)
\(360\) 0 0
\(361\) −0.908366 −0.0478087
\(362\) 15.0086 + 15.6228i 0.788835 + 0.821118i
\(363\) 0 0
\(364\) −0.0428618 + 1.06834i −0.00224657 + 0.0559960i
\(365\) −31.4254 −1.64488
\(366\) 0 0
\(367\) 26.3530i 1.37562i −0.725893 0.687808i \(-0.758573\pi\)
0.725893 0.687808i \(-0.241427\pi\)
\(368\) 10.1789 + 0.818072i 0.530609 + 0.0426449i
\(369\) 0 0
\(370\) −13.7189 14.2803i −0.713212 0.742400i
\(371\) 0.763000i 0.0396130i
\(372\) 0 0
\(373\) 22.9710i 1.18939i −0.803951 0.594696i \(-0.797273\pi\)
0.803951 0.594696i \(-0.202727\pi\)
\(374\) −11.5004 + 11.0483i −0.594673 + 0.571293i
\(375\) 0 0
\(376\) 2.06592 + 2.33069i 0.106542 + 0.120196i
\(377\) 8.32790i 0.428909i
\(378\) 0 0
\(379\) −16.2876 −0.836637 −0.418318 0.908301i \(-0.637380\pi\)
−0.418318 + 0.908301i \(0.637380\pi\)
\(380\) 0.757957 18.8922i 0.0388824 0.969148i
\(381\) 0 0
\(382\) −3.46830 + 3.33194i −0.177453 + 0.170477i
\(383\) −11.6718 −0.596404 −0.298202 0.954503i \(-0.596387\pi\)
−0.298202 + 0.954503i \(0.596387\pi\)
\(384\) 0 0
\(385\) −2.79848 −0.142624
\(386\) 10.1416 9.74292i 0.516196 0.495901i
\(387\) 0 0
\(388\) −0.617099 + 15.3813i −0.0313285 + 0.780865i
\(389\) −10.0270 −0.508387 −0.254193 0.967153i \(-0.581810\pi\)
−0.254193 + 0.967153i \(0.581810\pi\)
\(390\) 0 0
\(391\) 12.2231i 0.618150i
\(392\) −12.5969 14.2113i −0.636241 0.717781i
\(393\) 0 0
\(394\) 0.751074 0.721545i 0.0378386 0.0363509i
\(395\) 26.3115i 1.32388i
\(396\) 0 0
\(397\) 18.9924i 0.953201i −0.879120 0.476601i \(-0.841869\pi\)
0.879120 0.476601i \(-0.158131\pi\)
\(398\) −13.7491 14.3117i −0.689178 0.717383i
\(399\) 0 0
\(400\) 0.239348 + 0.0192364i 0.0119674 + 0.000961818i
\(401\) 23.9527i 1.19614i −0.801444 0.598070i \(-0.795935\pi\)
0.801444 0.598070i \(-0.204065\pi\)
\(402\) 0 0
\(403\) 0.284086 0.0141513
\(404\) −0.149957 + 3.73769i −0.00746062 + 0.185957i
\(405\) 0 0
\(406\) −4.36193 4.54044i −0.216479 0.225338i
\(407\) 14.8380 0.735492
\(408\) 0 0
\(409\) −19.3336 −0.955985 −0.477993 0.878364i \(-0.658635\pi\)
−0.477993 + 0.878364i \(0.658635\pi\)
\(410\) 9.43740 + 9.82363i 0.466080 + 0.485154i
\(411\) 0 0
\(412\) 1.90253 + 0.0763298i 0.0937309 + 0.00376050i
\(413\) 1.71795 0.0845349
\(414\) 0 0
\(415\) 32.8295i 1.61154i
\(416\) −3.57960 4.38023i −0.175504 0.214759i
\(417\) 0 0
\(418\) 9.81495 + 10.2166i 0.480065 + 0.499712i
\(419\) 1.67129i 0.0816477i 0.999166 + 0.0408239i \(0.0129982\pi\)
−0.999166 + 0.0408239i \(0.987002\pi\)
\(420\) 0 0
\(421\) 18.7410i 0.913380i 0.889626 + 0.456690i \(0.150965\pi\)
−0.889626 + 0.456690i \(0.849035\pi\)
\(422\) −1.58149 + 1.51931i −0.0769858 + 0.0739591i
\(423\) 0 0
\(424\) 2.67773 + 3.02091i 0.130042 + 0.146708i
\(425\) 0.287418i 0.0139418i
\(426\) 0 0
\(427\) 2.66699 0.129065
\(428\) −33.1523 1.33008i −1.60248 0.0642917i
\(429\) 0 0
\(430\) 1.51008 1.45071i 0.0728225 0.0699594i
\(431\) −17.7512 −0.855043 −0.427522 0.904005i \(-0.640613\pi\)
−0.427522 + 0.904005i \(0.640613\pi\)
\(432\) 0 0
\(433\) −35.1148 −1.68751 −0.843754 0.536729i \(-0.819660\pi\)
−0.843754 + 0.536729i \(0.819660\pi\)
\(434\) 0.154886 0.148797i 0.00743477 0.00714246i
\(435\) 0 0
\(436\) 18.6344 + 0.747615i 0.892426 + 0.0358043i
\(437\) 10.8586 0.519440
\(438\) 0 0
\(439\) 2.03379i 0.0970674i −0.998822 0.0485337i \(-0.984545\pi\)
0.998822 0.0485337i \(-0.0154548\pi\)
\(440\) 11.0799 9.82122i 0.528214 0.468208i
\(441\) 0 0
\(442\) 4.88293 4.69096i 0.232257 0.223126i
\(443\) 5.40321i 0.256714i −0.991728 0.128357i \(-0.959030\pi\)
0.991728 0.128357i \(-0.0409704\pi\)
\(444\) 0 0
\(445\) 4.24842i 0.201394i
\(446\) −3.56870 3.71475i −0.168983 0.175898i
\(447\) 0 0
\(448\) −4.24587 0.513240i −0.200599 0.0242483i
\(449\) 23.2885i 1.09905i 0.835477 + 0.549525i \(0.185191\pi\)
−0.835477 + 0.549525i \(0.814809\pi\)
\(450\) 0 0
\(451\) −10.2072 −0.480640
\(452\) 7.26028 + 0.291284i 0.341495 + 0.0137008i
\(453\) 0 0
\(454\) 12.7010 + 13.2208i 0.596087 + 0.620482i
\(455\) 1.18820 0.0557036
\(456\) 0 0
\(457\) 21.0679 0.985515 0.492758 0.870167i \(-0.335989\pi\)
0.492758 + 0.870167i \(0.335989\pi\)
\(458\) 3.78077 + 3.93550i 0.176664 + 0.183894i
\(459\) 0 0
\(460\) 0.454928 11.3391i 0.0212111 0.528690i
\(461\) 21.7196 1.01158 0.505792 0.862655i \(-0.331200\pi\)
0.505792 + 0.862655i \(0.331200\pi\)
\(462\) 0 0
\(463\) 31.7599i 1.47601i 0.674798 + 0.738003i \(0.264231\pi\)
−0.674798 + 0.738003i \(0.735769\pi\)
\(464\) 33.2045 + 2.66864i 1.54148 + 0.123888i
\(465\) 0 0
\(466\) 17.2674 + 17.9741i 0.799899 + 0.832635i
\(467\) 40.1071i 1.85594i 0.372660 + 0.927968i \(0.378446\pi\)
−0.372660 + 0.927968i \(0.621554\pi\)
\(468\) 0 0
\(469\) 0.351937i 0.0162510i
\(470\) 2.49598 2.39785i 0.115131 0.110605i
\(471\) 0 0
\(472\) −6.80181 + 6.02912i −0.313079 + 0.277513i
\(473\) 1.56905i 0.0721449i
\(474\) 0 0
\(475\) 0.255333 0.0117155
\(476\) 0.205218 5.11509i 0.00940617 0.234450i
\(477\) 0 0
\(478\) −19.8512 + 19.0708i −0.907974 + 0.872277i
\(479\) −40.3160 −1.84208 −0.921042 0.389463i \(-0.872661\pi\)
−0.921042 + 0.389463i \(0.872661\pi\)
\(480\) 0 0
\(481\) −6.30002 −0.287256
\(482\) 9.86048 9.47281i 0.449133 0.431475i
\(483\) 0 0
\(484\) 0.437190 10.8970i 0.0198723 0.495318i
\(485\) 17.1070 0.776788
\(486\) 0 0
\(487\) 6.50924i 0.294962i −0.989065 0.147481i \(-0.952883\pi\)
0.989065 0.147481i \(-0.0471165\pi\)
\(488\) −10.5593 + 9.35973i −0.477996 + 0.423695i
\(489\) 0 0
\(490\) −15.2192 + 14.6208i −0.687533 + 0.660502i
\(491\) 30.1527i 1.36077i 0.732854 + 0.680386i \(0.238188\pi\)
−0.732854 + 0.680386i \(0.761812\pi\)
\(492\) 0 0
\(493\) 39.8732i 1.79580i
\(494\) −4.16730 4.33784i −0.187496 0.195169i
\(495\) 0 0
\(496\) −0.0910342 + 1.13269i −0.00408755 + 0.0508594i
\(497\) 6.59435i 0.295797i
\(498\) 0 0
\(499\) −25.4542 −1.13949 −0.569744 0.821822i \(-0.692957\pi\)
−0.569744 + 0.821822i \(0.692957\pi\)
\(500\) 0.901693 22.4748i 0.0403250 1.00510i
\(501\) 0 0
\(502\) −9.96012 10.3677i −0.444542 0.462735i
\(503\) −28.7136 −1.28028 −0.640138 0.768260i \(-0.721123\pi\)
−0.640138 + 0.768260i \(0.721123\pi\)
\(504\) 0 0
\(505\) 4.15704 0.184986
\(506\) 5.89096 + 6.13205i 0.261885 + 0.272603i
\(507\) 0 0
\(508\) −26.4818 1.06246i −1.17494 0.0471388i
\(509\) 11.0695 0.490645 0.245323 0.969441i \(-0.421106\pi\)
0.245323 + 0.969441i \(0.421106\pi\)
\(510\) 0 0
\(511\) 7.55869i 0.334377i
\(512\) 18.6117 12.8688i 0.822528 0.568724i
\(513\) 0 0
\(514\) 11.0321 + 11.4836i 0.486605 + 0.506519i
\(515\) 2.11599i 0.0932414i
\(516\) 0 0
\(517\) 2.59345i 0.114060i
\(518\) −3.43482 + 3.29978i −0.150917 + 0.144984i
\(519\) 0 0
\(520\) −4.70438 + 4.16996i −0.206301 + 0.182865i
\(521\) 13.6152i 0.596493i 0.954489 + 0.298246i \(0.0964017\pi\)
−0.954489 + 0.298246i \(0.903598\pi\)
\(522\) 0 0
\(523\) 30.2130 1.32112 0.660561 0.750772i \(-0.270318\pi\)
0.660561 + 0.750772i \(0.270318\pi\)
\(524\) −20.5490 0.824429i −0.897687 0.0360153i
\(525\) 0 0
\(526\) 29.9048 28.7290i 1.30391 1.25265i
\(527\) −1.36018 −0.0592503
\(528\) 0 0
\(529\) −16.4826 −0.716635
\(530\) 3.23515 3.10796i 0.140526 0.135001i
\(531\) 0 0
\(532\) −4.54409 0.182310i −0.197011 0.00790413i
\(533\) 4.33386 0.187720
\(534\) 0 0
\(535\) 36.8719i 1.59411i
\(536\) −1.23512 1.39341i −0.0533489 0.0601861i
\(537\) 0 0
\(538\) −1.84848 + 1.77580i −0.0796934 + 0.0765602i
\(539\) 15.8135i 0.681136i
\(540\) 0 0
\(541\) 21.4574i 0.922527i 0.887263 + 0.461264i \(0.152604\pi\)
−0.887263 + 0.461264i \(0.847396\pi\)
\(542\) −28.0179 29.1645i −1.20347 1.25272i
\(543\) 0 0
\(544\) 17.1388 + 20.9721i 0.734820 + 0.899173i
\(545\) 20.7251i 0.887766i
\(546\) 0 0
\(547\) −5.45515 −0.233245 −0.116623 0.993176i \(-0.537207\pi\)
−0.116623 + 0.993176i \(0.537207\pi\)
\(548\) 39.6093 + 1.58913i 1.69203 + 0.0678844i
\(549\) 0 0
\(550\) 0.138522 + 0.144191i 0.00590658 + 0.00614831i
\(551\) 35.4221 1.50903
\(552\) 0 0
\(553\) 6.32865 0.269122
\(554\) −18.2787 19.0268i −0.776589 0.808370i
\(555\) 0 0
\(556\) −1.73270 + 43.1878i −0.0734830 + 1.83157i
\(557\) −35.6007 −1.50845 −0.754225 0.656616i \(-0.771987\pi\)
−0.754225 + 0.656616i \(0.771987\pi\)
\(558\) 0 0
\(559\) 0.666197i 0.0281771i
\(560\) −0.380753 + 4.73752i −0.0160898 + 0.200197i
\(561\) 0 0
\(562\) 10.0236 + 10.4338i 0.422821 + 0.440125i
\(563\) 17.7813i 0.749392i −0.927148 0.374696i \(-0.877747\pi\)
0.927148 0.374696i \(-0.122253\pi\)
\(564\) 0 0
\(565\) 8.07486i 0.339712i
\(566\) −6.39546 + 6.14402i −0.268821 + 0.258252i
\(567\) 0 0
\(568\) −23.1427 26.1087i −0.971048 1.09550i
\(569\) 7.00142i 0.293515i −0.989173 0.146757i \(-0.953116\pi\)
0.989173 0.146757i \(-0.0468837\pi\)
\(570\) 0 0
\(571\) 32.3791 1.35502 0.677511 0.735513i \(-0.263059\pi\)
0.677511 + 0.735513i \(0.263059\pi\)
\(572\) 0.188833 4.70668i 0.00789549 0.196796i
\(573\) 0 0
\(574\) 2.36285 2.26996i 0.0986236 0.0947461i
\(575\) 0.153252 0.00639104
\(576\) 0 0
\(577\) 43.8685 1.82627 0.913135 0.407657i \(-0.133654\pi\)
0.913135 + 0.407657i \(0.133654\pi\)
\(578\) −6.04161 + 5.80408i −0.251298 + 0.241418i
\(579\) 0 0
\(580\) 1.48403 36.9895i 0.0616208 1.53591i
\(581\) 7.89641 0.327598
\(582\) 0 0
\(583\) 3.36148i 0.139218i
\(584\) −26.5271 29.9267i −1.09770 1.23838i
\(585\) 0 0
\(586\) −14.6459 + 14.0701i −0.605016 + 0.581230i
\(587\) 18.5529i 0.765758i −0.923798 0.382879i \(-0.874933\pi\)
0.923798 0.382879i \(-0.125067\pi\)
\(588\) 0 0
\(589\) 1.20834i 0.0497888i
\(590\) 6.99781 + 7.28419i 0.288095 + 0.299885i
\(591\) 0 0
\(592\) 2.01881 25.1191i 0.0829727 1.03239i
\(593\) 23.1700i 0.951479i −0.879586 0.475739i \(-0.842181\pi\)
0.879586 0.475739i \(-0.157819\pi\)
\(594\) 0 0
\(595\) −5.68899 −0.233226
\(596\) 0.319451 7.96234i 0.0130852 0.326150i
\(597\) 0 0
\(598\) −2.50122 2.60359i −0.102283 0.106469i
\(599\) −41.7546 −1.70605 −0.853024 0.521871i \(-0.825234\pi\)
−0.853024 + 0.521871i \(0.825234\pi\)
\(600\) 0 0
\(601\) −44.9068 −1.83179 −0.915894 0.401420i \(-0.868517\pi\)
−0.915894 + 0.401420i \(0.868517\pi\)
\(602\) −0.348936 0.363216i −0.0142216 0.0148036i
\(603\) 0 0
\(604\) −12.0700 0.484252i −0.491123 0.0197039i
\(605\) −12.1196 −0.492732
\(606\) 0 0
\(607\) 48.1964i 1.95623i −0.208066 0.978115i \(-0.566717\pi\)
0.208066 0.978115i \(-0.433283\pi\)
\(608\) 18.6310 15.2256i 0.755587 0.617479i
\(609\) 0 0
\(610\) 10.8635 + 11.3081i 0.439852 + 0.457853i
\(611\) 1.10114i 0.0445475i
\(612\) 0 0
\(613\) 27.5841i 1.11411i −0.830475 0.557056i \(-0.811931\pi\)
0.830475 0.557056i \(-0.188069\pi\)
\(614\) 20.9099 20.0878i 0.843855 0.810678i
\(615\) 0 0
\(616\) −2.36228 2.66502i −0.0951788 0.107377i
\(617\) 23.8625i 0.960668i −0.877086 0.480334i \(-0.840515\pi\)
0.877086 0.480334i \(-0.159485\pi\)
\(618\) 0 0
\(619\) −20.4340 −0.821312 −0.410656 0.911790i \(-0.634700\pi\)
−0.410656 + 0.911790i \(0.634700\pi\)
\(620\) 1.26181 + 0.0506239i 0.0506754 + 0.00203311i
\(621\) 0 0
\(622\) 22.2924 21.4160i 0.893846 0.858703i
\(623\) 1.02186 0.0409401
\(624\) 0 0
\(625\) −24.6962 −0.987850
\(626\) −16.9352 + 16.2694i −0.676866 + 0.650255i
\(627\) 0 0
\(628\) −18.2588 0.732548i −0.728607 0.0292318i
\(629\) 30.1639 1.20271
\(630\) 0 0
\(631\) 43.7874i 1.74315i 0.490265 + 0.871574i \(0.336900\pi\)
−0.490265 + 0.871574i \(0.663100\pi\)
\(632\) −25.0567 + 22.2103i −0.996703 + 0.883477i
\(633\) 0 0
\(634\) 25.3909 24.3926i 1.00840 0.968755i
\(635\) 29.4530i 1.16881i
\(636\) 0 0
\(637\) 6.71421i 0.266026i
\(638\) 19.2170 + 20.0034i 0.760807 + 0.791943i
\(639\) 0 0
\(640\) −15.1187 20.0933i −0.597620 0.794257i
\(641\) 26.4737i 1.04565i 0.852441 + 0.522824i \(0.175122\pi\)
−0.852441 + 0.522824i \(0.824878\pi\)
\(642\) 0 0
\(643\) 30.3343 1.19627 0.598134 0.801396i \(-0.295909\pi\)
0.598134 + 0.801396i \(0.295909\pi\)
\(644\) −2.72737 0.109423i −0.107474 0.00431186i
\(645\) 0 0
\(646\) 19.9526 + 20.7692i 0.785026 + 0.817153i
\(647\) −11.4455 −0.449971 −0.224985 0.974362i \(-0.572233\pi\)
−0.224985 + 0.974362i \(0.572233\pi\)
\(648\) 0 0
\(649\) −7.56864 −0.297095
\(650\) −0.0588145 0.0612214i −0.00230689 0.00240130i
\(651\) 0 0
\(652\) 1.74514 43.4978i 0.0683449 1.70350i
\(653\) −5.80591 −0.227203 −0.113601 0.993526i \(-0.536239\pi\)
−0.113601 + 0.993526i \(0.536239\pi\)
\(654\) 0 0
\(655\) 22.8545i 0.892999i
\(656\) −1.38877 + 17.2797i −0.0542222 + 0.674659i
\(657\) 0 0
\(658\) −0.576749 0.600353i −0.0224840 0.0234042i
\(659\) 14.6774i 0.571752i −0.958267 0.285876i \(-0.907715\pi\)
0.958267 0.285876i \(-0.0922845\pi\)
\(660\) 0 0
\(661\) 3.77769i 0.146935i 0.997298 + 0.0734676i \(0.0234065\pi\)
−0.997298 + 0.0734676i \(0.976593\pi\)
\(662\) −30.1539 + 28.9684i −1.17196 + 1.12589i
\(663\) 0 0
\(664\) −31.2639 + 27.7123i −1.21327 + 1.07544i
\(665\) 5.05392i 0.195983i
\(666\) 0 0
\(667\) 21.2605 0.823208
\(668\) −1.17969 + 29.4038i −0.0456434 + 1.13767i
\(669\) 0 0
\(670\) −1.49223 + 1.43356i −0.0576498 + 0.0553833i
\(671\) −11.7497 −0.453593
\(672\) 0 0
\(673\) −37.6779 −1.45238 −0.726188 0.687496i \(-0.758710\pi\)
−0.726188 + 0.687496i \(0.758710\pi\)
\(674\) 0.302929 0.291019i 0.0116684 0.0112096i
\(675\) 0 0
\(676\) −0.0801759 + 1.99839i −0.00308369 + 0.0768612i
\(677\) −34.4215 −1.32292 −0.661462 0.749979i \(-0.730064\pi\)
−0.661462 + 0.749979i \(0.730064\pi\)
\(678\) 0 0
\(679\) 4.11470i 0.157908i
\(680\) 22.5241 19.9654i 0.863761 0.765637i
\(681\) 0 0
\(682\) −0.682368 + 0.655540i −0.0261292 + 0.0251019i
\(683\) 15.2294i 0.582739i −0.956611 0.291369i \(-0.905889\pi\)
0.956611 0.291369i \(-0.0941108\pi\)
\(684\) 0 0
\(685\) 44.0533i 1.68319i
\(686\) 7.18313 + 7.47709i 0.274253 + 0.285477i
\(687\) 0 0
\(688\) 2.65622 + 0.213480i 0.101268 + 0.00813884i
\(689\) 1.42724i 0.0543736i
\(690\) 0 0
\(691\) 0.308783 0.0117467 0.00587334 0.999983i \(-0.498130\pi\)
0.00587334 + 0.999983i \(0.498130\pi\)
\(692\) −1.13655 + 28.3287i −0.0432052 + 1.07690i
\(693\) 0 0
\(694\) −7.02259 7.30999i −0.266574 0.277483i
\(695\) 48.0333 1.82201
\(696\) 0 0
\(697\) −20.7501 −0.785966
\(698\) 3.25782 + 3.39114i 0.123310 + 0.128357i
\(699\) 0 0
\(700\) −0.0641322 0.00257300i −0.00242397 9.72501e-5i
\(701\) 0.0310215 0.00117166 0.000585832 1.00000i \(-0.499814\pi\)
0.000585832 1.00000i \(0.499814\pi\)
\(702\) 0 0
\(703\) 26.7967i 1.01065i
\(704\) 18.7057 + 2.26114i 0.704997 + 0.0852198i
\(705\) 0 0
\(706\) −2.26493 2.35762i −0.0852416 0.0887301i
\(707\) 0.999883i 0.0376045i
\(708\) 0 0
\(709\) 23.9935i 0.901094i −0.892753 0.450547i \(-0.851229\pi\)
0.892753 0.450547i \(-0.148771\pi\)
\(710\) −27.9603 + 26.8610i −1.04933 + 1.00808i
\(711\) 0 0
\(712\) −4.04581 + 3.58621i −0.151623 + 0.134399i
\(713\) 0.725249i 0.0271608i
\(714\) 0 0
\(715\) −5.23475 −0.195768
\(716\) 35.5199 + 1.42507i 1.32744 + 0.0532572i
\(717\) 0 0
\(718\) 30.6104 29.4069i 1.14237 1.09746i
\(719\) −28.8021 −1.07414 −0.537069 0.843538i \(-0.680468\pi\)
−0.537069 + 0.843538i \(0.680468\pi\)
\(720\) 0 0
\(721\) −0.508953 −0.0189544
\(722\) −0.926394 + 0.889972i −0.0344768 + 0.0331213i
\(723\) 0 0
\(724\) 30.6130 + 1.22820i 1.13772 + 0.0456456i
\(725\) 0.499924 0.0185667
\(726\) 0 0
\(727\) 11.5476i 0.428277i 0.976803 + 0.214138i \(0.0686943\pi\)
−0.976803 + 0.214138i \(0.931306\pi\)
\(728\) 1.00299 + 1.13153i 0.0371733 + 0.0419374i
\(729\) 0 0
\(730\) −32.0491 + 30.7891i −1.18619 + 1.13956i
\(731\) 3.18969i 0.117975i
\(732\) 0 0
\(733\) 34.4289i 1.27166i −0.771830 0.635830i \(-0.780658\pi\)
0.771830 0.635830i \(-0.219342\pi\)
\(734\) −25.8194 26.8760i −0.953011 0.992013i
\(735\) 0 0
\(736\) 11.1824 9.13843i 0.412188 0.336847i
\(737\) 1.55050i 0.0571134i
\(738\) 0 0
\(739\) 47.2448 1.73793 0.868964 0.494876i \(-0.164786\pi\)
0.868964 + 0.494876i \(0.164786\pi\)
\(740\) −27.9824 1.12266i −1.02865 0.0412697i
\(741\) 0 0
\(742\) −0.747550 0.778143i −0.0274434 0.0285665i
\(743\) −40.8575 −1.49892 −0.749459 0.662051i \(-0.769686\pi\)
−0.749459 + 0.662051i \(0.769686\pi\)
\(744\) 0 0
\(745\) −8.85568 −0.324447
\(746\) −22.5058 23.4269i −0.823997 0.857719i
\(747\) 0 0
\(748\) −0.904113 + 22.5351i −0.0330577 + 0.823966i
\(749\) 8.86870 0.324055
\(750\) 0 0
\(751\) 54.4523i 1.98699i −0.113859 0.993497i \(-0.536321\pi\)
0.113859 0.993497i \(-0.463679\pi\)
\(752\) 4.39042 + 0.352857i 0.160102 + 0.0128674i
\(753\) 0 0
\(754\) −8.15927 8.49319i −0.297143 0.309304i
\(755\) 13.4243i 0.488559i
\(756\) 0 0
\(757\) 10.5247i 0.382527i −0.981539 0.191263i \(-0.938742\pi\)
0.981539 0.191263i \(-0.0612585\pi\)
\(758\) −16.6108 + 15.9578i −0.603333 + 0.579612i
\(759\) 0 0
\(760\) −17.7366 20.0097i −0.643375 0.725829i
\(761\) 1.22084i 0.0442555i 0.999755 + 0.0221278i \(0.00704406\pi\)
−0.999755 + 0.0221278i \(0.992956\pi\)
\(762\) 0 0
\(763\) −4.98496 −0.180468
\(764\) −0.272662 + 6.79613i −0.00986457 + 0.245875i
\(765\) 0 0
\(766\) −11.9035 + 11.4355i −0.430091 + 0.413182i
\(767\) 3.21354 0.116034
\(768\) 0 0
\(769\) −6.42116 −0.231553 −0.115777 0.993275i \(-0.536936\pi\)
−0.115777 + 0.993275i \(0.536936\pi\)
\(770\) −2.85403 + 2.74182i −0.102852 + 0.0988083i
\(771\) 0 0
\(772\) 0.797291 19.8726i 0.0286951 0.715229i
\(773\) 43.3705 1.55993 0.779964 0.625825i \(-0.215238\pi\)
0.779964 + 0.625825i \(0.215238\pi\)
\(774\) 0 0
\(775\) 0.0170537i 0.000612587i
\(776\) 14.4405 + 16.2911i 0.518382 + 0.584818i
\(777\) 0 0
\(778\) −10.2260 + 9.82392i −0.366618 + 0.352205i
\(779\) 18.4337i 0.660457i
\(780\) 0 0
\(781\) 29.0522i 1.03957i
\(782\) 11.9756 + 12.4657i 0.428248 + 0.445773i
\(783\) 0 0
\(784\) −26.7705 2.15154i −0.956089 0.0768406i
\(785\) 20.3074i 0.724803i
\(786\) 0 0
\(787\) 4.57163 0.162961 0.0814804 0.996675i \(-0.474035\pi\)
0.0814804 + 0.996675i \(0.474035\pi\)
\(788\) 0.0590461 1.47173i 0.00210343 0.0524282i
\(789\) 0 0
\(790\) 25.7788 + 26.8337i 0.917167 + 0.954702i
\(791\) −1.94223 −0.0690576
\(792\) 0 0
\(793\) 4.98877 0.177157
\(794\) −18.6078 19.3693i −0.660367 0.687392i
\(795\) 0 0
\(796\) −28.0439 1.12513i −0.993989 0.0398790i
\(797\) 45.1833 1.60047 0.800237 0.599684i \(-0.204707\pi\)
0.800237 + 0.599684i \(0.204707\pi\)
\(798\) 0 0
\(799\) 5.27217i 0.186516i
\(800\) 0.262945 0.214884i 0.00929653 0.00759728i
\(801\) 0 0
\(802\) −23.4677 24.4281i −0.828672 0.862585i
\(803\) 33.3007i 1.17515i
\(804\) 0 0
\(805\) 3.03338i 0.106912i
\(806\) 0.289724 0.278334i 0.0102051 0.00980388i
\(807\) 0 0
\(808\) 3.50907 + 3.95879i 0.123449 + 0.139270i
\(809\) 4.51903i 0.158881i −0.996840 0.0794403i \(-0.974687\pi\)
0.996840 0.0794403i \(-0.0253133\pi\)
\(810\) 0 0
\(811\) 51.7819 1.81831 0.909154 0.416460i \(-0.136729\pi\)
0.909154 + 0.416460i \(0.136729\pi\)
\(812\) −8.89700 0.356949i −0.312223 0.0125265i
\(813\) 0 0
\(814\) 15.1325 14.5375i 0.530393 0.509541i
\(815\) −48.3781 −1.69461
\(816\) 0 0
\(817\) 2.83362 0.0991358
\(818\) −19.7173 + 18.9421i −0.689400 + 0.662296i
\(819\) 0 0
\(820\) 19.2494 + 0.772290i 0.672219 + 0.0269695i
\(821\) 46.7224 1.63062 0.815312 0.579022i \(-0.196566\pi\)
0.815312 + 0.579022i \(0.196566\pi\)
\(822\) 0 0
\(823\) 0.605003i 0.0210891i 0.999944 + 0.0105445i \(0.00335649\pi\)
−0.999944 + 0.0105445i \(0.996644\pi\)
\(824\) 2.01507 1.78616i 0.0701984 0.0622238i
\(825\) 0 0
\(826\) 1.75205 1.68317i 0.0609616 0.0585648i
\(827\) 7.96743i 0.277055i 0.990359 + 0.138527i \(0.0442369\pi\)
−0.990359 + 0.138527i \(0.955763\pi\)
\(828\) 0 0
\(829\) 11.5924i 0.402622i −0.979527 0.201311i \(-0.935480\pi\)
0.979527 0.201311i \(-0.0645202\pi\)
\(830\) 32.1648 + 33.4811i 1.11645 + 1.16215i
\(831\) 0 0
\(832\) −7.94219 0.960049i −0.275346 0.0332837i
\(833\) 32.1470i 1.11383i
\(834\) 0 0
\(835\) 32.7028 1.13173
\(836\) 20.0195 + 0.803186i 0.692389 + 0.0277788i
\(837\) 0 0
\(838\) 1.63745 + 1.70446i 0.0565646 + 0.0588795i
\(839\) 29.8351 1.03002 0.515012 0.857183i \(-0.327788\pi\)
0.515012 + 0.857183i \(0.327788\pi\)
\(840\) 0 0
\(841\) 40.3539 1.39152
\(842\) 18.3615 + 19.1129i 0.632779 + 0.658675i
\(843\) 0 0
\(844\) −0.124330 + 3.09894i −0.00427961 + 0.106670i
\(845\) 2.22260 0.0764599
\(846\) 0 0
\(847\) 2.91510i 0.100164i
\(848\) 5.69062 + 0.457353i 0.195417 + 0.0157056i
\(849\) 0 0
\(850\) 0.281598 + 0.293122i 0.00965874 + 0.0100540i
\(851\) 16.0834i 0.551333i
\(852\) 0 0
\(853\) 27.9548i 0.957155i 0.878045 + 0.478578i \(0.158848\pi\)
−0.878045 + 0.478578i \(0.841152\pi\)
\(854\) 2.71992 2.61298i 0.0930737 0.0894144i
\(855\) 0 0
\(856\) −35.1134 + 31.1245i −1.20015 + 1.06381i
\(857\) 5.72159i 0.195446i 0.995214 + 0.0977229i \(0.0311559\pi\)
−0.995214 + 0.0977229i \(0.968844\pi\)
\(858\) 0 0
\(859\) 18.9201 0.645544 0.322772 0.946477i \(-0.395385\pi\)
0.322772 + 0.946477i \(0.395385\pi\)
\(860\) 0.118716 2.95900i 0.00404817 0.100901i
\(861\) 0 0
\(862\) −18.1035 + 17.3917i −0.616607 + 0.592364i
\(863\) −14.3411 −0.488176 −0.244088 0.969753i \(-0.578489\pi\)
−0.244088 + 0.969753i \(0.578489\pi\)
\(864\) 0 0
\(865\) 31.5071 1.07127
\(866\) −35.8117 + 34.4037i −1.21693 + 1.16909i
\(867\) 0 0
\(868\) 0.0121765 0.303499i 0.000413296 0.0103014i
\(869\) −27.8816 −0.945819
\(870\) 0 0
\(871\) 0.658322i 0.0223064i
\(872\) 19.7367 17.4946i 0.668369 0.592443i
\(873\) 0 0
\(874\) 11.0742 10.6388i 0.374589 0.359862i
\(875\) 6.01232i 0.203254i
\(876\) 0 0
\(877\) 24.2543i 0.819011i −0.912308 0.409505i \(-0.865701\pi\)
0.912308 0.409505i \(-0.134299\pi\)
\(878\) −1.99261 2.07415i −0.0672472 0.0699993i
\(879\) 0 0
\(880\) 1.67745 20.8717i 0.0565469 0.703585i
\(881\) 58.3091i 1.96448i −0.187621 0.982241i \(-0.560078\pi\)
0.187621 0.982241i \(-0.439922\pi\)
\(882\) 0 0
\(883\) 39.8809 1.34210 0.671050 0.741412i \(-0.265844\pi\)
0.671050 + 0.741412i \(0.265844\pi\)
\(884\) 0.383874 9.56811i 0.0129111 0.321810i
\(885\) 0 0
\(886\) −5.29380 5.51045i −0.177849 0.185127i
\(887\) 30.1897 1.01367 0.506836 0.862043i \(-0.330815\pi\)
0.506836 + 0.862043i \(0.330815\pi\)
\(888\) 0 0
\(889\) 7.08426 0.237598
\(890\) 4.16240 + 4.33274i 0.139524 + 0.145234i
\(891\) 0 0
\(892\) −7.27905 0.292037i −0.243721 0.00977812i
\(893\) 4.68364 0.156732
\(894\) 0 0
\(895\) 39.5051i 1.32051i
\(896\) −4.83299 + 3.63647i −0.161459 + 0.121486i
\(897\) 0 0
\(898\) 22.8169 + 23.7507i 0.761409 + 0.792570i
\(899\) 2.36584i 0.0789052i
\(900\) 0 0
\(901\) 6.83350i 0.227657i
\(902\) −10.4098 + 10.0006i −0.346609 + 0.332982i
\(903\) 0 0
\(904\) 7.68976 6.81620i 0.255758 0.226704i
\(905\) 34.0476i 1.13178i
\(906\) 0 0
\(907\) 20.4434 0.678810 0.339405 0.940640i \(-0.389774\pi\)
0.339405 + 0.940640i \(0.389774\pi\)
\(908\) 25.9061 + 1.03936i 0.859725 + 0.0344923i
\(909\) 0 0
\(910\) 1.21178 1.16414i 0.0401702 0.0385908i
\(911\) 4.47336 0.148209 0.0741045 0.997250i \(-0.476390\pi\)
0.0741045 + 0.997250i \(0.476390\pi\)
\(912\) 0 0
\(913\) −34.7885 −1.15133
\(914\) 21.4860 20.6413i 0.710695 0.682754i
\(915\) 0 0
\(916\) 7.71162 + 0.309392i 0.254799 + 0.0102226i
\(917\) 5.49714 0.181532
\(918\) 0 0
\(919\) 49.2114i 1.62333i 0.584121 + 0.811667i \(0.301439\pi\)
−0.584121 + 0.811667i \(0.698561\pi\)
\(920\) −10.6456 12.0099i −0.350974 0.395955i
\(921\) 0 0
\(922\) 22.1507 21.2798i 0.729494 0.700814i
\(923\) 12.3352i 0.406017i
\(924\) 0 0
\(925\) 0.378190i 0.0124348i
\(926\) 31.1167 + 32.3902i 1.02256 + 1.06441i
\(927\) 0 0
\(928\) 36.4782 29.8106i 1.19745 0.978580i
\(929\) 10.4660i 0.343379i 0.985151 + 0.171690i \(0.0549226\pi\)
−0.985151 + 0.171690i \(0.945077\pi\)
\(930\) 0 0
\(931\) −28.5584 −0.935963
\(932\) 35.2203 + 1.41304i 1.15368 + 0.0462858i
\(933\) 0 0
\(934\) 39.2950 + 40.9031i 1.28577 + 1.33839i
\(935\) 25.0635 0.819663
\(936\) 0 0
\(937\) 56.2534 1.83772 0.918859 0.394585i \(-0.129112\pi\)
0.918859 + 0.394585i \(0.129112\pi\)
\(938\) 0.344811 + 0.358922i 0.0112585 + 0.0117192i
\(939\) 0 0
\(940\) 0.196223 4.89088i 0.00640009 0.159523i
\(941\) 3.89072 0.126834 0.0634170 0.997987i \(-0.479800\pi\)
0.0634170 + 0.997987i \(0.479800\pi\)
\(942\) 0 0
\(943\) 11.0640i 0.360293i
\(944\) −1.02977 + 12.8129i −0.0335160 + 0.417023i
\(945\) 0 0
\(946\) 1.53728 + 1.60019i 0.0499812 + 0.0520266i
\(947\) 22.4095i 0.728211i 0.931358 + 0.364105i \(0.118625\pi\)
−0.931358 + 0.364105i \(0.881375\pi\)
\(948\) 0 0
\(949\) 14.1390i 0.458972i
\(950\) 0.260401 0.250163i 0.00844852 0.00811636i
\(951\) 0 0
\(952\) −4.80223 5.41767i −0.155641 0.175588i
\(953\) 52.6242i 1.70466i −0.523001 0.852332i \(-0.675187\pi\)
0.523001 0.852332i \(-0.324813\pi\)
\(954\) 0 0
\(955\) 7.55863 0.244592
\(956\) −1.56062 + 38.8985i −0.0504739 + 1.25807i
\(957\) 0 0
\(958\) −41.1161 + 39.4996i −1.32840 + 1.27618i
\(959\) −10.5960 −0.342164
\(960\) 0 0
\(961\) 30.9193 0.997397
\(962\) −6.42505 + 6.17245i −0.207152 + 0.199008i
\(963\) 0 0
\(964\) 0.775188 19.3216i 0.0249671 0.622308i
\(965\) −22.1022 −0.711495
\(966\) 0 0
\(967\) 54.9989i 1.76865i 0.466876 + 0.884323i \(0.345379\pi\)
−0.466876 + 0.884323i \(0.654621\pi\)
\(968\) −10.2305 11.5416i −0.328820 0.370961i
\(969\) 0 0
\(970\) 17.4465 16.7606i 0.560173 0.538150i
\(971\) 38.5659i 1.23764i −0.785533 0.618820i \(-0.787611\pi\)
0.785533 0.618820i \(-0.212389\pi\)
\(972\) 0 0
\(973\) 11.5533i 0.370383i
\(974\) −6.37744 6.63843i −0.204346 0.212709i
\(975\) 0 0
\(976\) −1.59863 + 19.8910i −0.0511709 + 0.636694i
\(977\) 10.8882i 0.348345i 0.984715 + 0.174172i \(0.0557250\pi\)
−0.984715 + 0.174172i \(0.944275\pi\)
\(978\) 0 0
\(979\) −4.50193 −0.143882
\(980\) −1.19647 + 29.8221i −0.0382197 + 0.952631i
\(981\) 0 0
\(982\) 29.5421 + 30.7511i 0.942727 + 0.981308i
\(983\) 27.2804 0.870111 0.435055 0.900404i \(-0.356729\pi\)
0.435055 + 0.900404i \(0.356729\pi\)
\(984\) 0 0
\(985\) −1.63685 −0.0521545
\(986\) 39.0658 + 40.6646i 1.24411 + 1.29502i
\(987\) 0 0
\(988\) −8.50001 0.341022i −0.270421 0.0108494i
\(989\) 1.70075 0.0540806
\(990\) 0 0
\(991\) 25.6230i 0.813941i −0.913441 0.406971i \(-0.866585\pi\)
0.913441 0.406971i \(-0.133415\pi\)
\(992\) 1.01692 + 1.24436i 0.0322871 + 0.0395086i
\(993\) 0 0
\(994\) 6.46082 + 6.72523i 0.204925 + 0.213311i
\(995\) 31.1903i 0.988799i
\(996\) 0 0
\(997\) 48.5538i 1.53771i −0.639421 0.768856i \(-0.720826\pi\)
0.639421 0.768856i \(-0.279174\pi\)
\(998\) −25.9594 + 24.9388i −0.821731 + 0.789424i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.j.a.755.37 yes 48
3.2 odd 2 inner 936.2.j.a.755.12 yes 48
4.3 odd 2 3744.2.j.a.2159.13 48
8.3 odd 2 inner 936.2.j.a.755.11 48
8.5 even 2 3744.2.j.a.2159.36 48
12.11 even 2 3744.2.j.a.2159.35 48
24.5 odd 2 3744.2.j.a.2159.14 48
24.11 even 2 inner 936.2.j.a.755.38 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.j.a.755.11 48 8.3 odd 2 inner
936.2.j.a.755.12 yes 48 3.2 odd 2 inner
936.2.j.a.755.37 yes 48 1.1 even 1 trivial
936.2.j.a.755.38 yes 48 24.11 even 2 inner
3744.2.j.a.2159.13 48 4.3 odd 2
3744.2.j.a.2159.14 48 24.5 odd 2
3744.2.j.a.2159.35 48 12.11 even 2
3744.2.j.a.2159.36 48 8.5 even 2