Properties

Label 369.2.ba.b.224.6
Level $369$
Weight $2$
Character 369.224
Analytic conductor $2.946$
Analytic rank $0$
Dimension $112$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [369,2,Mod(17,369)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("369.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(369, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 369 = 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 369.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.94647983459\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(7\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 224.6
Character \(\chi\) \(=\) 369.224
Dual form 369.2.ba.b.341.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.814144 + 1.59785i) q^{2} +(-0.714715 + 0.983721i) q^{4} +(0.595885 + 3.76227i) q^{5} +(2.85103 - 2.43501i) q^{7} +(1.38874 + 0.219955i) q^{8} +(-5.52639 + 4.01516i) q^{10} +(-2.20898 - 1.35366i) q^{11} +(1.45014 - 0.114128i) q^{13} +(6.21192 + 2.57306i) q^{14} +(1.53067 + 4.71093i) q^{16} +(-3.62559 + 0.870427i) q^{17} +(-5.01227 - 0.394474i) q^{19} +(-4.12691 - 2.10276i) q^{20} +(0.364522 - 4.63169i) q^{22} +(1.36058 - 4.18744i) q^{23} +(-9.04429 + 2.93867i) q^{25} +(1.36298 + 2.22418i) q^{26} +(0.357695 + 4.54495i) q^{28} +(2.50409 + 0.601179i) q^{29} +(-4.04600 - 5.56884i) q^{31} +(-4.29271 + 4.29271i) q^{32} +(-4.34256 - 5.08448i) q^{34} +(10.8600 + 9.27534i) q^{35} +(8.62255 + 6.26465i) q^{37} +(-3.45040 - 8.33000i) q^{38} +5.35587i q^{40} +(-6.04317 + 2.11661i) q^{41} +(-0.560875 + 0.285780i) q^{43} +(2.91042 - 1.20554i) q^{44} +(7.79861 - 1.23518i) q^{46} +(7.81834 - 9.15410i) q^{47} +(1.10406 - 6.97073i) q^{49} +(-12.0589 - 12.0589i) q^{50} +(-0.924164 + 1.50810i) q^{52} +(1.07245 - 4.46708i) q^{53} +(3.77655 - 9.11740i) q^{55} +(4.49492 - 2.75449i) q^{56} +(1.07810 + 4.49060i) q^{58} +(-11.4924 - 3.73410i) q^{59} +(2.85704 - 5.60726i) q^{61} +(5.60413 - 10.9987i) q^{62} +(-0.932106 - 0.302860i) q^{64} +(1.29350 + 5.38780i) q^{65} +(10.1124 - 6.19691i) q^{67} +(1.73501 - 4.18867i) q^{68} +(-5.97895 + 24.9041i) q^{70} +(-0.295608 + 0.482388i) q^{71} +(-1.50300 - 1.50300i) q^{73} +(-2.98996 + 18.8778i) q^{74} +(3.97040 - 4.64874i) q^{76} +(-9.59405 + 1.51955i) q^{77} +(-4.52212 + 1.87312i) q^{79} +(-16.8117 + 8.56598i) q^{80} +(-8.30204 - 7.93284i) q^{82} +7.97207i q^{83} +(-5.43521 - 13.1218i) q^{85} +(-0.913266 - 0.663527i) q^{86} +(-2.76995 - 2.36576i) q^{88} +(9.86205 + 11.5470i) q^{89} +(3.85648 - 3.85648i) q^{91} +(3.14685 + 4.33126i) q^{92} +(20.9921 + 5.03976i) q^{94} +(-1.50262 - 19.0926i) q^{95} +(-1.77371 - 2.89443i) q^{97} +(12.0370 - 3.91107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 4 q^{5} - 24 q^{8} + 12 q^{11} - 4 q^{13} + 4 q^{14} + 28 q^{16} + 4 q^{17} - 88 q^{20} + 8 q^{22} - 24 q^{23} + 60 q^{26} - 8 q^{29} - 48 q^{32} + 152 q^{35} + 8 q^{37} + 56 q^{38} - 12 q^{41}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/369\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(334\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.814144 + 1.59785i 0.575687 + 1.12985i 0.976867 + 0.213849i \(0.0686002\pi\)
−0.401180 + 0.915999i \(0.631400\pi\)
\(3\) 0 0
\(4\) −0.714715 + 0.983721i −0.357358 + 0.491860i
\(5\) 0.595885 + 3.76227i 0.266488 + 1.68254i 0.650733 + 0.759306i \(0.274462\pi\)
−0.384246 + 0.923231i \(0.625538\pi\)
\(6\) 0 0
\(7\) 2.85103 2.43501i 1.07759 0.920346i 0.0805105 0.996754i \(-0.474345\pi\)
0.997077 + 0.0764074i \(0.0243450\pi\)
\(8\) 1.38874 + 0.219955i 0.490993 + 0.0777657i
\(9\) 0 0
\(10\) −5.52639 + 4.01516i −1.74760 + 1.26970i
\(11\) −2.20898 1.35366i −0.666033 0.408145i 0.147982 0.988990i \(-0.452722\pi\)
−0.814014 + 0.580845i \(0.802722\pi\)
\(12\) 0 0
\(13\) 1.45014 0.114128i 0.402196 0.0316535i 0.124252 0.992251i \(-0.460347\pi\)
0.277944 + 0.960597i \(0.410347\pi\)
\(14\) 6.21192 + 2.57306i 1.66020 + 0.687679i
\(15\) 0 0
\(16\) 1.53067 + 4.71093i 0.382669 + 1.17773i
\(17\) −3.62559 + 0.870427i −0.879334 + 0.211109i −0.647886 0.761738i \(-0.724347\pi\)
−0.231449 + 0.972847i \(0.574347\pi\)
\(18\) 0 0
\(19\) −5.01227 0.394474i −1.14989 0.0904986i −0.510851 0.859670i \(-0.670669\pi\)
−0.639043 + 0.769171i \(0.720669\pi\)
\(20\) −4.12691 2.10276i −0.922805 0.470193i
\(21\) 0 0
\(22\) 0.364522 4.63169i 0.0777163 0.987480i
\(23\) 1.36058 4.18744i 0.283701 0.873143i −0.703084 0.711107i \(-0.748194\pi\)
0.986785 0.162036i \(-0.0518059\pi\)
\(24\) 0 0
\(25\) −9.04429 + 2.93867i −1.80886 + 0.587734i
\(26\) 1.36298 + 2.22418i 0.267302 + 0.436198i
\(27\) 0 0
\(28\) 0.357695 + 4.54495i 0.0675981 + 0.858915i
\(29\) 2.50409 + 0.601179i 0.464998 + 0.111636i 0.459173 0.888347i \(-0.348146\pi\)
0.00582502 + 0.999983i \(0.498146\pi\)
\(30\) 0 0
\(31\) −4.04600 5.56884i −0.726683 1.00019i −0.999275 0.0380639i \(-0.987881\pi\)
0.272592 0.962130i \(-0.412119\pi\)
\(32\) −4.29271 + 4.29271i −0.758851 + 0.758851i
\(33\) 0 0
\(34\) −4.34256 5.08448i −0.744743 0.871982i
\(35\) 10.8600 + 9.27534i 1.83568 + 1.56782i
\(36\) 0 0
\(37\) 8.62255 + 6.26465i 1.41754 + 1.02990i 0.992172 + 0.124880i \(0.0398547\pi\)
0.425366 + 0.905021i \(0.360145\pi\)
\(38\) −3.45040 8.33000i −0.559729 1.35130i
\(39\) 0 0
\(40\) 5.35587i 0.846838i
\(41\) −6.04317 + 2.11661i −0.943785 + 0.330560i
\(42\) 0 0
\(43\) −0.560875 + 0.285780i −0.0855326 + 0.0435811i −0.496234 0.868189i \(-0.665284\pi\)
0.410701 + 0.911770i \(0.365284\pi\)
\(44\) 2.91042 1.20554i 0.438762 0.181741i
\(45\) 0 0
\(46\) 7.79861 1.23518i 1.14984 0.182117i
\(47\) 7.81834 9.15410i 1.14042 1.33526i 0.206225 0.978505i \(-0.433882\pi\)
0.934197 0.356758i \(-0.116118\pi\)
\(48\) 0 0
\(49\) 1.10406 6.97073i 0.157722 0.995819i
\(50\) −12.0589 12.0589i −1.70539 1.70539i
\(51\) 0 0
\(52\) −0.924164 + 1.50810i −0.128159 + 0.209136i
\(53\) 1.07245 4.46708i 0.147312 0.613600i −0.849045 0.528321i \(-0.822822\pi\)
0.996357 0.0852791i \(-0.0271782\pi\)
\(54\) 0 0
\(55\) 3.77655 9.11740i 0.509230 1.22939i
\(56\) 4.49492 2.75449i 0.600659 0.368084i
\(57\) 0 0
\(58\) 1.07810 + 4.49060i 0.141561 + 0.589645i
\(59\) −11.4924 3.73410i −1.49618 0.486139i −0.557280 0.830325i \(-0.688155\pi\)
−0.938901 + 0.344186i \(0.888155\pi\)
\(60\) 0 0
\(61\) 2.85704 5.60726i 0.365807 0.717936i −0.632593 0.774484i \(-0.718009\pi\)
0.998400 + 0.0565480i \(0.0180094\pi\)
\(62\) 5.60413 10.9987i 0.711726 1.39684i
\(63\) 0 0
\(64\) −0.932106 0.302860i −0.116513 0.0378575i
\(65\) 1.29350 + 5.38780i 0.160438 + 0.668274i
\(66\) 0 0
\(67\) 10.1124 6.19691i 1.23543 0.757073i 0.257555 0.966264i \(-0.417083\pi\)
0.977875 + 0.209191i \(0.0670830\pi\)
\(68\) 1.73501 4.18867i 0.210400 0.507951i
\(69\) 0 0
\(70\) −5.97895 + 24.9041i −0.714622 + 2.97661i
\(71\) −0.295608 + 0.482388i −0.0350822 + 0.0572490i −0.869701 0.493580i \(-0.835688\pi\)
0.834618 + 0.550829i \(0.185688\pi\)
\(72\) 0 0
\(73\) −1.50300 1.50300i −0.175913 0.175913i 0.613659 0.789572i \(-0.289697\pi\)
−0.789572 + 0.613659i \(0.789697\pi\)
\(74\) −2.98996 + 18.8778i −0.347575 + 2.19450i
\(75\) 0 0
\(76\) 3.97040 4.64874i 0.455436 0.533247i
\(77\) −9.59405 + 1.51955i −1.09334 + 0.173169i
\(78\) 0 0
\(79\) −4.52212 + 1.87312i −0.508778 + 0.210743i −0.622280 0.782795i \(-0.713793\pi\)
0.113501 + 0.993538i \(0.463793\pi\)
\(80\) −16.8117 + 8.56598i −1.87960 + 0.957706i
\(81\) 0 0
\(82\) −8.30204 7.93284i −0.916807 0.876035i
\(83\) 7.97207i 0.875049i 0.899207 + 0.437524i \(0.144145\pi\)
−0.899207 + 0.437524i \(0.855855\pi\)
\(84\) 0 0
\(85\) −5.43521 13.1218i −0.589531 1.42325i
\(86\) −0.913266 0.663527i −0.0984800 0.0715499i
\(87\) 0 0
\(88\) −2.76995 2.36576i −0.295278 0.252191i
\(89\) 9.86205 + 11.5470i 1.04538 + 1.22398i 0.974005 + 0.226528i \(0.0727374\pi\)
0.0713708 + 0.997450i \(0.477263\pi\)
\(90\) 0 0
\(91\) 3.85648 3.85648i 0.404269 0.404269i
\(92\) 3.14685 + 4.33126i 0.328082 + 0.451565i
\(93\) 0 0
\(94\) 20.9921 + 5.03976i 2.16517 + 0.519811i
\(95\) −1.50262 19.0926i −0.154165 1.95886i
\(96\) 0 0
\(97\) −1.77371 2.89443i −0.180093 0.293885i 0.749836 0.661623i \(-0.230132\pi\)
−0.929929 + 0.367738i \(0.880132\pi\)
\(98\) 12.0370 3.91107i 1.21592 0.395077i
\(99\) 0 0
\(100\) 3.57326 10.9974i 0.357326 1.09974i
\(101\) 0.374953 4.76423i 0.0373092 0.474058i −0.949675 0.313238i \(-0.898586\pi\)
0.986984 0.160820i \(-0.0514138\pi\)
\(102\) 0 0
\(103\) 1.54257 + 0.785977i 0.151994 + 0.0774447i 0.528333 0.849037i \(-0.322817\pi\)
−0.376339 + 0.926482i \(0.622817\pi\)
\(104\) 2.03896 + 0.160470i 0.199937 + 0.0157354i
\(105\) 0 0
\(106\) 8.01083 1.92323i 0.778081 0.186801i
\(107\) −0.196837 0.605801i −0.0190289 0.0585650i 0.941091 0.338153i \(-0.109802\pi\)
−0.960120 + 0.279588i \(0.909802\pi\)
\(108\) 0 0
\(109\) 15.5379 + 6.43602i 1.48826 + 0.616459i 0.970938 0.239329i \(-0.0769275\pi\)
0.517326 + 0.855788i \(0.326928\pi\)
\(110\) 17.6429 1.38852i 1.68218 0.132391i
\(111\) 0 0
\(112\) 15.8352 + 9.70379i 1.49628 + 0.916922i
\(113\) −11.4875 + 8.34617i −1.08065 + 0.785142i −0.977797 0.209554i \(-0.932799\pi\)
−0.102858 + 0.994696i \(0.532799\pi\)
\(114\) 0 0
\(115\) 16.5650 + 2.62364i 1.54470 + 0.244656i
\(116\) −2.38110 + 2.03365i −0.221080 + 0.188820i
\(117\) 0 0
\(118\) −3.38993 21.4032i −0.312068 1.97032i
\(119\) −8.21716 + 11.3099i −0.753265 + 1.03678i
\(120\) 0 0
\(121\) −1.94671 3.82063i −0.176974 0.347330i
\(122\) 11.2856 1.02175
\(123\) 0 0
\(124\) 8.36992 0.751641
\(125\) −7.79879 15.3060i −0.697545 1.36901i
\(126\) 0 0
\(127\) −9.65653 + 13.2911i −0.856878 + 1.17939i 0.125427 + 0.992103i \(0.459970\pi\)
−0.982305 + 0.187289i \(0.940030\pi\)
\(128\) 1.62442 + 10.2562i 0.143580 + 0.906528i
\(129\) 0 0
\(130\) −7.55578 + 6.45325i −0.662686 + 0.565987i
\(131\) −6.29848 0.997581i −0.550300 0.0871590i −0.124909 0.992168i \(-0.539864\pi\)
−0.425392 + 0.905009i \(0.639864\pi\)
\(132\) 0 0
\(133\) −15.2507 + 11.0803i −1.32240 + 0.960780i
\(134\) 18.1347 + 11.1129i 1.56660 + 0.960013i
\(135\) 0 0
\(136\) −5.22645 + 0.411330i −0.448164 + 0.0352713i
\(137\) −9.59319 3.97363i −0.819602 0.339490i −0.0668239 0.997765i \(-0.521287\pi\)
−0.752778 + 0.658275i \(0.771287\pi\)
\(138\) 0 0
\(139\) −1.29054 3.97187i −0.109462 0.336889i 0.881290 0.472576i \(-0.156676\pi\)
−0.990752 + 0.135687i \(0.956676\pi\)
\(140\) −16.8862 + 4.05401i −1.42714 + 0.342627i
\(141\) 0 0
\(142\) −1.01145 0.0796029i −0.0848790 0.00668012i
\(143\) −3.35781 1.71089i −0.280795 0.143072i
\(144\) 0 0
\(145\) −0.769647 + 9.77929i −0.0639157 + 0.812126i
\(146\) 1.17791 3.62523i 0.0974843 0.300026i
\(147\) 0 0
\(148\) −12.3253 + 4.00474i −1.01314 + 0.329188i
\(149\) 8.57378 + 13.9911i 0.702391 + 1.14620i 0.982506 + 0.186232i \(0.0596275\pi\)
−0.280115 + 0.959967i \(0.590373\pi\)
\(150\) 0 0
\(151\) 0.934876 + 11.8787i 0.0760791 + 0.966677i 0.909950 + 0.414718i \(0.136120\pi\)
−0.833871 + 0.551959i \(0.813880\pi\)
\(152\) −6.87396 1.65029i −0.557552 0.133856i
\(153\) 0 0
\(154\) −10.2389 14.0927i −0.825077 1.13562i
\(155\) 18.5405 18.5405i 1.48921 1.48921i
\(156\) 0 0
\(157\) −13.1721 15.4226i −1.05125 1.23085i −0.972241 0.233980i \(-0.924825\pi\)
−0.0790070 0.996874i \(-0.525175\pi\)
\(158\) −6.67462 5.70066i −0.531004 0.453520i
\(159\) 0 0
\(160\) −18.7083 13.5924i −1.47902 1.07457i
\(161\) −6.31740 15.2516i −0.497881 1.20199i
\(162\) 0 0
\(163\) 8.87430i 0.695088i 0.937664 + 0.347544i \(0.112984\pi\)
−0.937664 + 0.347544i \(0.887016\pi\)
\(164\) 2.23699 7.45757i 0.174679 0.582339i
\(165\) 0 0
\(166\) −12.7382 + 6.49041i −0.988672 + 0.503754i
\(167\) 5.04841 2.09112i 0.390658 0.161816i −0.178704 0.983903i \(-0.557190\pi\)
0.569362 + 0.822087i \(0.307190\pi\)
\(168\) 0 0
\(169\) −10.7501 + 1.70264i −0.826929 + 0.130973i
\(170\) 16.5415 19.3676i 1.26868 1.48543i
\(171\) 0 0
\(172\) 0.119738 0.755996i 0.00912994 0.0576441i
\(173\) −5.93837 5.93837i −0.451486 0.451486i 0.444361 0.895848i \(-0.353431\pi\)
−0.895848 + 0.444361i \(0.853431\pi\)
\(174\) 0 0
\(175\) −18.6299 + 30.4012i −1.40828 + 2.29811i
\(176\) 2.99579 12.4784i 0.225816 0.940593i
\(177\) 0 0
\(178\) −10.4212 + 25.1590i −0.781101 + 1.88574i
\(179\) −7.01720 + 4.30015i −0.524490 + 0.321408i −0.759416 0.650605i \(-0.774515\pi\)
0.234926 + 0.972013i \(0.424515\pi\)
\(180\) 0 0
\(181\) −0.601878 2.50700i −0.0447372 0.186344i 0.945527 0.325543i \(-0.105547\pi\)
−0.990264 + 0.139199i \(0.955547\pi\)
\(182\) 9.30179 + 3.02233i 0.689494 + 0.224030i
\(183\) 0 0
\(184\) 2.81054 5.51600i 0.207196 0.406645i
\(185\) −18.4312 + 36.1733i −1.35509 + 2.65952i
\(186\) 0 0
\(187\) 9.18712 + 2.98508i 0.671829 + 0.218290i
\(188\) 3.41719 + 14.2336i 0.249224 + 1.03809i
\(189\) 0 0
\(190\) 29.2836 17.9450i 2.12446 1.30187i
\(191\) 1.89847 4.58332i 0.137369 0.331638i −0.840193 0.542288i \(-0.817558\pi\)
0.977561 + 0.210650i \(0.0675582\pi\)
\(192\) 0 0
\(193\) 1.35485 5.64336i 0.0975242 0.406218i −0.902159 0.431405i \(-0.858018\pi\)
0.999683 + 0.0251870i \(0.00801812\pi\)
\(194\) 3.18080 5.19060i 0.228368 0.372663i
\(195\) 0 0
\(196\) 6.06817 + 6.06817i 0.433441 + 0.433441i
\(197\) 2.65760 16.7794i 0.189346 1.19548i −0.691605 0.722276i \(-0.743096\pi\)
0.880951 0.473208i \(-0.156904\pi\)
\(198\) 0 0
\(199\) −1.50315 + 1.75997i −0.106556 + 0.124761i −0.811121 0.584879i \(-0.801142\pi\)
0.704565 + 0.709639i \(0.251142\pi\)
\(200\) −13.2065 + 2.09171i −0.933843 + 0.147906i
\(201\) 0 0
\(202\) 7.91777 3.27965i 0.557092 0.230755i
\(203\) 8.60311 4.38350i 0.603820 0.307662i
\(204\) 0 0
\(205\) −11.5643 21.4748i −0.807686 1.49986i
\(206\) 3.10469i 0.216314i
\(207\) 0 0
\(208\) 2.75734 + 6.65680i 0.191187 + 0.461566i
\(209\) 10.5380 + 7.65632i 0.728930 + 0.529599i
\(210\) 0 0
\(211\) 5.39797 + 4.61030i 0.371612 + 0.317386i 0.815567 0.578663i \(-0.196425\pi\)
−0.443955 + 0.896049i \(0.646425\pi\)
\(212\) 3.62786 + 4.24768i 0.249162 + 0.291732i
\(213\) 0 0
\(214\) 0.807724 0.807724i 0.0552148 0.0552148i
\(215\) −1.40940 1.93987i −0.0961201 0.132298i
\(216\) 0 0
\(217\) −25.0954 6.02488i −1.70359 0.408996i
\(218\) 2.36633 + 30.0671i 0.160268 + 2.03640i
\(219\) 0 0
\(220\) 6.26982 + 10.2314i 0.422711 + 0.689802i
\(221\) −5.15826 + 1.67602i −0.346982 + 0.112741i
\(222\) 0 0
\(223\) −7.64852 + 23.5397i −0.512183 + 1.57634i 0.276167 + 0.961110i \(0.410936\pi\)
−0.788350 + 0.615228i \(0.789064\pi\)
\(224\) −1.78585 + 22.6914i −0.119322 + 1.51613i
\(225\) 0 0
\(226\) −22.6884 11.5603i −1.50921 0.768981i
\(227\) −15.6230 1.22956i −1.03693 0.0816085i −0.451453 0.892295i \(-0.649094\pi\)
−0.585481 + 0.810686i \(0.699094\pi\)
\(228\) 0 0
\(229\) −4.81442 + 1.15584i −0.318146 + 0.0763800i −0.389373 0.921080i \(-0.627308\pi\)
0.0712275 + 0.997460i \(0.477308\pi\)
\(230\) 9.29414 + 28.6044i 0.612837 + 1.88612i
\(231\) 0 0
\(232\) 3.34529 + 1.38567i 0.219629 + 0.0909734i
\(233\) 15.1583 1.19298i 0.993053 0.0781549i 0.428491 0.903546i \(-0.359045\pi\)
0.564562 + 0.825391i \(0.309045\pi\)
\(234\) 0 0
\(235\) 39.0990 + 23.9599i 2.55054 + 1.56297i
\(236\) 11.8871 8.63648i 0.773784 0.562187i
\(237\) 0 0
\(238\) −24.7615 3.92184i −1.60505 0.254215i
\(239\) 3.33907 2.85184i 0.215987 0.184470i −0.534872 0.844933i \(-0.679640\pi\)
0.750858 + 0.660463i \(0.229640\pi\)
\(240\) 0 0
\(241\) −4.72653 29.8421i −0.304462 1.92230i −0.379650 0.925130i \(-0.623956\pi\)
0.0751877 0.997169i \(-0.476044\pi\)
\(242\) 4.51989 6.22109i 0.290549 0.399907i
\(243\) 0 0
\(244\) 3.47401 + 6.81813i 0.222401 + 0.436486i
\(245\) 26.8836 1.71753
\(246\) 0 0
\(247\) −7.31350 −0.465347
\(248\) −4.39394 8.62360i −0.279016 0.547599i
\(249\) 0 0
\(250\) 18.1073 24.9226i 1.14521 1.57624i
\(251\) 3.43804 + 21.7069i 0.217007 + 1.37013i 0.819991 + 0.572377i \(0.193978\pi\)
−0.602983 + 0.797754i \(0.706022\pi\)
\(252\) 0 0
\(253\) −8.67390 + 7.40821i −0.545323 + 0.465750i
\(254\) −29.0989 4.60881i −1.82583 0.289183i
\(255\) 0 0
\(256\) −16.6511 + 12.0977i −1.04069 + 0.756109i
\(257\) 2.63925 + 1.61733i 0.164632 + 0.100886i 0.602374 0.798214i \(-0.294222\pi\)
−0.437742 + 0.899101i \(0.644222\pi\)
\(258\) 0 0
\(259\) 39.8376 3.13529i 2.47539 0.194817i
\(260\) −6.22457 2.57830i −0.386031 0.159899i
\(261\) 0 0
\(262\) −3.53388 10.8762i −0.218324 0.671932i
\(263\) 7.65951 1.83889i 0.472306 0.113391i 0.00969678 0.999953i \(-0.496913\pi\)
0.462609 + 0.886562i \(0.346913\pi\)
\(264\) 0 0
\(265\) 17.4454 + 1.37298i 1.07166 + 0.0843416i
\(266\) −30.1208 15.3473i −1.84682 0.941004i
\(267\) 0 0
\(268\) −1.13148 + 14.3768i −0.0691162 + 0.878205i
\(269\) −2.00338 + 6.16578i −0.122148 + 0.375934i −0.993371 0.114954i \(-0.963328\pi\)
0.871222 + 0.490889i \(0.163328\pi\)
\(270\) 0 0
\(271\) 10.4978 3.41095i 0.637698 0.207201i 0.0277158 0.999616i \(-0.491177\pi\)
0.609982 + 0.792415i \(0.291177\pi\)
\(272\) −9.65012 15.7476i −0.585124 0.954836i
\(273\) 0 0
\(274\) −1.46098 18.5636i −0.0882613 1.12147i
\(275\) 23.9566 + 5.75148i 1.44464 + 0.346827i
\(276\) 0 0
\(277\) 9.66773 + 13.3065i 0.580878 + 0.799510i 0.993791 0.111261i \(-0.0354888\pi\)
−0.412914 + 0.910770i \(0.635489\pi\)
\(278\) 5.29575 5.29575i 0.317618 0.317618i
\(279\) 0 0
\(280\) 13.0416 + 15.2697i 0.779384 + 0.912541i
\(281\) −17.3210 14.7936i −1.03329 0.882510i −0.0401170 0.999195i \(-0.512773\pi\)
−0.993169 + 0.116685i \(0.962773\pi\)
\(282\) 0 0
\(283\) 9.76502 + 7.09471i 0.580470 + 0.421736i 0.838894 0.544295i \(-0.183203\pi\)
−0.258423 + 0.966032i \(0.583203\pi\)
\(284\) −0.263260 0.635566i −0.0156216 0.0377139i
\(285\) 0 0
\(286\) 6.75819i 0.399620i
\(287\) −12.0753 + 20.7497i −0.712781 + 1.22482i
\(288\) 0 0
\(289\) −2.75987 + 1.40622i −0.162345 + 0.0827190i
\(290\) −16.2524 + 6.73197i −0.954375 + 0.395315i
\(291\) 0 0
\(292\) 2.55275 0.404316i 0.149388 0.0236608i
\(293\) 3.02866 3.54611i 0.176936 0.207166i −0.664850 0.746977i \(-0.731504\pi\)
0.841786 + 0.539811i \(0.181504\pi\)
\(294\) 0 0
\(295\) 7.20056 45.4625i 0.419233 2.64693i
\(296\) 10.5965 + 10.5965i 0.615910 + 0.615910i
\(297\) 0 0
\(298\) −15.3754 + 25.0904i −0.890673 + 1.45345i
\(299\) 1.49513 6.22765i 0.0864654 0.360154i
\(300\) 0 0
\(301\) −0.903194 + 2.18050i −0.0520592 + 0.125682i
\(302\) −18.2193 + 11.1648i −1.04840 + 0.642461i
\(303\) 0 0
\(304\) −5.81381 24.2163i −0.333445 1.38890i
\(305\) 22.7985 + 7.40768i 1.30544 + 0.424162i
\(306\) 0 0
\(307\) −6.12485 + 12.0207i −0.349564 + 0.686057i −0.997110 0.0759685i \(-0.975795\pi\)
0.647546 + 0.762026i \(0.275795\pi\)
\(308\) 5.36220 10.5239i 0.305540 0.599655i
\(309\) 0 0
\(310\) 44.7196 + 14.5303i 2.53990 + 0.825264i
\(311\) −4.51613 18.8111i −0.256086 1.06668i −0.941095 0.338142i \(-0.890202\pi\)
0.685009 0.728535i \(-0.259798\pi\)
\(312\) 0 0
\(313\) −27.6177 + 16.9241i −1.56104 + 0.956609i −0.570214 + 0.821496i \(0.693140\pi\)
−0.990830 + 0.135112i \(0.956860\pi\)
\(314\) 13.9189 33.6032i 0.785489 1.89634i
\(315\) 0 0
\(316\) 1.38940 5.78725i 0.0781597 0.325558i
\(317\) −7.79221 + 12.7157i −0.437654 + 0.714187i −0.993088 0.117374i \(-0.962552\pi\)
0.555433 + 0.831561i \(0.312552\pi\)
\(318\) 0 0
\(319\) −4.71769 4.71769i −0.264140 0.264140i
\(320\) 0.584011 3.68730i 0.0326472 0.206127i
\(321\) 0 0
\(322\) 19.2264 22.5112i 1.07144 1.25450i
\(323\) 18.5158 2.93261i 1.03025 0.163175i
\(324\) 0 0
\(325\) −12.7801 + 5.29368i −0.708911 + 0.293641i
\(326\) −14.1798 + 7.22495i −0.785345 + 0.400153i
\(327\) 0 0
\(328\) −8.85794 + 1.61020i −0.489098 + 0.0889085i
\(329\) 45.1363i 2.48844i
\(330\) 0 0
\(331\) −9.80631 23.6745i −0.539004 1.30127i −0.925419 0.378945i \(-0.876287\pi\)
0.386415 0.922325i \(-0.373713\pi\)
\(332\) −7.84229 5.69776i −0.430402 0.312705i
\(333\) 0 0
\(334\) 7.45143 + 6.36412i 0.407724 + 0.348229i
\(335\) 29.3403 + 34.3530i 1.60303 + 1.87691i
\(336\) 0 0
\(337\) 15.6907 15.6907i 0.854727 0.854727i −0.135984 0.990711i \(-0.543420\pi\)
0.990711 + 0.135984i \(0.0434197\pi\)
\(338\) −11.4727 15.7908i −0.624031 0.858905i
\(339\) 0 0
\(340\) 16.7928 + 4.03159i 0.910716 + 0.218644i
\(341\) 1.39919 + 17.7784i 0.0757704 + 0.962754i
\(342\) 0 0
\(343\) −0.112881 0.184206i −0.00609502 0.00994616i
\(344\) −0.841767 + 0.273507i −0.0453850 + 0.0147465i
\(345\) 0 0
\(346\) 4.65392 14.3233i 0.250196 0.770026i
\(347\) −2.08262 + 26.4622i −0.111801 + 1.42057i 0.643629 + 0.765338i \(0.277428\pi\)
−0.755430 + 0.655229i \(0.772572\pi\)
\(348\) 0 0
\(349\) 31.3931 + 15.9956i 1.68043 + 0.856224i 0.991305 + 0.131587i \(0.0420071\pi\)
0.689130 + 0.724638i \(0.257993\pi\)
\(350\) −63.7438 5.01674i −3.40725 0.268156i
\(351\) 0 0
\(352\) 15.2934 3.67162i 0.815141 0.195698i
\(353\) −0.243118 0.748242i −0.0129399 0.0398249i 0.944378 0.328862i \(-0.106665\pi\)
−0.957318 + 0.289037i \(0.906665\pi\)
\(354\) 0 0
\(355\) −1.99102 0.824708i −0.105672 0.0437710i
\(356\) −18.4076 + 1.44871i −0.975599 + 0.0767813i
\(357\) 0 0
\(358\) −12.5840 7.71148i −0.665084 0.407564i
\(359\) 4.26181 3.09639i 0.224930 0.163421i −0.469613 0.882872i \(-0.655607\pi\)
0.694543 + 0.719451i \(0.255607\pi\)
\(360\) 0 0
\(361\) 6.20116 + 0.982168i 0.326377 + 0.0516930i
\(362\) 3.51579 3.00277i 0.184786 0.157822i
\(363\) 0 0
\(364\) 1.03741 + 6.54998i 0.0543753 + 0.343312i
\(365\) 4.75908 6.55031i 0.249102 0.342859i
\(366\) 0 0
\(367\) 5.31483 + 10.4309i 0.277432 + 0.544491i 0.987112 0.160034i \(-0.0511602\pi\)
−0.709679 + 0.704525i \(0.751160\pi\)
\(368\) 21.8094 1.13689
\(369\) 0 0
\(370\) −72.8051 −3.78496
\(371\) −7.81978 15.3472i −0.405983 0.796786i
\(372\) 0 0
\(373\) 13.2081 18.1795i 0.683892 0.941297i −0.316080 0.948732i \(-0.602367\pi\)
0.999972 + 0.00743589i \(0.00236694\pi\)
\(374\) 2.70994 + 17.1099i 0.140128 + 0.884731i
\(375\) 0 0
\(376\) 12.8711 10.9930i 0.663777 0.566919i
\(377\) 3.69989 + 0.586004i 0.190554 + 0.0301808i
\(378\) 0 0
\(379\) −1.56091 + 1.13407i −0.0801788 + 0.0582533i −0.627153 0.778896i \(-0.715780\pi\)
0.546974 + 0.837150i \(0.315780\pi\)
\(380\) 19.8557 + 12.1676i 1.01858 + 0.624184i
\(381\) 0 0
\(382\) 8.86908 0.698012i 0.453782 0.0357134i
\(383\) −24.8402 10.2892i −1.26928 0.525752i −0.356533 0.934283i \(-0.616041\pi\)
−0.912744 + 0.408531i \(0.866041\pi\)
\(384\) 0 0
\(385\) −11.4339 35.1899i −0.582725 1.79344i
\(386\) 10.1203 2.42966i 0.515108 0.123666i
\(387\) 0 0
\(388\) 4.11501 + 0.323858i 0.208908 + 0.0164414i
\(389\) 15.3243 + 7.80814i 0.776975 + 0.395888i 0.797053 0.603910i \(-0.206391\pi\)
−0.0200776 + 0.999798i \(0.506391\pi\)
\(390\) 0 0
\(391\) −1.28805 + 16.3662i −0.0651395 + 0.827676i
\(392\) 3.06649 9.43768i 0.154881 0.476675i
\(393\) 0 0
\(394\) 28.9746 9.41442i 1.45972 0.474292i
\(395\) −9.74185 15.8973i −0.490166 0.799878i
\(396\) 0 0
\(397\) 2.28376 + 29.0180i 0.114619 + 1.45637i 0.738185 + 0.674599i \(0.235683\pi\)
−0.623566 + 0.781771i \(0.714317\pi\)
\(398\) −4.03594 0.968944i −0.202303 0.0485688i
\(399\) 0 0
\(400\) −27.6877 38.1089i −1.38439 1.90545i
\(401\) 8.86378 8.86378i 0.442636 0.442636i −0.450261 0.892897i \(-0.648669\pi\)
0.892897 + 0.450261i \(0.148669\pi\)
\(402\) 0 0
\(403\) −6.50282 7.61382i −0.323928 0.379271i
\(404\) 4.41868 + 3.77391i 0.219838 + 0.187759i
\(405\) 0 0
\(406\) 14.0083 + 10.1776i 0.695222 + 0.505108i
\(407\) −10.5668 25.5105i −0.523777 1.26451i
\(408\) 0 0
\(409\) 37.9577i 1.87689i 0.345430 + 0.938444i \(0.387733\pi\)
−0.345430 + 0.938444i \(0.612267\pi\)
\(410\) 24.8984 35.9615i 1.22964 1.77601i
\(411\) 0 0
\(412\) −1.87568 + 0.955706i −0.0924081 + 0.0470843i
\(413\) −41.8577 + 17.3380i −2.05968 + 0.853148i
\(414\) 0 0
\(415\) −29.9931 + 4.75044i −1.47230 + 0.233190i
\(416\) −5.73509 + 6.71493i −0.281186 + 0.329227i
\(417\) 0 0
\(418\) −3.65417 + 23.0715i −0.178731 + 1.12846i
\(419\) 3.04580 + 3.04580i 0.148797 + 0.148797i 0.777580 0.628783i \(-0.216447\pi\)
−0.628783 + 0.777580i \(0.716447\pi\)
\(420\) 0 0
\(421\) 7.49500 12.2307i 0.365284 0.596089i −0.616210 0.787582i \(-0.711333\pi\)
0.981494 + 0.191493i \(0.0613328\pi\)
\(422\) −2.97183 + 12.3786i −0.144667 + 0.602580i
\(423\) 0 0
\(424\) 2.47191 5.96771i 0.120046 0.289817i
\(425\) 30.2330 18.5268i 1.46652 0.898682i
\(426\) 0 0
\(427\) −5.50822 22.9434i −0.266561 1.11031i
\(428\) 0.736621 + 0.239343i 0.0356059 + 0.0115691i
\(429\) 0 0
\(430\) 1.95216 3.83134i 0.0941417 0.184763i
\(431\) 14.7207 28.8910i 0.709072 1.39163i −0.202000 0.979385i \(-0.564744\pi\)
0.911072 0.412247i \(-0.135256\pi\)
\(432\) 0 0
\(433\) −3.29649 1.07109i −0.158419 0.0514735i 0.228734 0.973489i \(-0.426541\pi\)
−0.387153 + 0.922016i \(0.626541\pi\)
\(434\) −10.8045 45.0038i −0.518630 2.16025i
\(435\) 0 0
\(436\) −17.4364 + 10.6851i −0.835054 + 0.511722i
\(437\) −8.47145 + 20.4519i −0.405244 + 0.978347i
\(438\) 0 0
\(439\) −3.82078 + 15.9147i −0.182356 + 0.759568i 0.803957 + 0.594687i \(0.202724\pi\)
−0.986313 + 0.164881i \(0.947276\pi\)
\(440\) 7.25006 11.8310i 0.345633 0.564022i
\(441\) 0 0
\(442\) −6.87759 6.87759i −0.327133 0.327133i
\(443\) 3.43181 21.6676i 0.163050 1.02946i −0.761435 0.648241i \(-0.775505\pi\)
0.924485 0.381218i \(-0.124495\pi\)
\(444\) 0 0
\(445\) −37.5662 + 43.9843i −1.78081 + 2.08506i
\(446\) −43.8399 + 6.94356i −2.07588 + 0.328787i
\(447\) 0 0
\(448\) −3.39493 + 1.40622i −0.160395 + 0.0664379i
\(449\) −13.6106 + 6.93494i −0.642324 + 0.327280i −0.744635 0.667472i \(-0.767376\pi\)
0.102311 + 0.994752i \(0.467376\pi\)
\(450\) 0 0
\(451\) 16.2144 + 3.50487i 0.763508 + 0.165038i
\(452\) 17.2656i 0.812108i
\(453\) 0 0
\(454\) −10.7547 25.9642i −0.504744 1.21856i
\(455\) 16.8071 + 12.2111i 0.787930 + 0.572464i
\(456\) 0 0
\(457\) −7.82018 6.67907i −0.365813 0.312434i 0.447474 0.894297i \(-0.352324\pi\)
−0.813287 + 0.581863i \(0.802324\pi\)
\(458\) −5.76648 6.75169i −0.269450 0.315486i
\(459\) 0 0
\(460\) −14.4202 + 14.4202i −0.672346 + 0.672346i
\(461\) 10.5415 + 14.5091i 0.490965 + 0.675755i 0.980566 0.196192i \(-0.0628574\pi\)
−0.489601 + 0.871947i \(0.662857\pi\)
\(462\) 0 0
\(463\) 0.447778 + 0.107502i 0.0208100 + 0.00499604i 0.243837 0.969816i \(-0.421594\pi\)
−0.223027 + 0.974812i \(0.571594\pi\)
\(464\) 1.00083 + 12.7168i 0.0464626 + 0.590363i
\(465\) 0 0
\(466\) 14.2472 + 23.2494i 0.659990 + 1.07701i
\(467\) −31.8139 + 10.3370i −1.47217 + 0.478338i −0.931764 0.363066i \(-0.881730\pi\)
−0.540408 + 0.841403i \(0.681730\pi\)
\(468\) 0 0
\(469\) 13.7413 42.2914i 0.634515 1.95284i
\(470\) −6.45205 + 81.9810i −0.297611 + 3.78150i
\(471\) 0 0
\(472\) −15.1386 7.71349i −0.696810 0.355042i
\(473\) 1.62581 + 0.127954i 0.0747549 + 0.00588334i
\(474\) 0 0
\(475\) 46.4917 11.1617i 2.13318 0.512132i
\(476\) −5.25290 16.1668i −0.240766 0.741003i
\(477\) 0 0
\(478\) 7.27528 + 3.01352i 0.332764 + 0.137835i
\(479\) −17.0772 + 1.34400i −0.780276 + 0.0614091i −0.462340 0.886703i \(-0.652990\pi\)
−0.317937 + 0.948112i \(0.602990\pi\)
\(480\) 0 0
\(481\) 13.2188 + 8.10052i 0.602728 + 0.369352i
\(482\) 43.8351 31.8480i 1.99663 1.45064i
\(483\) 0 0
\(484\) 5.14978 + 0.815645i 0.234081 + 0.0370748i
\(485\) 9.83269 8.39791i 0.446479 0.381330i
\(486\) 0 0
\(487\) 4.44151 + 28.0426i 0.201264 + 1.27073i 0.856832 + 0.515595i \(0.172429\pi\)
−0.655568 + 0.755136i \(0.727571\pi\)
\(488\) 5.20103 7.15860i 0.235439 0.324055i
\(489\) 0 0
\(490\) 21.8871 + 42.9559i 0.988761 + 1.94055i
\(491\) 28.7843 1.29902 0.649509 0.760354i \(-0.274974\pi\)
0.649509 + 0.760354i \(0.274974\pi\)
\(492\) 0 0
\(493\) −9.60208 −0.432456
\(494\) −5.95424 11.6859i −0.267894 0.525771i
\(495\) 0 0
\(496\) 20.0413 27.5845i 0.899882 1.23858i
\(497\) 0.331833 + 2.09511i 0.0148847 + 0.0939785i
\(498\) 0 0
\(499\) −6.13776 + 5.24214i −0.274764 + 0.234670i −0.776143 0.630557i \(-0.782826\pi\)
0.501379 + 0.865228i \(0.332826\pi\)
\(500\) 20.6307 + 3.26759i 0.922635 + 0.146131i
\(501\) 0 0
\(502\) −31.8853 + 23.1660i −1.42311 + 1.03395i
\(503\) −3.54654 2.17332i −0.158132 0.0969036i 0.441181 0.897418i \(-0.354560\pi\)
−0.599313 + 0.800514i \(0.704560\pi\)
\(504\) 0 0
\(505\) 18.1477 1.42826i 0.807563 0.0635566i
\(506\) −18.8990 7.82822i −0.840162 0.348007i
\(507\) 0 0
\(508\) −6.17304 18.9987i −0.273884 0.842929i
\(509\) −4.62243 + 1.10975i −0.204886 + 0.0491887i −0.334589 0.942364i \(-0.608598\pi\)
0.129703 + 0.991553i \(0.458598\pi\)
\(510\) 0 0
\(511\) −7.94492 0.625279i −0.351463 0.0276607i
\(512\) −14.3822 7.32812i −0.635611 0.323860i
\(513\) 0 0
\(514\) −0.435524 + 5.53385i −0.0192101 + 0.244088i
\(515\) −2.03787 + 6.27190i −0.0897991 + 0.276373i
\(516\) 0 0
\(517\) −29.6621 + 9.63781i −1.30454 + 0.423870i
\(518\) 37.4432 + 61.1018i 1.64516 + 2.68466i
\(519\) 0 0
\(520\) 0.611256 + 7.76675i 0.0268054 + 0.340594i
\(521\) 20.5008 + 4.92180i 0.898156 + 0.215628i 0.656135 0.754643i \(-0.272190\pi\)
0.242020 + 0.970271i \(0.422190\pi\)
\(522\) 0 0
\(523\) 2.19950 + 3.02735i 0.0961773 + 0.132377i 0.854394 0.519626i \(-0.173929\pi\)
−0.758216 + 0.652003i \(0.773929\pi\)
\(524\) 5.48296 5.48296i 0.239524 0.239524i
\(525\) 0 0
\(526\) 9.17420 + 10.7416i 0.400014 + 0.468357i
\(527\) 19.5164 + 16.6686i 0.850148 + 0.726095i
\(528\) 0 0
\(529\) 2.92388 + 2.12433i 0.127125 + 0.0923620i
\(530\) 12.0092 + 28.9929i 0.521648 + 1.25937i
\(531\) 0 0
\(532\) 22.9216i 0.993779i
\(533\) −8.52186 + 3.75908i −0.369123 + 0.162824i
\(534\) 0 0
\(535\) 2.16189 1.10154i 0.0934667 0.0476237i
\(536\) 15.4066 6.38161i 0.665462 0.275643i
\(537\) 0 0
\(538\) −11.4830 + 1.81873i −0.495068 + 0.0784111i
\(539\) −11.8749 + 13.9037i −0.511487 + 0.598874i
\(540\) 0 0
\(541\) 3.36710 21.2590i 0.144763 0.913997i −0.803222 0.595680i \(-0.796883\pi\)
0.947985 0.318316i \(-0.103117\pi\)
\(542\) 13.9969 + 13.9969i 0.601219 + 0.601219i
\(543\) 0 0
\(544\) 11.8271 19.3001i 0.507083 0.827484i
\(545\) −14.9552 + 62.2930i −0.640611 + 2.66834i
\(546\) 0 0
\(547\) 1.81461 4.38085i 0.0775871 0.187312i −0.880327 0.474368i \(-0.842677\pi\)
0.957914 + 0.287056i \(0.0926766\pi\)
\(548\) 10.7653 6.59701i 0.459873 0.281810i
\(549\) 0 0
\(550\) 10.3142 + 42.9616i 0.439797 + 1.83189i
\(551\) −12.3140 4.00107i −0.524595 0.170451i
\(552\) 0 0
\(553\) −8.33162 + 16.3517i −0.354296 + 0.695346i
\(554\) −13.3908 + 26.2810i −0.568921 + 1.11657i
\(555\) 0 0
\(556\) 4.82957 + 1.56922i 0.204820 + 0.0665499i
\(557\) −0.306985 1.27868i −0.0130074 0.0541796i 0.965489 0.260445i \(-0.0838691\pi\)
−0.978496 + 0.206265i \(0.933869\pi\)
\(558\) 0 0
\(559\) −0.780730 + 0.478432i −0.0330214 + 0.0202355i
\(560\) −27.0723 + 65.3584i −1.14402 + 2.76190i
\(561\) 0 0
\(562\) 9.53603 39.7204i 0.402253 1.67551i
\(563\) 4.90670 8.00701i 0.206793 0.337455i −0.732382 0.680893i \(-0.761592\pi\)
0.939175 + 0.343438i \(0.111592\pi\)
\(564\) 0 0
\(565\) −38.2458 38.2458i −1.60901 1.60901i
\(566\) −3.38612 + 21.3791i −0.142329 + 0.898632i
\(567\) 0 0
\(568\) −0.516626 + 0.604891i −0.0216771 + 0.0253807i
\(569\) −7.46138 + 1.18177i −0.312797 + 0.0495422i −0.310859 0.950456i \(-0.600617\pi\)
−0.00193778 + 0.999998i \(0.500617\pi\)
\(570\) 0 0
\(571\) 3.94854 1.63554i 0.165241 0.0684452i −0.298529 0.954400i \(-0.596496\pi\)
0.463771 + 0.885955i \(0.346496\pi\)
\(572\) 4.08292 2.08035i 0.170716 0.0869839i
\(573\) 0 0
\(574\) −42.9859 2.40121i −1.79420 0.100225i
\(575\) 41.8708i 1.74613i
\(576\) 0 0
\(577\) −1.70907 4.12605i −0.0711493 0.171770i 0.884304 0.466911i \(-0.154633\pi\)
−0.955454 + 0.295141i \(0.904633\pi\)
\(578\) −4.49386 3.26498i −0.186920 0.135805i
\(579\) 0 0
\(580\) −9.07001 7.74652i −0.376612 0.321657i
\(581\) 19.4121 + 22.7286i 0.805348 + 0.942941i
\(582\) 0 0
\(583\) −8.41594 + 8.41594i −0.348553 + 0.348553i
\(584\) −1.75668 2.41787i −0.0726921 0.100052i
\(585\) 0 0
\(586\) 8.13191 + 1.95230i 0.335926 + 0.0806487i
\(587\) −2.98714 37.9552i −0.123292 1.56658i −0.678333 0.734755i \(-0.737297\pi\)
0.555041 0.831823i \(-0.312703\pi\)
\(588\) 0 0
\(589\) 18.0829 + 29.5086i 0.745092 + 1.21588i
\(590\) 78.5044 25.5076i 3.23198 1.05013i
\(591\) 0 0
\(592\) −16.3140 + 50.2094i −0.670502 + 2.06359i
\(593\) −1.71798 + 21.8290i −0.0705488 + 0.896408i 0.855207 + 0.518286i \(0.173430\pi\)
−0.925756 + 0.378122i \(0.876570\pi\)
\(594\) 0 0
\(595\) −47.4475 24.1757i −1.94516 0.991108i
\(596\) −19.8912 1.56547i −0.814774 0.0641241i
\(597\) 0 0
\(598\) 11.1681 2.68122i 0.456697 0.109643i
\(599\) 2.59956 + 8.00062i 0.106215 + 0.326896i 0.990014 0.140971i \(-0.0450225\pi\)
−0.883799 + 0.467867i \(0.845022\pi\)
\(600\) 0 0
\(601\) 4.90444 + 2.03149i 0.200056 + 0.0828661i 0.480462 0.877016i \(-0.340469\pi\)
−0.280406 + 0.959882i \(0.590469\pi\)
\(602\) −4.21944 + 0.332077i −0.171971 + 0.0135344i
\(603\) 0 0
\(604\) −12.3535 7.57025i −0.502658 0.308029i
\(605\) 13.2142 9.60070i 0.537235 0.390324i
\(606\) 0 0
\(607\) 17.5450 + 2.77885i 0.712130 + 0.112790i 0.501980 0.864879i \(-0.332605\pi\)
0.210149 + 0.977669i \(0.432605\pi\)
\(608\) 23.2096 19.8228i 0.941272 0.803923i
\(609\) 0 0
\(610\) 6.72491 + 42.4594i 0.272284 + 1.71913i
\(611\) 10.2929 14.1670i 0.416407 0.573135i
\(612\) 0 0
\(613\) 12.3738 + 24.2849i 0.499772 + 0.980857i 0.993776 + 0.111398i \(0.0355327\pi\)
−0.494004 + 0.869460i \(0.664467\pi\)
\(614\) −24.1937 −0.976380
\(615\) 0 0
\(616\) −13.6579 −0.550291
\(617\) −3.46177 6.79411i −0.139366 0.273520i 0.810766 0.585371i \(-0.199051\pi\)
−0.950131 + 0.311851i \(0.899051\pi\)
\(618\) 0 0
\(619\) −15.8070 + 21.7564i −0.635335 + 0.874464i −0.998356 0.0573171i \(-0.981745\pi\)
0.363021 + 0.931781i \(0.381745\pi\)
\(620\) 4.98751 + 31.4899i 0.200303 + 1.26466i
\(621\) 0 0
\(622\) 26.3804 22.5310i 1.05776 0.903411i
\(623\) 56.2340 + 8.90659i 2.25297 + 0.356835i
\(624\) 0 0
\(625\) 14.4704 10.5133i 0.578815 0.420534i
\(626\) −49.5270 30.3502i −1.97950 1.21304i
\(627\) 0 0
\(628\) 24.5858 1.93494i 0.981080 0.0772127i
\(629\) −36.7147 15.2077i −1.46391 0.606372i
\(630\) 0 0
\(631\) −13.7926 42.4493i −0.549076 1.68988i −0.711097 0.703094i \(-0.751801\pi\)
0.162022 0.986787i \(-0.448199\pi\)
\(632\) −6.69204 + 1.60662i −0.266195 + 0.0639078i
\(633\) 0 0
\(634\) −26.6618 2.09833i −1.05887 0.0833353i
\(635\) −55.7587 28.4105i −2.21272 1.12744i
\(636\) 0 0
\(637\) 0.805474 10.2345i 0.0319140 0.405506i
\(638\) 3.69727 11.3790i 0.146376 0.450500i
\(639\) 0 0
\(640\) −37.6186 + 12.2230i −1.48700 + 0.483157i
\(641\) −2.31911 3.78444i −0.0915994 0.149477i 0.803559 0.595226i \(-0.202937\pi\)
−0.895158 + 0.445749i \(0.852937\pi\)
\(642\) 0 0
\(643\) 0.633086 + 8.04412i 0.0249665 + 0.317229i 0.996702 + 0.0811549i \(0.0258608\pi\)
−0.971735 + 0.236074i \(0.924139\pi\)
\(644\) 19.5184 + 4.68596i 0.769133 + 0.184653i
\(645\) 0 0
\(646\) 19.7604 + 27.1978i 0.777462 + 1.07008i
\(647\) 6.24364 6.24364i 0.245463 0.245463i −0.573643 0.819106i \(-0.694470\pi\)
0.819106 + 0.573643i \(0.194470\pi\)
\(648\) 0 0
\(649\) 20.3317 + 23.8054i 0.798090 + 0.934443i
\(650\) −18.8633 16.1108i −0.739880 0.631917i
\(651\) 0 0
\(652\) −8.72983 6.34259i −0.341887 0.248395i
\(653\) −9.97746 24.0877i −0.390448 0.942625i −0.989842 0.142171i \(-0.954592\pi\)
0.599394 0.800454i \(-0.295408\pi\)
\(654\) 0 0
\(655\) 24.2910i 0.949128i
\(656\) −19.2214 25.2291i −0.750468 0.985032i
\(657\) 0 0
\(658\) 72.1209 36.7474i 2.81157 1.43256i
\(659\) 22.9239 9.49540i 0.892989 0.369888i 0.111469 0.993768i \(-0.464444\pi\)
0.781520 + 0.623880i \(0.214444\pi\)
\(660\) 0 0
\(661\) 37.4753 5.93550i 1.45762 0.230864i 0.623229 0.782039i \(-0.285820\pi\)
0.834390 + 0.551175i \(0.185820\pi\)
\(662\) 29.8445 34.9435i 1.15994 1.35812i
\(663\) 0 0
\(664\) −1.75349 + 11.0711i −0.0680487 + 0.429643i
\(665\) −50.7745 50.7745i −1.96895 1.96895i
\(666\) 0 0
\(667\) 5.92443 9.66779i 0.229395 0.374338i
\(668\) −1.55110 + 6.46078i −0.0600137 + 0.249975i
\(669\) 0 0
\(670\) −31.0037 + 74.8496i −1.19778 + 2.89169i
\(671\) −13.9015 + 8.51885i −0.536662 + 0.328867i
\(672\) 0 0
\(673\) 10.3421 + 43.0779i 0.398658 + 1.66053i 0.705454 + 0.708755i \(0.250743\pi\)
−0.306796 + 0.951775i \(0.599257\pi\)
\(674\) 37.8458 + 12.2969i 1.45777 + 0.473657i
\(675\) 0 0
\(676\) 6.00831 11.7920i 0.231089 0.453538i
\(677\) 1.96144 3.84954i 0.0753842 0.147950i −0.850238 0.526398i \(-0.823542\pi\)
0.925622 + 0.378448i \(0.123542\pi\)
\(678\) 0 0
\(679\) −12.1048 3.93310i −0.464541 0.150939i
\(680\) −4.66189 19.4182i −0.178775 0.744653i
\(681\) 0 0
\(682\) −27.2680 + 16.7099i −1.04415 + 0.639854i
\(683\) 11.9074 28.7470i 0.455623 1.09997i −0.514528 0.857473i \(-0.672033\pi\)
0.970152 0.242499i \(-0.0779671\pi\)
\(684\) 0 0
\(685\) 9.23343 38.4600i 0.352791 1.46948i
\(686\) 0.202431 0.330337i 0.00772884 0.0126123i
\(687\) 0 0
\(688\) −2.20481 2.20481i −0.0840575 0.0840575i
\(689\) 1.04538 6.60027i 0.0398258 0.251450i
\(690\) 0 0
\(691\) 3.03144 3.54936i 0.115321 0.135024i −0.699742 0.714395i \(-0.746702\pi\)
0.815064 + 0.579371i \(0.196702\pi\)
\(692\) 10.0859 1.59746i 0.383410 0.0607262i
\(693\) 0 0
\(694\) −43.9782 + 18.2164i −1.66939 + 0.691483i
\(695\) 14.1742 7.22212i 0.537659 0.273951i
\(696\) 0 0
\(697\) 20.0677 12.9341i 0.760118 0.489914i
\(698\) 63.1841i 2.39155i
\(699\) 0 0
\(700\) −16.5912 40.0547i −0.627089 1.51393i
\(701\) −6.84714 4.97474i −0.258613 0.187893i 0.450922 0.892563i \(-0.351095\pi\)
−0.709535 + 0.704670i \(0.751095\pi\)
\(702\) 0 0
\(703\) −40.7473 34.8015i −1.53681 1.31256i
\(704\) 1.64903 + 1.93077i 0.0621503 + 0.0727687i
\(705\) 0 0
\(706\) 0.997642 0.997642i 0.0375468 0.0375468i
\(707\) −10.5319 14.4960i −0.396094 0.545176i
\(708\) 0 0
\(709\) 0.282312 + 0.0677772i 0.0106025 + 0.00254543i 0.238743 0.971083i \(-0.423265\pi\)
−0.228141 + 0.973628i \(0.573265\pi\)
\(710\) −0.303220 3.85278i −0.0113797 0.144592i
\(711\) 0 0
\(712\) 11.1560 + 18.2049i 0.418089 + 0.682259i
\(713\) −28.8241 + 9.36553i −1.07947 + 0.350742i
\(714\) 0 0
\(715\) 4.43596 13.6525i 0.165896 0.510574i
\(716\) 0.785155 9.97634i 0.0293426 0.372833i
\(717\) 0 0
\(718\) 8.41728 + 4.28882i 0.314130 + 0.160057i
\(719\) 11.8294 + 0.930995i 0.441163 + 0.0347203i 0.297096 0.954848i \(-0.403982\pi\)
0.144067 + 0.989568i \(0.453982\pi\)
\(720\) 0 0
\(721\) 6.31176 1.51532i 0.235062 0.0564335i
\(722\) 3.47928 + 10.7081i 0.129486 + 0.398516i
\(723\) 0 0
\(724\) 2.89636 + 1.19971i 0.107642 + 0.0445869i
\(725\) −24.4144 + 1.92145i −0.906728 + 0.0713610i
\(726\) 0 0
\(727\) −23.7547 14.5569i −0.881012 0.539885i 0.00685962 0.999976i \(-0.497816\pi\)
−0.887871 + 0.460092i \(0.847816\pi\)
\(728\) 6.20389 4.50739i 0.229931 0.167055i
\(729\) 0 0
\(730\) 14.3410 + 2.27139i 0.530783 + 0.0840678i
\(731\) 1.78475 1.52432i 0.0660114 0.0563791i
\(732\) 0 0
\(733\) −2.88665 18.2256i −0.106621 0.673178i −0.981877 0.189518i \(-0.939307\pi\)
0.875256 0.483659i \(-0.160693\pi\)
\(734\) −12.3400 + 16.9846i −0.455479 + 0.626912i
\(735\) 0 0
\(736\) 12.1349 + 23.8161i 0.447298 + 0.877872i
\(737\) −30.7267 −1.13183
\(738\) 0 0
\(739\) −23.8465 −0.877207 −0.438603 0.898681i \(-0.644527\pi\)
−0.438603 + 0.898681i \(0.644527\pi\)
\(740\) −22.4114 43.9848i −0.823859 1.61691i
\(741\) 0 0
\(742\) 18.1560 24.9896i 0.666529 0.917398i
\(743\) −0.364544 2.30164i −0.0133738 0.0844390i 0.980099 0.198511i \(-0.0636105\pi\)
−0.993472 + 0.114072i \(0.963611\pi\)
\(744\) 0 0
\(745\) −47.5294 + 40.5939i −1.74134 + 1.48725i
\(746\) 39.8013 + 6.30391i 1.45723 + 0.230803i
\(747\) 0 0
\(748\) −9.50265 + 6.90408i −0.347451 + 0.252438i
\(749\) −2.03632 1.24786i −0.0744054 0.0455957i
\(750\) 0 0
\(751\) −24.7566 + 1.94839i −0.903381 + 0.0710977i −0.521634 0.853169i \(-0.674677\pi\)
−0.381747 + 0.924267i \(0.624677\pi\)
\(752\) 55.0917 + 22.8197i 2.00899 + 0.832149i
\(753\) 0 0
\(754\) 2.07589 + 6.38894i 0.0755996 + 0.232672i
\(755\) −44.1339 + 10.5956i −1.60620 + 0.385614i
\(756\) 0 0
\(757\) −34.7576 2.73548i −1.26329 0.0994228i −0.570942 0.820990i \(-0.693422\pi\)
−0.692344 + 0.721567i \(0.743422\pi\)
\(758\) −3.08288 1.57081i −0.111975 0.0570542i
\(759\) 0 0
\(760\) 2.11275 26.8451i 0.0766376 0.973773i
\(761\) −9.99870 + 30.7728i −0.362453 + 1.11551i 0.589108 + 0.808054i \(0.299479\pi\)
−0.951561 + 0.307460i \(0.900521\pi\)
\(762\) 0 0
\(763\) 59.9709 19.4857i 2.17109 0.705430i
\(764\) 3.15184 + 5.14334i 0.114030 + 0.186079i
\(765\) 0 0
\(766\) −3.78302 48.0678i −0.136686 1.73676i
\(767\) −17.0917 4.10335i −0.617145 0.148164i
\(768\) 0 0
\(769\) −19.2954 26.5578i −0.695810 0.957700i −0.999987 0.00508457i \(-0.998382\pi\)
0.304177 0.952615i \(-0.401618\pi\)
\(770\) 46.9192 46.9192i 1.69085 1.69085i
\(771\) 0 0
\(772\) 4.58316 + 5.36619i 0.164951 + 0.193133i
\(773\) 10.0608 + 8.59271i 0.361861 + 0.309058i 0.811726 0.584038i \(-0.198528\pi\)
−0.449866 + 0.893096i \(0.648528\pi\)
\(774\) 0 0
\(775\) 52.9582 + 38.4764i 1.90232 + 1.38211i
\(776\) −1.82657 4.40974i −0.0655702 0.158300i
\(777\) 0 0
\(778\) 30.8429i 1.10577i
\(779\) 31.1250 8.22517i 1.11517 0.294697i
\(780\) 0 0
\(781\) 1.30598 0.665432i 0.0467318 0.0238110i
\(782\) −27.1994 + 11.2664i −0.972649 + 0.402884i
\(783\) 0 0
\(784\) 34.5286 5.46879i 1.23316 0.195314i
\(785\) 50.1747 58.7470i 1.79081 2.09677i
\(786\) 0 0
\(787\) 4.46841 28.2125i 0.159282 1.00567i −0.770469 0.637477i \(-0.779978\pi\)
0.929751 0.368189i \(-0.120022\pi\)
\(788\) 14.6068 + 14.6068i 0.520347 + 0.520347i
\(789\) 0 0
\(790\) 17.4701 28.5086i 0.621559 1.01429i
\(791\) −12.4282 + 51.7674i −0.441897 + 1.84064i
\(792\) 0 0
\(793\) 3.50316 8.45737i 0.124401 0.300330i
\(794\) −44.5070 + 27.2739i −1.57949 + 0.967914i
\(795\) 0 0
\(796\) −0.656990 2.73656i −0.0232864 0.0969947i
\(797\) −24.4797 7.95394i −0.867116 0.281743i −0.158518 0.987356i \(-0.550672\pi\)
−0.708597 + 0.705613i \(0.750672\pi\)
\(798\) 0 0
\(799\) −20.3781 + 39.9943i −0.720925 + 1.41490i
\(800\) 26.2097 51.4394i 0.926651 1.81866i
\(801\) 0 0
\(802\) 21.3793 + 6.94657i 0.754931 + 0.245292i
\(803\) 1.28554 + 5.35466i 0.0453657 + 0.188962i
\(804\) 0 0
\(805\) 53.6160 32.8559i 1.88971 1.15802i
\(806\) 6.87149 16.5893i 0.242038 0.584331i
\(807\) 0 0
\(808\) 1.56862 6.53379i 0.0551840 0.229858i
\(809\) 16.1305 26.3226i 0.567119 0.925454i −0.432597 0.901588i \(-0.642403\pi\)
0.999715 0.0238659i \(-0.00759747\pi\)
\(810\) 0 0
\(811\) 21.4227 + 21.4227i 0.752253 + 0.752253i 0.974899 0.222646i \(-0.0714694\pi\)
−0.222646 + 0.974899i \(0.571469\pi\)
\(812\) −1.83663 + 11.5960i −0.0644530 + 0.406940i
\(813\) 0 0
\(814\) 32.1590 37.6534i 1.12717 1.31975i
\(815\) −33.3875 + 5.28806i −1.16951 + 0.185233i
\(816\) 0 0
\(817\) 2.92399 1.21116i 0.102297 0.0423730i
\(818\) −60.6506 + 30.9030i −2.12060 + 1.08050i
\(819\) 0 0
\(820\) 29.3904 + 3.97230i 1.02636 + 0.138719i
\(821\) 30.5245i 1.06531i 0.846331 + 0.532657i \(0.178806\pi\)
−0.846331 + 0.532657i \(0.821194\pi\)
\(822\) 0 0
\(823\) 9.95339 + 24.0296i 0.346953 + 0.837619i 0.996976 + 0.0777048i \(0.0247592\pi\)
−0.650023 + 0.759914i \(0.725241\pi\)
\(824\) 1.96934 + 1.43081i 0.0686053 + 0.0498447i
\(825\) 0 0
\(826\) −61.7817 52.7665i −2.14966 1.83598i
\(827\) −26.7239 31.2897i −0.929282 1.08805i −0.995917 0.0902724i \(-0.971226\pi\)
0.0666347 0.997777i \(-0.478774\pi\)
\(828\) 0 0
\(829\) −19.7700 + 19.7700i −0.686642 + 0.686642i −0.961488 0.274846i \(-0.911373\pi\)
0.274846 + 0.961488i \(0.411373\pi\)
\(830\) −32.0091 44.0568i −1.11105 1.52923i
\(831\) 0 0
\(832\) −1.38625 0.332808i −0.0480595 0.0115381i
\(833\) 2.06466 + 26.2340i 0.0715362 + 0.908954i
\(834\) 0 0
\(835\) 10.8756 + 17.7474i 0.376367 + 0.614175i
\(836\) −15.0634 + 4.89438i −0.520977 + 0.169276i
\(837\) 0 0
\(838\) −2.38700 + 7.34644i −0.0824577 + 0.253779i
\(839\) 0.388483 4.93614i 0.0134119 0.170415i −0.986563 0.163379i \(-0.947761\pi\)
0.999975 0.00703531i \(-0.00223943\pi\)
\(840\) 0 0
\(841\) −19.9301 10.1549i −0.687246 0.350169i
\(842\) 25.6448 + 2.01829i 0.883779 + 0.0695549i
\(843\) 0 0
\(844\) −8.39326 + 2.01504i −0.288908 + 0.0693607i
\(845\) −12.8116 39.4301i −0.440733 1.35644i
\(846\) 0 0
\(847\) −14.8534 6.15248i −0.510369 0.211402i
\(848\) 22.6857 1.78540i 0.779029 0.0613109i
\(849\) 0 0
\(850\) 54.2170 + 33.2242i 1.85963 + 1.13958i
\(851\) 37.9646 27.5829i 1.30141 0.945528i
\(852\) 0 0
\(853\) 15.0018 + 2.37604i 0.513650 + 0.0813542i 0.407878 0.913036i \(-0.366269\pi\)
0.105772 + 0.994390i \(0.466269\pi\)
\(854\) 32.1755 27.4805i 1.10102 0.940363i
\(855\) 0 0
\(856\) −0.140106 0.884594i −0.00478872 0.0302348i
\(857\) −20.1093 + 27.6781i −0.686922 + 0.945467i −0.999991 0.00426317i \(-0.998643\pi\)
0.313069 + 0.949730i \(0.398643\pi\)
\(858\) 0 0
\(859\) −12.5277 24.5869i −0.427439 0.838896i −0.999821 0.0189090i \(-0.993981\pi\)
0.572382 0.819987i \(-0.306019\pi\)
\(860\) 2.91561 0.0994214
\(861\) 0 0
\(862\) 58.1482 1.98054
\(863\) 25.0530 + 49.1693i 0.852814 + 1.67374i 0.732249 + 0.681037i \(0.238471\pi\)
0.120565 + 0.992705i \(0.461529\pi\)
\(864\) 0 0
\(865\) 18.8032 25.8803i 0.639327 0.879958i
\(866\) −0.972371 6.13931i −0.0330425 0.208622i
\(867\) 0 0
\(868\) 23.8629 20.3808i 0.809959 0.691770i
\(869\) 12.5249 + 1.98374i 0.424877 + 0.0672938i
\(870\) 0 0
\(871\) 13.9572 10.1405i 0.472921 0.343597i
\(872\) 20.1625 + 12.3556i 0.682788 + 0.418413i
\(873\) 0 0
\(874\) −39.5760 + 3.11470i −1.33868 + 0.105356i
\(875\) −59.5048 24.6477i −2.01163 0.833244i
\(876\) 0 0
\(877\) 1.57215 + 4.83859i 0.0530878 + 0.163387i 0.974085 0.226181i \(-0.0726241\pi\)
−0.920997 + 0.389569i \(0.872624\pi\)
\(878\) −28.5399 + 6.85184i −0.963177 + 0.231238i
\(879\) 0 0
\(880\) 48.7321 + 3.83530i 1.64276 + 0.129288i
\(881\) 12.2787 + 6.25633i 0.413681 + 0.210781i 0.648429 0.761275i \(-0.275426\pi\)
−0.234748 + 0.972056i \(0.575426\pi\)
\(882\) 0 0
\(883\) −3.75557 + 47.7191i −0.126385 + 1.60587i 0.527685 + 0.849440i \(0.323060\pi\)
−0.654070 + 0.756434i \(0.726940\pi\)
\(884\) 2.03795 6.27216i 0.0685436 0.210956i
\(885\) 0 0
\(886\) 37.4155 12.1570i 1.25700 0.408423i
\(887\) 15.6778 + 25.5839i 0.526410 + 0.859023i 0.999761 0.0218506i \(-0.00695583\pi\)
−0.473351 + 0.880874i \(0.656956\pi\)
\(888\) 0 0
\(889\) 4.83283 + 61.4069i 0.162088 + 2.05952i
\(890\) −100.865 24.2154i −3.38099 0.811703i
\(891\) 0 0
\(892\) −17.6900 24.3482i −0.592305 0.815239i
\(893\) −42.7987 + 42.7987i −1.43220 + 1.43220i
\(894\) 0 0
\(895\) −20.3597 23.8382i −0.680551 0.796823i
\(896\) 29.6052 + 25.2852i 0.989039 + 0.844719i
\(897\) 0 0
\(898\) −22.1620 16.1016i −0.739554 0.537317i
\(899\) −6.78368 16.3773i −0.226248 0.546212i
\(900\) 0 0
\(901\) 17.1293i 0.570658i
\(902\) 7.60064 + 28.7617i 0.253073 + 0.957659i
\(903\) 0 0
\(904\) −17.7889 + 9.06391i −0.591651 + 0.301461i
\(905\) 9.07336 3.75831i 0.301609 0.124930i
\(906\) 0 0
\(907\) −10.6037 + 1.67946i −0.352089 + 0.0557654i −0.329974 0.943990i \(-0.607040\pi\)
−0.0221149 + 0.999755i \(0.507040\pi\)
\(908\) 12.3755 14.4899i 0.410696 0.480864i
\(909\) 0 0
\(910\) −5.82804 + 36.7968i −0.193198 + 1.21980i
\(911\) 21.9898 + 21.9898i 0.728554 + 0.728554i 0.970332 0.241778i \(-0.0777306\pi\)
−0.241778 + 0.970332i \(0.577731\pi\)
\(912\) 0 0
\(913\) 10.7915 17.6102i 0.357147 0.582811i
\(914\) 4.30538 17.9332i 0.142409 0.593177i
\(915\) 0 0
\(916\) 2.30391 5.56214i 0.0761235 0.183778i
\(917\) −20.3862 + 12.4927i −0.673213 + 0.412546i
\(918\) 0 0
\(919\) −8.98543 37.4270i −0.296402 1.23460i −0.899494 0.436932i \(-0.856065\pi\)
0.603092 0.797671i \(-0.293935\pi\)
\(920\) 22.4274 + 7.28711i 0.739410 + 0.240249i
\(921\) 0 0
\(922\) −14.6010 + 28.6561i −0.480859 + 0.943739i
\(923\) −0.373618 + 0.733266i −0.0122978 + 0.0241358i
\(924\) 0 0
\(925\) −96.3946 31.3205i −3.16943 1.02981i
\(926\) 0.192784 + 0.803002i 0.00633527 + 0.0263883i
\(927\) 0 0
\(928\) −13.3300 + 8.16864i −0.437579 + 0.268149i
\(929\) 22.2144 53.6303i 0.728830 1.75955i 0.0823724 0.996602i \(-0.473750\pi\)
0.646458 0.762950i \(-0.276250\pi\)
\(930\) 0 0
\(931\) −8.28360 + 34.5037i −0.271484 + 1.13081i
\(932\) −9.66030 + 15.7642i −0.316434 + 0.516373i
\(933\) 0 0
\(934\) −42.4180 42.4180i −1.38796 1.38796i
\(935\) −5.75619 + 36.3432i −0.188248 + 1.18855i
\(936\) 0 0
\(937\) 29.8702 34.9735i 0.975817 1.14254i −0.0139582 0.999903i \(-0.504443\pi\)
0.989776 0.142633i \(-0.0455568\pi\)
\(938\) 78.7626 12.4748i 2.57169 0.407316i
\(939\) 0 0
\(940\) −51.5145 + 21.3380i −1.68022 + 0.695969i
\(941\) −1.68174 + 0.856888i −0.0548231 + 0.0279338i −0.481187 0.876618i \(-0.659794\pi\)
0.426364 + 0.904552i \(0.359794\pi\)
\(942\) 0 0
\(943\) 0.640967 + 28.1853i 0.0208728 + 0.917839i
\(944\) 59.8555i 1.94813i
\(945\) 0 0
\(946\) 1.11919 + 2.70197i 0.0363881 + 0.0878487i
\(947\) −5.71910 4.15517i −0.185846 0.135025i 0.490972 0.871175i \(-0.336642\pi\)
−0.676818 + 0.736150i \(0.736642\pi\)
\(948\) 0 0
\(949\) −2.35109 2.00802i −0.0763197 0.0651832i
\(950\) 55.6855 + 65.1994i 1.80668 + 2.11535i
\(951\) 0 0
\(952\) −13.8991 + 13.8991i −0.450474 + 0.450474i
\(953\) −3.98479 5.48459i −0.129080 0.177663i 0.739585 0.673063i \(-0.235022\pi\)
−0.868665 + 0.495400i \(0.835022\pi\)
\(954\) 0 0
\(955\) 18.3750 + 4.41144i 0.594600 + 0.142751i
\(956\) 0.418926 + 5.32296i 0.0135490 + 0.172157i
\(957\) 0 0
\(958\) −16.0508 26.1925i −0.518578 0.846242i
\(959\) −37.0263 + 12.0306i −1.19564 + 0.388487i
\(960\) 0 0
\(961\) −5.06235 + 15.5803i −0.163302 + 0.502591i
\(962\) −2.18135 + 27.7167i −0.0703296 + 0.893622i
\(963\) 0 0
\(964\) 32.7344 + 16.6790i 1.05430 + 0.537195i
\(965\) 22.0392 + 1.73452i 0.709465 + 0.0558361i
\(966\) 0 0
\(967\) −18.4416 + 4.42742i −0.593040 + 0.142376i −0.518846 0.854867i \(-0.673638\pi\)
−0.0741938 + 0.997244i \(0.523638\pi\)
\(968\) −1.86311 5.73405i −0.0598825 0.184299i
\(969\) 0 0
\(970\) 21.4238 + 8.87403i 0.687877 + 0.284928i
\(971\) 21.4588 1.68885i 0.688647 0.0541977i 0.270693 0.962666i \(-0.412747\pi\)
0.417954 + 0.908468i \(0.362747\pi\)
\(972\) 0 0
\(973\) −13.3509 8.18143i −0.428010 0.262285i
\(974\) −41.1917 + 29.9275i −1.31987 + 0.958941i
\(975\) 0 0
\(976\) 30.7886 + 4.87644i 0.985520 + 0.156091i
\(977\) 0.377440 0.322364i 0.0120754 0.0103133i −0.643390 0.765539i \(-0.722473\pi\)
0.655465 + 0.755225i \(0.272473\pi\)
\(978\) 0 0
\(979\) −6.15434 38.8570i −0.196694 1.24187i
\(980\) −19.2141 + 26.4460i −0.613773 + 0.844786i
\(981\) 0 0
\(982\) 23.4346 + 45.9930i 0.747828 + 1.46769i
\(983\) 10.1572 0.323964 0.161982 0.986794i \(-0.448211\pi\)
0.161982 + 0.986794i \(0.448211\pi\)
\(984\) 0 0
\(985\) 64.7123 2.06190
\(986\) −7.81748 15.3427i −0.248959 0.488610i
\(987\) 0 0
\(988\) 5.22707 7.19444i 0.166295 0.228886i
\(989\) 0.433571 + 2.73746i 0.0137868 + 0.0870462i
\(990\) 0 0
\(991\) 30.2662 25.8498i 0.961437 0.821145i −0.0224839 0.999747i \(-0.507157\pi\)
0.983921 + 0.178602i \(0.0571575\pi\)
\(992\) 41.2737 + 6.53711i 1.31044 + 0.207554i
\(993\) 0 0
\(994\) −3.07751 + 2.23594i −0.0976126 + 0.0709197i
\(995\) −7.51717 4.60653i −0.238310 0.146037i
\(996\) 0 0
\(997\) 43.0384 3.38719i 1.36304 0.107273i 0.624257 0.781219i \(-0.285402\pi\)
0.738781 + 0.673945i \(0.235402\pi\)
\(998\) −13.3732 5.53934i −0.423320 0.175345i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 369.2.ba.b.224.6 yes 112
3.2 odd 2 369.2.ba.a.224.2 112
41.13 odd 40 369.2.ba.a.341.2 yes 112
123.95 even 40 inner 369.2.ba.b.341.6 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
369.2.ba.a.224.2 112 3.2 odd 2
369.2.ba.a.341.2 yes 112 41.13 odd 40
369.2.ba.b.224.6 yes 112 1.1 even 1 trivial
369.2.ba.b.341.6 yes 112 123.95 even 40 inner