Properties

Label 369.2.ba.b.341.6
Level $369$
Weight $2$
Character 369.341
Analytic conductor $2.946$
Analytic rank $0$
Dimension $112$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [369,2,Mod(17,369)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("369.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(369, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 369 = 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 369.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.94647983459\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(7\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 341.6
Character \(\chi\) \(=\) 369.341
Dual form 369.2.ba.b.224.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.814144 - 1.59785i) q^{2} +(-0.714715 - 0.983721i) q^{4} +(0.595885 - 3.76227i) q^{5} +(2.85103 + 2.43501i) q^{7} +(1.38874 - 0.219955i) q^{8} +(-5.52639 - 4.01516i) q^{10} +(-2.20898 + 1.35366i) q^{11} +(1.45014 + 0.114128i) q^{13} +(6.21192 - 2.57306i) q^{14} +(1.53067 - 4.71093i) q^{16} +(-3.62559 - 0.870427i) q^{17} +(-5.01227 + 0.394474i) q^{19} +(-4.12691 + 2.10276i) q^{20} +(0.364522 + 4.63169i) q^{22} +(1.36058 + 4.18744i) q^{23} +(-9.04429 - 2.93867i) q^{25} +(1.36298 - 2.22418i) q^{26} +(0.357695 - 4.54495i) q^{28} +(2.50409 - 0.601179i) q^{29} +(-4.04600 + 5.56884i) q^{31} +(-4.29271 - 4.29271i) q^{32} +(-4.34256 + 5.08448i) q^{34} +(10.8600 - 9.27534i) q^{35} +(8.62255 - 6.26465i) q^{37} +(-3.45040 + 8.33000i) q^{38} -5.35587i q^{40} +(-6.04317 - 2.11661i) q^{41} +(-0.560875 - 0.285780i) q^{43} +(2.91042 + 1.20554i) q^{44} +(7.79861 + 1.23518i) q^{46} +(7.81834 + 9.15410i) q^{47} +(1.10406 + 6.97073i) q^{49} +(-12.0589 + 12.0589i) q^{50} +(-0.924164 - 1.50810i) q^{52} +(1.07245 + 4.46708i) q^{53} +(3.77655 + 9.11740i) q^{55} +(4.49492 + 2.75449i) q^{56} +(1.07810 - 4.49060i) q^{58} +(-11.4924 + 3.73410i) q^{59} +(2.85704 + 5.60726i) q^{61} +(5.60413 + 10.9987i) q^{62} +(-0.932106 + 0.302860i) q^{64} +(1.29350 - 5.38780i) q^{65} +(10.1124 + 6.19691i) q^{67} +(1.73501 + 4.18867i) q^{68} +(-5.97895 - 24.9041i) q^{70} +(-0.295608 - 0.482388i) q^{71} +(-1.50300 + 1.50300i) q^{73} +(-2.98996 - 18.8778i) q^{74} +(3.97040 + 4.64874i) q^{76} +(-9.59405 - 1.51955i) q^{77} +(-4.52212 - 1.87312i) q^{79} +(-16.8117 - 8.56598i) q^{80} +(-8.30204 + 7.93284i) q^{82} -7.97207i q^{83} +(-5.43521 + 13.1218i) q^{85} +(-0.913266 + 0.663527i) q^{86} +(-2.76995 + 2.36576i) q^{88} +(9.86205 - 11.5470i) q^{89} +(3.85648 + 3.85648i) q^{91} +(3.14685 - 4.33126i) q^{92} +(20.9921 - 5.03976i) q^{94} +(-1.50262 + 19.0926i) q^{95} +(-1.77371 + 2.89443i) q^{97} +(12.0370 + 3.91107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 4 q^{5} - 24 q^{8} + 12 q^{11} - 4 q^{13} + 4 q^{14} + 28 q^{16} + 4 q^{17} - 88 q^{20} + 8 q^{22} - 24 q^{23} + 60 q^{26} - 8 q^{29} - 48 q^{32} + 152 q^{35} + 8 q^{37} + 56 q^{38} - 12 q^{41}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/369\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(334\)
\(\chi(n)\) \(-1\) \(e\left(\frac{31}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.814144 1.59785i 0.575687 1.12985i −0.401180 0.915999i \(-0.631400\pi\)
0.976867 0.213849i \(-0.0686002\pi\)
\(3\) 0 0
\(4\) −0.714715 0.983721i −0.357358 0.491860i
\(5\) 0.595885 3.76227i 0.266488 1.68254i −0.384246 0.923231i \(-0.625538\pi\)
0.650733 0.759306i \(-0.274462\pi\)
\(6\) 0 0
\(7\) 2.85103 + 2.43501i 1.07759 + 0.920346i 0.997077 0.0764074i \(-0.0243450\pi\)
0.0805105 + 0.996754i \(0.474345\pi\)
\(8\) 1.38874 0.219955i 0.490993 0.0777657i
\(9\) 0 0
\(10\) −5.52639 4.01516i −1.74760 1.26970i
\(11\) −2.20898 + 1.35366i −0.666033 + 0.408145i −0.814014 0.580845i \(-0.802722\pi\)
0.147982 + 0.988990i \(0.452722\pi\)
\(12\) 0 0
\(13\) 1.45014 + 0.114128i 0.402196 + 0.0316535i 0.277944 0.960597i \(-0.410347\pi\)
0.124252 + 0.992251i \(0.460347\pi\)
\(14\) 6.21192 2.57306i 1.66020 0.687679i
\(15\) 0 0
\(16\) 1.53067 4.71093i 0.382669 1.17773i
\(17\) −3.62559 0.870427i −0.879334 0.211109i −0.231449 0.972847i \(-0.574347\pi\)
−0.647886 + 0.761738i \(0.724347\pi\)
\(18\) 0 0
\(19\) −5.01227 + 0.394474i −1.14989 + 0.0904986i −0.639043 0.769171i \(-0.720669\pi\)
−0.510851 + 0.859670i \(0.670669\pi\)
\(20\) −4.12691 + 2.10276i −0.922805 + 0.470193i
\(21\) 0 0
\(22\) 0.364522 + 4.63169i 0.0777163 + 0.987480i
\(23\) 1.36058 + 4.18744i 0.283701 + 0.873143i 0.986785 + 0.162036i \(0.0518059\pi\)
−0.703084 + 0.711107i \(0.748194\pi\)
\(24\) 0 0
\(25\) −9.04429 2.93867i −1.80886 0.587734i
\(26\) 1.36298 2.22418i 0.267302 0.436198i
\(27\) 0 0
\(28\) 0.357695 4.54495i 0.0675981 0.858915i
\(29\) 2.50409 0.601179i 0.464998 0.111636i 0.00582502 0.999983i \(-0.498146\pi\)
0.459173 + 0.888347i \(0.348146\pi\)
\(30\) 0 0
\(31\) −4.04600 + 5.56884i −0.726683 + 1.00019i 0.272592 + 0.962130i \(0.412119\pi\)
−0.999275 + 0.0380639i \(0.987881\pi\)
\(32\) −4.29271 4.29271i −0.758851 0.758851i
\(33\) 0 0
\(34\) −4.34256 + 5.08448i −0.744743 + 0.871982i
\(35\) 10.8600 9.27534i 1.83568 1.56782i
\(36\) 0 0
\(37\) 8.62255 6.26465i 1.41754 1.02990i 0.425366 0.905021i \(-0.360145\pi\)
0.992172 0.124880i \(-0.0398547\pi\)
\(38\) −3.45040 + 8.33000i −0.559729 + 1.35130i
\(39\) 0 0
\(40\) 5.35587i 0.846838i
\(41\) −6.04317 2.11661i −0.943785 0.330560i
\(42\) 0 0
\(43\) −0.560875 0.285780i −0.0855326 0.0435811i 0.410701 0.911770i \(-0.365284\pi\)
−0.496234 + 0.868189i \(0.665284\pi\)
\(44\) 2.91042 + 1.20554i 0.438762 + 0.181741i
\(45\) 0 0
\(46\) 7.79861 + 1.23518i 1.14984 + 0.182117i
\(47\) 7.81834 + 9.15410i 1.14042 + 1.33526i 0.934197 + 0.356758i \(0.116118\pi\)
0.206225 + 0.978505i \(0.433882\pi\)
\(48\) 0 0
\(49\) 1.10406 + 6.97073i 0.157722 + 0.995819i
\(50\) −12.0589 + 12.0589i −1.70539 + 1.70539i
\(51\) 0 0
\(52\) −0.924164 1.50810i −0.128159 0.209136i
\(53\) 1.07245 + 4.46708i 0.147312 + 0.613600i 0.996357 + 0.0852791i \(0.0271782\pi\)
−0.849045 + 0.528321i \(0.822822\pi\)
\(54\) 0 0
\(55\) 3.77655 + 9.11740i 0.509230 + 1.22939i
\(56\) 4.49492 + 2.75449i 0.600659 + 0.368084i
\(57\) 0 0
\(58\) 1.07810 4.49060i 0.141561 0.589645i
\(59\) −11.4924 + 3.73410i −1.49618 + 0.486139i −0.938901 0.344186i \(-0.888155\pi\)
−0.557280 + 0.830325i \(0.688155\pi\)
\(60\) 0 0
\(61\) 2.85704 + 5.60726i 0.365807 + 0.717936i 0.998400 0.0565480i \(-0.0180094\pi\)
−0.632593 + 0.774484i \(0.718009\pi\)
\(62\) 5.60413 + 10.9987i 0.711726 + 1.39684i
\(63\) 0 0
\(64\) −0.932106 + 0.302860i −0.116513 + 0.0378575i
\(65\) 1.29350 5.38780i 0.160438 0.668274i
\(66\) 0 0
\(67\) 10.1124 + 6.19691i 1.23543 + 0.757073i 0.977875 0.209191i \(-0.0670830\pi\)
0.257555 + 0.966264i \(0.417083\pi\)
\(68\) 1.73501 + 4.18867i 0.210400 + 0.507951i
\(69\) 0 0
\(70\) −5.97895 24.9041i −0.714622 2.97661i
\(71\) −0.295608 0.482388i −0.0350822 0.0572490i 0.834618 0.550829i \(-0.185688\pi\)
−0.869701 + 0.493580i \(0.835688\pi\)
\(72\) 0 0
\(73\) −1.50300 + 1.50300i −0.175913 + 0.175913i −0.789572 0.613659i \(-0.789697\pi\)
0.613659 + 0.789572i \(0.289697\pi\)
\(74\) −2.98996 18.8778i −0.347575 2.19450i
\(75\) 0 0
\(76\) 3.97040 + 4.64874i 0.455436 + 0.533247i
\(77\) −9.59405 1.51955i −1.09334 0.173169i
\(78\) 0 0
\(79\) −4.52212 1.87312i −0.508778 0.210743i 0.113501 0.993538i \(-0.463793\pi\)
−0.622280 + 0.782795i \(0.713793\pi\)
\(80\) −16.8117 8.56598i −1.87960 0.957706i
\(81\) 0 0
\(82\) −8.30204 + 7.93284i −0.916807 + 0.876035i
\(83\) 7.97207i 0.875049i −0.899207 0.437524i \(-0.855855\pi\)
0.899207 0.437524i \(-0.144145\pi\)
\(84\) 0 0
\(85\) −5.43521 + 13.1218i −0.589531 + 1.42325i
\(86\) −0.913266 + 0.663527i −0.0984800 + 0.0715499i
\(87\) 0 0
\(88\) −2.76995 + 2.36576i −0.295278 + 0.252191i
\(89\) 9.86205 11.5470i 1.04538 1.22398i 0.0713708 0.997450i \(-0.477263\pi\)
0.974005 0.226528i \(-0.0727374\pi\)
\(90\) 0 0
\(91\) 3.85648 + 3.85648i 0.404269 + 0.404269i
\(92\) 3.14685 4.33126i 0.328082 0.451565i
\(93\) 0 0
\(94\) 20.9921 5.03976i 2.16517 0.519811i
\(95\) −1.50262 + 19.0926i −0.154165 + 1.95886i
\(96\) 0 0
\(97\) −1.77371 + 2.89443i −0.180093 + 0.293885i −0.929929 0.367738i \(-0.880132\pi\)
0.749836 + 0.661623i \(0.230132\pi\)
\(98\) 12.0370 + 3.91107i 1.21592 + 0.395077i
\(99\) 0 0
\(100\) 3.57326 + 10.9974i 0.357326 + 1.09974i
\(101\) 0.374953 + 4.76423i 0.0373092 + 0.474058i 0.986984 + 0.160820i \(0.0514138\pi\)
−0.949675 + 0.313238i \(0.898586\pi\)
\(102\) 0 0
\(103\) 1.54257 0.785977i 0.151994 0.0774447i −0.376339 0.926482i \(-0.622817\pi\)
0.528333 + 0.849037i \(0.322817\pi\)
\(104\) 2.03896 0.160470i 0.199937 0.0157354i
\(105\) 0 0
\(106\) 8.01083 + 1.92323i 0.778081 + 0.186801i
\(107\) −0.196837 + 0.605801i −0.0190289 + 0.0585650i −0.960120 0.279588i \(-0.909802\pi\)
0.941091 + 0.338153i \(0.109802\pi\)
\(108\) 0 0
\(109\) 15.5379 6.43602i 1.48826 0.616459i 0.517326 0.855788i \(-0.326928\pi\)
0.970938 + 0.239329i \(0.0769275\pi\)
\(110\) 17.6429 + 1.38852i 1.68218 + 0.132391i
\(111\) 0 0
\(112\) 15.8352 9.70379i 1.49628 0.916922i
\(113\) −11.4875 8.34617i −1.08065 0.785142i −0.102858 0.994696i \(-0.532799\pi\)
−0.977797 + 0.209554i \(0.932799\pi\)
\(114\) 0 0
\(115\) 16.5650 2.62364i 1.54470 0.244656i
\(116\) −2.38110 2.03365i −0.221080 0.188820i
\(117\) 0 0
\(118\) −3.38993 + 21.4032i −0.312068 + 1.97032i
\(119\) −8.21716 11.3099i −0.753265 1.03678i
\(120\) 0 0
\(121\) −1.94671 + 3.82063i −0.176974 + 0.347330i
\(122\) 11.2856 1.02175
\(123\) 0 0
\(124\) 8.36992 0.751641
\(125\) −7.79879 + 15.3060i −0.697545 + 1.36901i
\(126\) 0 0
\(127\) −9.65653 13.2911i −0.856878 1.17939i −0.982305 0.187289i \(-0.940030\pi\)
0.125427 0.992103i \(-0.459970\pi\)
\(128\) 1.62442 10.2562i 0.143580 0.906528i
\(129\) 0 0
\(130\) −7.55578 6.45325i −0.662686 0.565987i
\(131\) −6.29848 + 0.997581i −0.550300 + 0.0871590i −0.425392 0.905009i \(-0.639864\pi\)
−0.124909 + 0.992168i \(0.539864\pi\)
\(132\) 0 0
\(133\) −15.2507 11.0803i −1.32240 0.960780i
\(134\) 18.1347 11.1129i 1.56660 0.960013i
\(135\) 0 0
\(136\) −5.22645 0.411330i −0.448164 0.0352713i
\(137\) −9.59319 + 3.97363i −0.819602 + 0.339490i −0.752778 0.658275i \(-0.771287\pi\)
−0.0668239 + 0.997765i \(0.521287\pi\)
\(138\) 0 0
\(139\) −1.29054 + 3.97187i −0.109462 + 0.336889i −0.990752 0.135687i \(-0.956676\pi\)
0.881290 + 0.472576i \(0.156676\pi\)
\(140\) −16.8862 4.05401i −1.42714 0.342627i
\(141\) 0 0
\(142\) −1.01145 + 0.0796029i −0.0848790 + 0.00668012i
\(143\) −3.35781 + 1.71089i −0.280795 + 0.143072i
\(144\) 0 0
\(145\) −0.769647 9.77929i −0.0639157 0.812126i
\(146\) 1.17791 + 3.62523i 0.0974843 + 0.300026i
\(147\) 0 0
\(148\) −12.3253 4.00474i −1.01314 0.329188i
\(149\) 8.57378 13.9911i 0.702391 1.14620i −0.280115 0.959967i \(-0.590373\pi\)
0.982506 0.186232i \(-0.0596275\pi\)
\(150\) 0 0
\(151\) 0.934876 11.8787i 0.0760791 0.966677i −0.833871 0.551959i \(-0.813880\pi\)
0.909950 0.414718i \(-0.136120\pi\)
\(152\) −6.87396 + 1.65029i −0.557552 + 0.133856i
\(153\) 0 0
\(154\) −10.2389 + 14.0927i −0.825077 + 1.13562i
\(155\) 18.5405 + 18.5405i 1.48921 + 1.48921i
\(156\) 0 0
\(157\) −13.1721 + 15.4226i −1.05125 + 1.23085i −0.0790070 + 0.996874i \(0.525175\pi\)
−0.972241 + 0.233980i \(0.924825\pi\)
\(158\) −6.67462 + 5.70066i −0.531004 + 0.453520i
\(159\) 0 0
\(160\) −18.7083 + 13.5924i −1.47902 + 1.07457i
\(161\) −6.31740 + 15.2516i −0.497881 + 1.20199i
\(162\) 0 0
\(163\) 8.87430i 0.695088i −0.937664 0.347544i \(-0.887016\pi\)
0.937664 0.347544i \(-0.112984\pi\)
\(164\) 2.23699 + 7.45757i 0.174679 + 0.582339i
\(165\) 0 0
\(166\) −12.7382 6.49041i −0.988672 0.503754i
\(167\) 5.04841 + 2.09112i 0.390658 + 0.161816i 0.569362 0.822087i \(-0.307190\pi\)
−0.178704 + 0.983903i \(0.557190\pi\)
\(168\) 0 0
\(169\) −10.7501 1.70264i −0.826929 0.130973i
\(170\) 16.5415 + 19.3676i 1.26868 + 1.48543i
\(171\) 0 0
\(172\) 0.119738 + 0.755996i 0.00912994 + 0.0576441i
\(173\) −5.93837 + 5.93837i −0.451486 + 0.451486i −0.895848 0.444361i \(-0.853431\pi\)
0.444361 + 0.895848i \(0.353431\pi\)
\(174\) 0 0
\(175\) −18.6299 30.4012i −1.40828 2.29811i
\(176\) 2.99579 + 12.4784i 0.225816 + 0.940593i
\(177\) 0 0
\(178\) −10.4212 25.1590i −0.781101 1.88574i
\(179\) −7.01720 4.30015i −0.524490 0.321408i 0.234926 0.972013i \(-0.424515\pi\)
−0.759416 + 0.650605i \(0.774515\pi\)
\(180\) 0 0
\(181\) −0.601878 + 2.50700i −0.0447372 + 0.186344i −0.990264 0.139199i \(-0.955547\pi\)
0.945527 + 0.325543i \(0.105547\pi\)
\(182\) 9.30179 3.02233i 0.689494 0.224030i
\(183\) 0 0
\(184\) 2.81054 + 5.51600i 0.207196 + 0.406645i
\(185\) −18.4312 36.1733i −1.35509 2.65952i
\(186\) 0 0
\(187\) 9.18712 2.98508i 0.671829 0.218290i
\(188\) 3.41719 14.2336i 0.249224 1.03809i
\(189\) 0 0
\(190\) 29.2836 + 17.9450i 2.12446 + 1.30187i
\(191\) 1.89847 + 4.58332i 0.137369 + 0.331638i 0.977561 0.210650i \(-0.0675582\pi\)
−0.840193 + 0.542288i \(0.817558\pi\)
\(192\) 0 0
\(193\) 1.35485 + 5.64336i 0.0975242 + 0.406218i 0.999683 0.0251870i \(-0.00801812\pi\)
−0.902159 + 0.431405i \(0.858018\pi\)
\(194\) 3.18080 + 5.19060i 0.228368 + 0.372663i
\(195\) 0 0
\(196\) 6.06817 6.06817i 0.433441 0.433441i
\(197\) 2.65760 + 16.7794i 0.189346 + 1.19548i 0.880951 + 0.473208i \(0.156904\pi\)
−0.691605 + 0.722276i \(0.743096\pi\)
\(198\) 0 0
\(199\) −1.50315 1.75997i −0.106556 0.124761i 0.704565 0.709639i \(-0.251142\pi\)
−0.811121 + 0.584879i \(0.801142\pi\)
\(200\) −13.2065 2.09171i −0.933843 0.147906i
\(201\) 0 0
\(202\) 7.91777 + 3.27965i 0.557092 + 0.230755i
\(203\) 8.60311 + 4.38350i 0.603820 + 0.307662i
\(204\) 0 0
\(205\) −11.5643 + 21.4748i −0.807686 + 1.49986i
\(206\) 3.10469i 0.216314i
\(207\) 0 0
\(208\) 2.75734 6.65680i 0.191187 0.461566i
\(209\) 10.5380 7.65632i 0.728930 0.529599i
\(210\) 0 0
\(211\) 5.39797 4.61030i 0.371612 0.317386i −0.443955 0.896049i \(-0.646425\pi\)
0.815567 + 0.578663i \(0.196425\pi\)
\(212\) 3.62786 4.24768i 0.249162 0.291732i
\(213\) 0 0
\(214\) 0.807724 + 0.807724i 0.0552148 + 0.0552148i
\(215\) −1.40940 + 1.93987i −0.0961201 + 0.132298i
\(216\) 0 0
\(217\) −25.0954 + 6.02488i −1.70359 + 0.408996i
\(218\) 2.36633 30.0671i 0.160268 2.03640i
\(219\) 0 0
\(220\) 6.26982 10.2314i 0.422711 0.689802i
\(221\) −5.15826 1.67602i −0.346982 0.112741i
\(222\) 0 0
\(223\) −7.64852 23.5397i −0.512183 1.57634i −0.788350 0.615228i \(-0.789064\pi\)
0.276167 0.961110i \(-0.410936\pi\)
\(224\) −1.78585 22.6914i −0.119322 1.51613i
\(225\) 0 0
\(226\) −22.6884 + 11.5603i −1.50921 + 0.768981i
\(227\) −15.6230 + 1.22956i −1.03693 + 0.0816085i −0.585481 0.810686i \(-0.699094\pi\)
−0.451453 + 0.892295i \(0.649094\pi\)
\(228\) 0 0
\(229\) −4.81442 1.15584i −0.318146 0.0763800i 0.0712275 0.997460i \(-0.477308\pi\)
−0.389373 + 0.921080i \(0.627308\pi\)
\(230\) 9.29414 28.6044i 0.612837 1.88612i
\(231\) 0 0
\(232\) 3.34529 1.38567i 0.219629 0.0909734i
\(233\) 15.1583 + 1.19298i 0.993053 + 0.0781549i 0.564562 0.825391i \(-0.309045\pi\)
0.428491 + 0.903546i \(0.359045\pi\)
\(234\) 0 0
\(235\) 39.0990 23.9599i 2.55054 1.56297i
\(236\) 11.8871 + 8.63648i 0.773784 + 0.562187i
\(237\) 0 0
\(238\) −24.7615 + 3.92184i −1.60505 + 0.254215i
\(239\) 3.33907 + 2.85184i 0.215987 + 0.184470i 0.750858 0.660463i \(-0.229640\pi\)
−0.534872 + 0.844933i \(0.679640\pi\)
\(240\) 0 0
\(241\) −4.72653 + 29.8421i −0.304462 + 1.92230i 0.0751877 + 0.997169i \(0.476044\pi\)
−0.379650 + 0.925130i \(0.623956\pi\)
\(242\) 4.51989 + 6.22109i 0.290549 + 0.399907i
\(243\) 0 0
\(244\) 3.47401 6.81813i 0.222401 0.436486i
\(245\) 26.8836 1.71753
\(246\) 0 0
\(247\) −7.31350 −0.465347
\(248\) −4.39394 + 8.62360i −0.279016 + 0.547599i
\(249\) 0 0
\(250\) 18.1073 + 24.9226i 1.14521 + 1.57624i
\(251\) 3.43804 21.7069i 0.217007 1.37013i −0.602983 0.797754i \(-0.706022\pi\)
0.819991 0.572377i \(-0.193978\pi\)
\(252\) 0 0
\(253\) −8.67390 7.40821i −0.545323 0.465750i
\(254\) −29.0989 + 4.60881i −1.82583 + 0.289183i
\(255\) 0 0
\(256\) −16.6511 12.0977i −1.04069 0.756109i
\(257\) 2.63925 1.61733i 0.164632 0.100886i −0.437742 0.899101i \(-0.644222\pi\)
0.602374 + 0.798214i \(0.294222\pi\)
\(258\) 0 0
\(259\) 39.8376 + 3.13529i 2.47539 + 0.194817i
\(260\) −6.22457 + 2.57830i −0.386031 + 0.159899i
\(261\) 0 0
\(262\) −3.53388 + 10.8762i −0.218324 + 0.671932i
\(263\) 7.65951 + 1.83889i 0.472306 + 0.113391i 0.462609 0.886562i \(-0.346913\pi\)
0.00969678 + 0.999953i \(0.496913\pi\)
\(264\) 0 0
\(265\) 17.4454 1.37298i 1.07166 0.0843416i
\(266\) −30.1208 + 15.3473i −1.84682 + 0.941004i
\(267\) 0 0
\(268\) −1.13148 14.3768i −0.0691162 0.878205i
\(269\) −2.00338 6.16578i −0.122148 0.375934i 0.871222 0.490889i \(-0.163328\pi\)
−0.993371 + 0.114954i \(0.963328\pi\)
\(270\) 0 0
\(271\) 10.4978 + 3.41095i 0.637698 + 0.207201i 0.609982 0.792415i \(-0.291177\pi\)
0.0277158 + 0.999616i \(0.491177\pi\)
\(272\) −9.65012 + 15.7476i −0.585124 + 0.954836i
\(273\) 0 0
\(274\) −1.46098 + 18.5636i −0.0882613 + 1.12147i
\(275\) 23.9566 5.75148i 1.44464 0.346827i
\(276\) 0 0
\(277\) 9.66773 13.3065i 0.580878 0.799510i −0.412914 0.910770i \(-0.635489\pi\)
0.993791 + 0.111261i \(0.0354888\pi\)
\(278\) 5.29575 + 5.29575i 0.317618 + 0.317618i
\(279\) 0 0
\(280\) 13.0416 15.2697i 0.779384 0.912541i
\(281\) −17.3210 + 14.7936i −1.03329 + 0.882510i −0.993169 0.116685i \(-0.962773\pi\)
−0.0401170 + 0.999195i \(0.512773\pi\)
\(282\) 0 0
\(283\) 9.76502 7.09471i 0.580470 0.421736i −0.258423 0.966032i \(-0.583203\pi\)
0.838894 + 0.544295i \(0.183203\pi\)
\(284\) −0.263260 + 0.635566i −0.0156216 + 0.0377139i
\(285\) 0 0
\(286\) 6.75819i 0.399620i
\(287\) −12.0753 20.7497i −0.712781 1.22482i
\(288\) 0 0
\(289\) −2.75987 1.40622i −0.162345 0.0827190i
\(290\) −16.2524 6.73197i −0.954375 0.395315i
\(291\) 0 0
\(292\) 2.55275 + 0.404316i 0.149388 + 0.0236608i
\(293\) 3.02866 + 3.54611i 0.176936 + 0.207166i 0.841786 0.539811i \(-0.181504\pi\)
−0.664850 + 0.746977i \(0.731504\pi\)
\(294\) 0 0
\(295\) 7.20056 + 45.4625i 0.419233 + 2.64693i
\(296\) 10.5965 10.5965i 0.615910 0.615910i
\(297\) 0 0
\(298\) −15.3754 25.0904i −0.890673 1.45345i
\(299\) 1.49513 + 6.22765i 0.0864654 + 0.360154i
\(300\) 0 0
\(301\) −0.903194 2.18050i −0.0520592 0.125682i
\(302\) −18.2193 11.1648i −1.04840 0.642461i
\(303\) 0 0
\(304\) −5.81381 + 24.2163i −0.333445 + 1.38890i
\(305\) 22.7985 7.40768i 1.30544 0.424162i
\(306\) 0 0
\(307\) −6.12485 12.0207i −0.349564 0.686057i 0.647546 0.762026i \(-0.275795\pi\)
−0.997110 + 0.0759685i \(0.975795\pi\)
\(308\) 5.36220 + 10.5239i 0.305540 + 0.599655i
\(309\) 0 0
\(310\) 44.7196 14.5303i 2.53990 0.825264i
\(311\) −4.51613 + 18.8111i −0.256086 + 1.06668i 0.685009 + 0.728535i \(0.259798\pi\)
−0.941095 + 0.338142i \(0.890202\pi\)
\(312\) 0 0
\(313\) −27.6177 16.9241i −1.56104 0.956609i −0.990830 0.135112i \(-0.956860\pi\)
−0.570214 0.821496i \(-0.693140\pi\)
\(314\) 13.9189 + 33.6032i 0.785489 + 1.89634i
\(315\) 0 0
\(316\) 1.38940 + 5.78725i 0.0781597 + 0.325558i
\(317\) −7.79221 12.7157i −0.437654 0.714187i 0.555433 0.831561i \(-0.312552\pi\)
−0.993088 + 0.117374i \(0.962552\pi\)
\(318\) 0 0
\(319\) −4.71769 + 4.71769i −0.264140 + 0.264140i
\(320\) 0.584011 + 3.68730i 0.0326472 + 0.206127i
\(321\) 0 0
\(322\) 19.2264 + 22.5112i 1.07144 + 1.25450i
\(323\) 18.5158 + 2.93261i 1.03025 + 0.163175i
\(324\) 0 0
\(325\) −12.7801 5.29368i −0.708911 0.293641i
\(326\) −14.1798 7.22495i −0.785345 0.400153i
\(327\) 0 0
\(328\) −8.85794 1.61020i −0.489098 0.0889085i
\(329\) 45.1363i 2.48844i
\(330\) 0 0
\(331\) −9.80631 + 23.6745i −0.539004 + 1.30127i 0.386415 + 0.922325i \(0.373713\pi\)
−0.925419 + 0.378945i \(0.876287\pi\)
\(332\) −7.84229 + 5.69776i −0.430402 + 0.312705i
\(333\) 0 0
\(334\) 7.45143 6.36412i 0.407724 0.348229i
\(335\) 29.3403 34.3530i 1.60303 1.87691i
\(336\) 0 0
\(337\) 15.6907 + 15.6907i 0.854727 + 0.854727i 0.990711 0.135984i \(-0.0434197\pi\)
−0.135984 + 0.990711i \(0.543420\pi\)
\(338\) −11.4727 + 15.7908i −0.624031 + 0.858905i
\(339\) 0 0
\(340\) 16.7928 4.03159i 0.910716 0.218644i
\(341\) 1.39919 17.7784i 0.0757704 0.962754i
\(342\) 0 0
\(343\) −0.112881 + 0.184206i −0.00609502 + 0.00994616i
\(344\) −0.841767 0.273507i −0.0453850 0.0147465i
\(345\) 0 0
\(346\) 4.65392 + 14.3233i 0.250196 + 0.770026i
\(347\) −2.08262 26.4622i −0.111801 1.42057i −0.755430 0.655229i \(-0.772572\pi\)
0.643629 0.765338i \(-0.277428\pi\)
\(348\) 0 0
\(349\) 31.3931 15.9956i 1.68043 0.856224i 0.689130 0.724638i \(-0.257993\pi\)
0.991305 0.131587i \(-0.0420071\pi\)
\(350\) −63.7438 + 5.01674i −3.40725 + 0.268156i
\(351\) 0 0
\(352\) 15.2934 + 3.67162i 0.815141 + 0.195698i
\(353\) −0.243118 + 0.748242i −0.0129399 + 0.0398249i −0.957318 0.289037i \(-0.906665\pi\)
0.944378 + 0.328862i \(0.106665\pi\)
\(354\) 0 0
\(355\) −1.99102 + 0.824708i −0.105672 + 0.0437710i
\(356\) −18.4076 1.44871i −0.975599 0.0767813i
\(357\) 0 0
\(358\) −12.5840 + 7.71148i −0.665084 + 0.407564i
\(359\) 4.26181 + 3.09639i 0.224930 + 0.163421i 0.694543 0.719451i \(-0.255607\pi\)
−0.469613 + 0.882872i \(0.655607\pi\)
\(360\) 0 0
\(361\) 6.20116 0.982168i 0.326377 0.0516930i
\(362\) 3.51579 + 3.00277i 0.184786 + 0.157822i
\(363\) 0 0
\(364\) 1.03741 6.54998i 0.0543753 0.343312i
\(365\) 4.75908 + 6.55031i 0.249102 + 0.342859i
\(366\) 0 0
\(367\) 5.31483 10.4309i 0.277432 0.544491i −0.709679 0.704525i \(-0.751160\pi\)
0.987112 + 0.160034i \(0.0511602\pi\)
\(368\) 21.8094 1.13689
\(369\) 0 0
\(370\) −72.8051 −3.78496
\(371\) −7.81978 + 15.3472i −0.405983 + 0.796786i
\(372\) 0 0
\(373\) 13.2081 + 18.1795i 0.683892 + 0.941297i 0.999972 0.00743589i \(-0.00236694\pi\)
−0.316080 + 0.948732i \(0.602367\pi\)
\(374\) 2.70994 17.1099i 0.140128 0.884731i
\(375\) 0 0
\(376\) 12.8711 + 10.9930i 0.663777 + 0.566919i
\(377\) 3.69989 0.586004i 0.190554 0.0301808i
\(378\) 0 0
\(379\) −1.56091 1.13407i −0.0801788 0.0582533i 0.546974 0.837150i \(-0.315780\pi\)
−0.627153 + 0.778896i \(0.715780\pi\)
\(380\) 19.8557 12.1676i 1.01858 0.624184i
\(381\) 0 0
\(382\) 8.86908 + 0.698012i 0.453782 + 0.0357134i
\(383\) −24.8402 + 10.2892i −1.26928 + 0.525752i −0.912744 0.408531i \(-0.866041\pi\)
−0.356533 + 0.934283i \(0.616041\pi\)
\(384\) 0 0
\(385\) −11.4339 + 35.1899i −0.582725 + 1.79344i
\(386\) 10.1203 + 2.42966i 0.515108 + 0.123666i
\(387\) 0 0
\(388\) 4.11501 0.323858i 0.208908 0.0164414i
\(389\) 15.3243 7.80814i 0.776975 0.395888i −0.0200776 0.999798i \(-0.506391\pi\)
0.797053 + 0.603910i \(0.206391\pi\)
\(390\) 0 0
\(391\) −1.28805 16.3662i −0.0651395 0.827676i
\(392\) 3.06649 + 9.43768i 0.154881 + 0.476675i
\(393\) 0 0
\(394\) 28.9746 + 9.41442i 1.45972 + 0.474292i
\(395\) −9.74185 + 15.8973i −0.490166 + 0.799878i
\(396\) 0 0
\(397\) 2.28376 29.0180i 0.114619 1.45637i −0.623566 0.781771i \(-0.714317\pi\)
0.738185 0.674599i \(-0.235683\pi\)
\(398\) −4.03594 + 0.968944i −0.202303 + 0.0485688i
\(399\) 0 0
\(400\) −27.6877 + 38.1089i −1.38439 + 1.90545i
\(401\) 8.86378 + 8.86378i 0.442636 + 0.442636i 0.892897 0.450261i \(-0.148669\pi\)
−0.450261 + 0.892897i \(0.648669\pi\)
\(402\) 0 0
\(403\) −6.50282 + 7.61382i −0.323928 + 0.379271i
\(404\) 4.41868 3.77391i 0.219838 0.187759i
\(405\) 0 0
\(406\) 14.0083 10.1776i 0.695222 0.505108i
\(407\) −10.5668 + 25.5105i −0.523777 + 1.26451i
\(408\) 0 0
\(409\) 37.9577i 1.87689i −0.345430 0.938444i \(-0.612267\pi\)
0.345430 0.938444i \(-0.387733\pi\)
\(410\) 24.8984 + 35.9615i 1.22964 + 1.77601i
\(411\) 0 0
\(412\) −1.87568 0.955706i −0.0924081 0.0470843i
\(413\) −41.8577 17.3380i −2.05968 0.853148i
\(414\) 0 0
\(415\) −29.9931 4.75044i −1.47230 0.233190i
\(416\) −5.73509 6.71493i −0.281186 0.329227i
\(417\) 0 0
\(418\) −3.65417 23.0715i −0.178731 1.12846i
\(419\) 3.04580 3.04580i 0.148797 0.148797i −0.628783 0.777580i \(-0.716447\pi\)
0.777580 + 0.628783i \(0.216447\pi\)
\(420\) 0 0
\(421\) 7.49500 + 12.2307i 0.365284 + 0.596089i 0.981494 0.191493i \(-0.0613328\pi\)
−0.616210 + 0.787582i \(0.711333\pi\)
\(422\) −2.97183 12.3786i −0.144667 0.602580i
\(423\) 0 0
\(424\) 2.47191 + 5.96771i 0.120046 + 0.289817i
\(425\) 30.2330 + 18.5268i 1.46652 + 0.898682i
\(426\) 0 0
\(427\) −5.50822 + 22.9434i −0.266561 + 1.11031i
\(428\) 0.736621 0.239343i 0.0356059 0.0115691i
\(429\) 0 0
\(430\) 1.95216 + 3.83134i 0.0941417 + 0.184763i
\(431\) 14.7207 + 28.8910i 0.709072 + 1.39163i 0.911072 + 0.412247i \(0.135256\pi\)
−0.202000 + 0.979385i \(0.564744\pi\)
\(432\) 0 0
\(433\) −3.29649 + 1.07109i −0.158419 + 0.0514735i −0.387153 0.922016i \(-0.626541\pi\)
0.228734 + 0.973489i \(0.426541\pi\)
\(434\) −10.8045 + 45.0038i −0.518630 + 2.16025i
\(435\) 0 0
\(436\) −17.4364 10.6851i −0.835054 0.511722i
\(437\) −8.47145 20.4519i −0.405244 0.978347i
\(438\) 0 0
\(439\) −3.82078 15.9147i −0.182356 0.759568i −0.986313 0.164881i \(-0.947276\pi\)
0.803957 0.594687i \(-0.202724\pi\)
\(440\) 7.25006 + 11.8310i 0.345633 + 0.564022i
\(441\) 0 0
\(442\) −6.87759 + 6.87759i −0.327133 + 0.327133i
\(443\) 3.43181 + 21.6676i 0.163050 + 1.02946i 0.924485 + 0.381218i \(0.124495\pi\)
−0.761435 + 0.648241i \(0.775505\pi\)
\(444\) 0 0
\(445\) −37.5662 43.9843i −1.78081 2.08506i
\(446\) −43.8399 6.94356i −2.07588 0.328787i
\(447\) 0 0
\(448\) −3.39493 1.40622i −0.160395 0.0664379i
\(449\) −13.6106 6.93494i −0.642324 0.327280i 0.102311 0.994752i \(-0.467376\pi\)
−0.744635 + 0.667472i \(0.767376\pi\)
\(450\) 0 0
\(451\) 16.2144 3.50487i 0.763508 0.165038i
\(452\) 17.2656i 0.812108i
\(453\) 0 0
\(454\) −10.7547 + 25.9642i −0.504744 + 1.21856i
\(455\) 16.8071 12.2111i 0.787930 0.572464i
\(456\) 0 0
\(457\) −7.82018 + 6.67907i −0.365813 + 0.312434i −0.813287 0.581863i \(-0.802324\pi\)
0.447474 + 0.894297i \(0.352324\pi\)
\(458\) −5.76648 + 6.75169i −0.269450 + 0.315486i
\(459\) 0 0
\(460\) −14.4202 14.4202i −0.672346 0.672346i
\(461\) 10.5415 14.5091i 0.490965 0.675755i −0.489601 0.871947i \(-0.662857\pi\)
0.980566 + 0.196192i \(0.0628574\pi\)
\(462\) 0 0
\(463\) 0.447778 0.107502i 0.0208100 0.00499604i −0.223027 0.974812i \(-0.571594\pi\)
0.243837 + 0.969816i \(0.421594\pi\)
\(464\) 1.00083 12.7168i 0.0464626 0.590363i
\(465\) 0 0
\(466\) 14.2472 23.2494i 0.659990 1.07701i
\(467\) −31.8139 10.3370i −1.47217 0.478338i −0.540408 0.841403i \(-0.681730\pi\)
−0.931764 + 0.363066i \(0.881730\pi\)
\(468\) 0 0
\(469\) 13.7413 + 42.2914i 0.634515 + 1.95284i
\(470\) −6.45205 81.9810i −0.297611 3.78150i
\(471\) 0 0
\(472\) −15.1386 + 7.71349i −0.696810 + 0.355042i
\(473\) 1.62581 0.127954i 0.0747549 0.00588334i
\(474\) 0 0
\(475\) 46.4917 + 11.1617i 2.13318 + 0.512132i
\(476\) −5.25290 + 16.1668i −0.240766 + 0.741003i
\(477\) 0 0
\(478\) 7.27528 3.01352i 0.332764 0.137835i
\(479\) −17.0772 1.34400i −0.780276 0.0614091i −0.317937 0.948112i \(-0.602990\pi\)
−0.462340 + 0.886703i \(0.652990\pi\)
\(480\) 0 0
\(481\) 13.2188 8.10052i 0.602728 0.369352i
\(482\) 43.8351 + 31.8480i 1.99663 + 1.45064i
\(483\) 0 0
\(484\) 5.14978 0.815645i 0.234081 0.0370748i
\(485\) 9.83269 + 8.39791i 0.446479 + 0.381330i
\(486\) 0 0
\(487\) 4.44151 28.0426i 0.201264 1.27073i −0.655568 0.755136i \(-0.727571\pi\)
0.856832 0.515595i \(-0.172429\pi\)
\(488\) 5.20103 + 7.15860i 0.235439 + 0.324055i
\(489\) 0 0
\(490\) 21.8871 42.9559i 0.988761 1.94055i
\(491\) 28.7843 1.29902 0.649509 0.760354i \(-0.274974\pi\)
0.649509 + 0.760354i \(0.274974\pi\)
\(492\) 0 0
\(493\) −9.60208 −0.432456
\(494\) −5.95424 + 11.6859i −0.267894 + 0.525771i
\(495\) 0 0
\(496\) 20.0413 + 27.5845i 0.899882 + 1.23858i
\(497\) 0.331833 2.09511i 0.0148847 0.0939785i
\(498\) 0 0
\(499\) −6.13776 5.24214i −0.274764 0.234670i 0.501379 0.865228i \(-0.332826\pi\)
−0.776143 + 0.630557i \(0.782826\pi\)
\(500\) 20.6307 3.26759i 0.922635 0.146131i
\(501\) 0 0
\(502\) −31.8853 23.1660i −1.42311 1.03395i
\(503\) −3.54654 + 2.17332i −0.158132 + 0.0969036i −0.599313 0.800514i \(-0.704560\pi\)
0.441181 + 0.897418i \(0.354560\pi\)
\(504\) 0 0
\(505\) 18.1477 + 1.42826i 0.807563 + 0.0635566i
\(506\) −18.8990 + 7.82822i −0.840162 + 0.348007i
\(507\) 0 0
\(508\) −6.17304 + 18.9987i −0.273884 + 0.842929i
\(509\) −4.62243 1.10975i −0.204886 0.0491887i 0.129703 0.991553i \(-0.458598\pi\)
−0.334589 + 0.942364i \(0.608598\pi\)
\(510\) 0 0
\(511\) −7.94492 + 0.625279i −0.351463 + 0.0276607i
\(512\) −14.3822 + 7.32812i −0.635611 + 0.323860i
\(513\) 0 0
\(514\) −0.435524 5.53385i −0.0192101 0.244088i
\(515\) −2.03787 6.27190i −0.0897991 0.276373i
\(516\) 0 0
\(517\) −29.6621 9.63781i −1.30454 0.423870i
\(518\) 37.4432 61.1018i 1.64516 2.68466i
\(519\) 0 0
\(520\) 0.611256 7.76675i 0.0268054 0.340594i
\(521\) 20.5008 4.92180i 0.898156 0.215628i 0.242020 0.970271i \(-0.422190\pi\)
0.656135 + 0.754643i \(0.272190\pi\)
\(522\) 0 0
\(523\) 2.19950 3.02735i 0.0961773 0.132377i −0.758216 0.652003i \(-0.773929\pi\)
0.854394 + 0.519626i \(0.173929\pi\)
\(524\) 5.48296 + 5.48296i 0.239524 + 0.239524i
\(525\) 0 0
\(526\) 9.17420 10.7416i 0.400014 0.468357i
\(527\) 19.5164 16.6686i 0.850148 0.726095i
\(528\) 0 0
\(529\) 2.92388 2.12433i 0.127125 0.0923620i
\(530\) 12.0092 28.9929i 0.521648 1.25937i
\(531\) 0 0
\(532\) 22.9216i 0.993779i
\(533\) −8.52186 3.75908i −0.369123 0.162824i
\(534\) 0 0
\(535\) 2.16189 + 1.10154i 0.0934667 + 0.0476237i
\(536\) 15.4066 + 6.38161i 0.665462 + 0.275643i
\(537\) 0 0
\(538\) −11.4830 1.81873i −0.495068 0.0784111i
\(539\) −11.8749 13.9037i −0.511487 0.598874i
\(540\) 0 0
\(541\) 3.36710 + 21.2590i 0.144763 + 0.913997i 0.947985 + 0.318316i \(0.103117\pi\)
−0.803222 + 0.595680i \(0.796883\pi\)
\(542\) 13.9969 13.9969i 0.601219 0.601219i
\(543\) 0 0
\(544\) 11.8271 + 19.3001i 0.507083 + 0.827484i
\(545\) −14.9552 62.2930i −0.640611 2.66834i
\(546\) 0 0
\(547\) 1.81461 + 4.38085i 0.0775871 + 0.187312i 0.957914 0.287056i \(-0.0926766\pi\)
−0.880327 + 0.474368i \(0.842677\pi\)
\(548\) 10.7653 + 6.59701i 0.459873 + 0.281810i
\(549\) 0 0
\(550\) 10.3142 42.9616i 0.439797 1.83189i
\(551\) −12.3140 + 4.00107i −0.524595 + 0.170451i
\(552\) 0 0
\(553\) −8.33162 16.3517i −0.354296 0.695346i
\(554\) −13.3908 26.2810i −0.568921 1.11657i
\(555\) 0 0
\(556\) 4.82957 1.56922i 0.204820 0.0665499i
\(557\) −0.306985 + 1.27868i −0.0130074 + 0.0541796i −0.978496 0.206265i \(-0.933869\pi\)
0.965489 + 0.260445i \(0.0838691\pi\)
\(558\) 0 0
\(559\) −0.780730 0.478432i −0.0330214 0.0202355i
\(560\) −27.0723 65.3584i −1.14402 2.76190i
\(561\) 0 0
\(562\) 9.53603 + 39.7204i 0.402253 + 1.67551i
\(563\) 4.90670 + 8.00701i 0.206793 + 0.337455i 0.939175 0.343438i \(-0.111592\pi\)
−0.732382 + 0.680893i \(0.761592\pi\)
\(564\) 0 0
\(565\) −38.2458 + 38.2458i −1.60901 + 1.60901i
\(566\) −3.38612 21.3791i −0.142329 0.898632i
\(567\) 0 0
\(568\) −0.516626 0.604891i −0.0216771 0.0253807i
\(569\) −7.46138 1.18177i −0.312797 0.0495422i −0.00193778 0.999998i \(-0.500617\pi\)
−0.310859 + 0.950456i \(0.600617\pi\)
\(570\) 0 0
\(571\) 3.94854 + 1.63554i 0.165241 + 0.0684452i 0.463771 0.885955i \(-0.346496\pi\)
−0.298529 + 0.954400i \(0.596496\pi\)
\(572\) 4.08292 + 2.08035i 0.170716 + 0.0869839i
\(573\) 0 0
\(574\) −42.9859 + 2.40121i −1.79420 + 0.100225i
\(575\) 41.8708i 1.74613i
\(576\) 0 0
\(577\) −1.70907 + 4.12605i −0.0711493 + 0.171770i −0.955454 0.295141i \(-0.904633\pi\)
0.884304 + 0.466911i \(0.154633\pi\)
\(578\) −4.49386 + 3.26498i −0.186920 + 0.135805i
\(579\) 0 0
\(580\) −9.07001 + 7.74652i −0.376612 + 0.321657i
\(581\) 19.4121 22.7286i 0.805348 0.942941i
\(582\) 0 0
\(583\) −8.41594 8.41594i −0.348553 0.348553i
\(584\) −1.75668 + 2.41787i −0.0726921 + 0.100052i
\(585\) 0 0
\(586\) 8.13191 1.95230i 0.335926 0.0806487i
\(587\) −2.98714 + 37.9552i −0.123292 + 1.56658i 0.555041 + 0.831823i \(0.312703\pi\)
−0.678333 + 0.734755i \(0.737297\pi\)
\(588\) 0 0
\(589\) 18.0829 29.5086i 0.745092 1.21588i
\(590\) 78.5044 + 25.5076i 3.23198 + 1.05013i
\(591\) 0 0
\(592\) −16.3140 50.2094i −0.670502 2.06359i
\(593\) −1.71798 21.8290i −0.0705488 0.896408i −0.925756 0.378122i \(-0.876570\pi\)
0.855207 0.518286i \(-0.173430\pi\)
\(594\) 0 0
\(595\) −47.4475 + 24.1757i −1.94516 + 0.991108i
\(596\) −19.8912 + 1.56547i −0.814774 + 0.0641241i
\(597\) 0 0
\(598\) 11.1681 + 2.68122i 0.456697 + 0.109643i
\(599\) 2.59956 8.00062i 0.106215 0.326896i −0.883799 0.467867i \(-0.845022\pi\)
0.990014 + 0.140971i \(0.0450225\pi\)
\(600\) 0 0
\(601\) 4.90444 2.03149i 0.200056 0.0828661i −0.280406 0.959882i \(-0.590469\pi\)
0.480462 + 0.877016i \(0.340469\pi\)
\(602\) −4.21944 0.332077i −0.171971 0.0135344i
\(603\) 0 0
\(604\) −12.3535 + 7.57025i −0.502658 + 0.308029i
\(605\) 13.2142 + 9.60070i 0.537235 + 0.390324i
\(606\) 0 0
\(607\) 17.5450 2.77885i 0.712130 0.112790i 0.210149 0.977669i \(-0.432605\pi\)
0.501980 + 0.864879i \(0.332605\pi\)
\(608\) 23.2096 + 19.8228i 0.941272 + 0.803923i
\(609\) 0 0
\(610\) 6.72491 42.4594i 0.272284 1.71913i
\(611\) 10.2929 + 14.1670i 0.416407 + 0.573135i
\(612\) 0 0
\(613\) 12.3738 24.2849i 0.499772 0.980857i −0.494004 0.869460i \(-0.664467\pi\)
0.993776 0.111398i \(-0.0355327\pi\)
\(614\) −24.1937 −0.976380
\(615\) 0 0
\(616\) −13.6579 −0.550291
\(617\) −3.46177 + 6.79411i −0.139366 + 0.273520i −0.950131 0.311851i \(-0.899051\pi\)
0.810766 + 0.585371i \(0.199051\pi\)
\(618\) 0 0
\(619\) −15.8070 21.7564i −0.635335 0.874464i 0.363021 0.931781i \(-0.381745\pi\)
−0.998356 + 0.0573171i \(0.981745\pi\)
\(620\) 4.98751 31.4899i 0.200303 1.26466i
\(621\) 0 0
\(622\) 26.3804 + 22.5310i 1.05776 + 0.903411i
\(623\) 56.2340 8.90659i 2.25297 0.356835i
\(624\) 0 0
\(625\) 14.4704 + 10.5133i 0.578815 + 0.420534i
\(626\) −49.5270 + 30.3502i −1.97950 + 1.21304i
\(627\) 0 0
\(628\) 24.5858 + 1.93494i 0.981080 + 0.0772127i
\(629\) −36.7147 + 15.2077i −1.46391 + 0.606372i
\(630\) 0 0
\(631\) −13.7926 + 42.4493i −0.549076 + 1.68988i 0.162022 + 0.986787i \(0.448199\pi\)
−0.711097 + 0.703094i \(0.751801\pi\)
\(632\) −6.69204 1.60662i −0.266195 0.0639078i
\(633\) 0 0
\(634\) −26.6618 + 2.09833i −1.05887 + 0.0833353i
\(635\) −55.7587 + 28.4105i −2.21272 + 1.12744i
\(636\) 0 0
\(637\) 0.805474 + 10.2345i 0.0319140 + 0.405506i
\(638\) 3.69727 + 11.3790i 0.146376 + 0.450500i
\(639\) 0 0
\(640\) −37.6186 12.2230i −1.48700 0.483157i
\(641\) −2.31911 + 3.78444i −0.0915994 + 0.149477i −0.895158 0.445749i \(-0.852937\pi\)
0.803559 + 0.595226i \(0.202937\pi\)
\(642\) 0 0
\(643\) 0.633086 8.04412i 0.0249665 0.317229i −0.971735 0.236074i \(-0.924139\pi\)
0.996702 0.0811549i \(-0.0258608\pi\)
\(644\) 19.5184 4.68596i 0.769133 0.184653i
\(645\) 0 0
\(646\) 19.7604 27.1978i 0.777462 1.07008i
\(647\) 6.24364 + 6.24364i 0.245463 + 0.245463i 0.819106 0.573643i \(-0.194470\pi\)
−0.573643 + 0.819106i \(0.694470\pi\)
\(648\) 0 0
\(649\) 20.3317 23.8054i 0.798090 0.934443i
\(650\) −18.8633 + 16.1108i −0.739880 + 0.631917i
\(651\) 0 0
\(652\) −8.72983 + 6.34259i −0.341887 + 0.248395i
\(653\) −9.97746 + 24.0877i −0.390448 + 0.942625i 0.599394 + 0.800454i \(0.295408\pi\)
−0.989842 + 0.142171i \(0.954592\pi\)
\(654\) 0 0
\(655\) 24.2910i 0.949128i
\(656\) −19.2214 + 25.2291i −0.750468 + 0.985032i
\(657\) 0 0
\(658\) 72.1209 + 36.7474i 2.81157 + 1.43256i
\(659\) 22.9239 + 9.49540i 0.892989 + 0.369888i 0.781520 0.623880i \(-0.214444\pi\)
0.111469 + 0.993768i \(0.464444\pi\)
\(660\) 0 0
\(661\) 37.4753 + 5.93550i 1.45762 + 0.230864i 0.834390 0.551175i \(-0.185820\pi\)
0.623229 + 0.782039i \(0.285820\pi\)
\(662\) 29.8445 + 34.9435i 1.15994 + 1.35812i
\(663\) 0 0
\(664\) −1.75349 11.0711i −0.0680487 0.429643i
\(665\) −50.7745 + 50.7745i −1.96895 + 1.96895i
\(666\) 0 0
\(667\) 5.92443 + 9.66779i 0.229395 + 0.374338i
\(668\) −1.55110 6.46078i −0.0600137 0.249975i
\(669\) 0 0
\(670\) −31.0037 74.8496i −1.19778 2.89169i
\(671\) −13.9015 8.51885i −0.536662 0.328867i
\(672\) 0 0
\(673\) 10.3421 43.0779i 0.398658 1.66053i −0.306796 0.951775i \(-0.599257\pi\)
0.705454 0.708755i \(-0.250743\pi\)
\(674\) 37.8458 12.2969i 1.45777 0.473657i
\(675\) 0 0
\(676\) 6.00831 + 11.7920i 0.231089 + 0.453538i
\(677\) 1.96144 + 3.84954i 0.0753842 + 0.147950i 0.925622 0.378448i \(-0.123542\pi\)
−0.850238 + 0.526398i \(0.823542\pi\)
\(678\) 0 0
\(679\) −12.1048 + 3.93310i −0.464541 + 0.150939i
\(680\) −4.66189 + 19.4182i −0.178775 + 0.744653i
\(681\) 0 0
\(682\) −27.2680 16.7099i −1.04415 0.639854i
\(683\) 11.9074 + 28.7470i 0.455623 + 1.09997i 0.970152 + 0.242499i \(0.0779671\pi\)
−0.514528 + 0.857473i \(0.672033\pi\)
\(684\) 0 0
\(685\) 9.23343 + 38.4600i 0.352791 + 1.46948i
\(686\) 0.202431 + 0.330337i 0.00772884 + 0.0126123i
\(687\) 0 0
\(688\) −2.20481 + 2.20481i −0.0840575 + 0.0840575i
\(689\) 1.04538 + 6.60027i 0.0398258 + 0.251450i
\(690\) 0 0
\(691\) 3.03144 + 3.54936i 0.115321 + 0.135024i 0.815064 0.579371i \(-0.196702\pi\)
−0.699742 + 0.714395i \(0.746702\pi\)
\(692\) 10.0859 + 1.59746i 0.383410 + 0.0607262i
\(693\) 0 0
\(694\) −43.9782 18.2164i −1.66939 0.691483i
\(695\) 14.1742 + 7.22212i 0.537659 + 0.273951i
\(696\) 0 0
\(697\) 20.0677 + 12.9341i 0.760118 + 0.489914i
\(698\) 63.1841i 2.39155i
\(699\) 0 0
\(700\) −16.5912 + 40.0547i −0.627089 + 1.51393i
\(701\) −6.84714 + 4.97474i −0.258613 + 0.187893i −0.709535 0.704670i \(-0.751095\pi\)
0.450922 + 0.892563i \(0.351095\pi\)
\(702\) 0 0
\(703\) −40.7473 + 34.8015i −1.53681 + 1.31256i
\(704\) 1.64903 1.93077i 0.0621503 0.0727687i
\(705\) 0 0
\(706\) 0.997642 + 0.997642i 0.0375468 + 0.0375468i
\(707\) −10.5319 + 14.4960i −0.396094 + 0.545176i
\(708\) 0 0
\(709\) 0.282312 0.0677772i 0.0106025 0.00254543i −0.228141 0.973628i \(-0.573265\pi\)
0.238743 + 0.971083i \(0.423265\pi\)
\(710\) −0.303220 + 3.85278i −0.0113797 + 0.144592i
\(711\) 0 0
\(712\) 11.1560 18.2049i 0.418089 0.682259i
\(713\) −28.8241 9.36553i −1.07947 0.350742i
\(714\) 0 0
\(715\) 4.43596 + 13.6525i 0.165896 + 0.510574i
\(716\) 0.785155 + 9.97634i 0.0293426 + 0.372833i
\(717\) 0 0
\(718\) 8.41728 4.28882i 0.314130 0.160057i
\(719\) 11.8294 0.930995i 0.441163 0.0347203i 0.144067 0.989568i \(-0.453982\pi\)
0.297096 + 0.954848i \(0.403982\pi\)
\(720\) 0 0
\(721\) 6.31176 + 1.51532i 0.235062 + 0.0564335i
\(722\) 3.47928 10.7081i 0.129486 0.398516i
\(723\) 0 0
\(724\) 2.89636 1.19971i 0.107642 0.0445869i
\(725\) −24.4144 1.92145i −0.906728 0.0713610i
\(726\) 0 0
\(727\) −23.7547 + 14.5569i −0.881012 + 0.539885i −0.887871 0.460092i \(-0.847816\pi\)
0.00685962 + 0.999976i \(0.497816\pi\)
\(728\) 6.20389 + 4.50739i 0.229931 + 0.167055i
\(729\) 0 0
\(730\) 14.3410 2.27139i 0.530783 0.0840678i
\(731\) 1.78475 + 1.52432i 0.0660114 + 0.0563791i
\(732\) 0 0
\(733\) −2.88665 + 18.2256i −0.106621 + 0.673178i 0.875256 + 0.483659i \(0.160693\pi\)
−0.981877 + 0.189518i \(0.939307\pi\)
\(734\) −12.3400 16.9846i −0.455479 0.626912i
\(735\) 0 0
\(736\) 12.1349 23.8161i 0.447298 0.877872i
\(737\) −30.7267 −1.13183
\(738\) 0 0
\(739\) −23.8465 −0.877207 −0.438603 0.898681i \(-0.644527\pi\)
−0.438603 + 0.898681i \(0.644527\pi\)
\(740\) −22.4114 + 43.9848i −0.823859 + 1.61691i
\(741\) 0 0
\(742\) 18.1560 + 24.9896i 0.666529 + 0.917398i
\(743\) −0.364544 + 2.30164i −0.0133738 + 0.0844390i −0.993472 0.114072i \(-0.963611\pi\)
0.980099 + 0.198511i \(0.0636105\pi\)
\(744\) 0 0
\(745\) −47.5294 40.5939i −1.74134 1.48725i
\(746\) 39.8013 6.30391i 1.45723 0.230803i
\(747\) 0 0
\(748\) −9.50265 6.90408i −0.347451 0.252438i
\(749\) −2.03632 + 1.24786i −0.0744054 + 0.0455957i
\(750\) 0 0
\(751\) −24.7566 1.94839i −0.903381 0.0710977i −0.381747 0.924267i \(-0.624677\pi\)
−0.521634 + 0.853169i \(0.674677\pi\)
\(752\) 55.0917 22.8197i 2.00899 0.832149i
\(753\) 0 0
\(754\) 2.07589 6.38894i 0.0755996 0.232672i
\(755\) −44.1339 10.5956i −1.60620 0.385614i
\(756\) 0 0
\(757\) −34.7576 + 2.73548i −1.26329 + 0.0994228i −0.692344 0.721567i \(-0.743422\pi\)
−0.570942 + 0.820990i \(0.693422\pi\)
\(758\) −3.08288 + 1.57081i −0.111975 + 0.0570542i
\(759\) 0 0
\(760\) 2.11275 + 26.8451i 0.0766376 + 0.973773i
\(761\) −9.99870 30.7728i −0.362453 1.11551i −0.951561 0.307460i \(-0.900521\pi\)
0.589108 0.808054i \(-0.299479\pi\)
\(762\) 0 0
\(763\) 59.9709 + 19.4857i 2.17109 + 0.705430i
\(764\) 3.15184 5.14334i 0.114030 0.186079i
\(765\) 0 0
\(766\) −3.78302 + 48.0678i −0.136686 + 1.73676i
\(767\) −17.0917 + 4.10335i −0.617145 + 0.148164i
\(768\) 0 0
\(769\) −19.2954 + 26.5578i −0.695810 + 0.957700i 0.304177 + 0.952615i \(0.401618\pi\)
−0.999987 + 0.00508457i \(0.998382\pi\)
\(770\) 46.9192 + 46.9192i 1.69085 + 1.69085i
\(771\) 0 0
\(772\) 4.58316 5.36619i 0.164951 0.193133i
\(773\) 10.0608 8.59271i 0.361861 0.309058i −0.449866 0.893096i \(-0.648528\pi\)
0.811726 + 0.584038i \(0.198528\pi\)
\(774\) 0 0
\(775\) 52.9582 38.4764i 1.90232 1.38211i
\(776\) −1.82657 + 4.40974i −0.0655702 + 0.158300i
\(777\) 0 0
\(778\) 30.8429i 1.10577i
\(779\) 31.1250 + 8.22517i 1.11517 + 0.294697i
\(780\) 0 0
\(781\) 1.30598 + 0.665432i 0.0467318 + 0.0238110i
\(782\) −27.1994 11.2664i −0.972649 0.402884i
\(783\) 0 0
\(784\) 34.5286 + 5.46879i 1.23316 + 0.195314i
\(785\) 50.1747 + 58.7470i 1.79081 + 2.09677i
\(786\) 0 0
\(787\) 4.46841 + 28.2125i 0.159282 + 1.00567i 0.929751 + 0.368189i \(0.120022\pi\)
−0.770469 + 0.637477i \(0.779978\pi\)
\(788\) 14.6068 14.6068i 0.520347 0.520347i
\(789\) 0 0
\(790\) 17.4701 + 28.5086i 0.621559 + 1.01429i
\(791\) −12.4282 51.7674i −0.441897 1.84064i
\(792\) 0 0
\(793\) 3.50316 + 8.45737i 0.124401 + 0.300330i
\(794\) −44.5070 27.2739i −1.57949 0.967914i
\(795\) 0 0
\(796\) −0.656990 + 2.73656i −0.0232864 + 0.0969947i
\(797\) −24.4797 + 7.95394i −0.867116 + 0.281743i −0.708597 0.705613i \(-0.750672\pi\)
−0.158518 + 0.987356i \(0.550672\pi\)
\(798\) 0 0
\(799\) −20.3781 39.9943i −0.720925 1.41490i
\(800\) 26.2097 + 51.4394i 0.926651 + 1.81866i
\(801\) 0 0
\(802\) 21.3793 6.94657i 0.754931 0.245292i
\(803\) 1.28554 5.35466i 0.0453657 0.188962i
\(804\) 0 0
\(805\) 53.6160 + 32.8559i 1.88971 + 1.15802i
\(806\) 6.87149 + 16.5893i 0.242038 + 0.584331i
\(807\) 0 0
\(808\) 1.56862 + 6.53379i 0.0551840 + 0.229858i
\(809\) 16.1305 + 26.3226i 0.567119 + 0.925454i 0.999715 + 0.0238659i \(0.00759747\pi\)
−0.432597 + 0.901588i \(0.642403\pi\)
\(810\) 0 0
\(811\) 21.4227 21.4227i 0.752253 0.752253i −0.222646 0.974899i \(-0.571469\pi\)
0.974899 + 0.222646i \(0.0714694\pi\)
\(812\) −1.83663 11.5960i −0.0644530 0.406940i
\(813\) 0 0
\(814\) 32.1590 + 37.6534i 1.12717 + 1.31975i
\(815\) −33.3875 5.28806i −1.16951 0.185233i
\(816\) 0 0
\(817\) 2.92399 + 1.21116i 0.102297 + 0.0423730i
\(818\) −60.6506 30.9030i −2.12060 1.08050i
\(819\) 0 0
\(820\) 29.3904 3.97230i 1.02636 0.138719i
\(821\) 30.5245i 1.06531i −0.846331 0.532657i \(-0.821194\pi\)
0.846331 0.532657i \(-0.178806\pi\)
\(822\) 0 0
\(823\) 9.95339 24.0296i 0.346953 0.837619i −0.650023 0.759914i \(-0.725241\pi\)
0.996976 0.0777048i \(-0.0247592\pi\)
\(824\) 1.96934 1.43081i 0.0686053 0.0498447i
\(825\) 0 0
\(826\) −61.7817 + 52.7665i −2.14966 + 1.83598i
\(827\) −26.7239 + 31.2897i −0.929282 + 1.08805i 0.0666347 + 0.997777i \(0.478774\pi\)
−0.995917 + 0.0902724i \(0.971226\pi\)
\(828\) 0 0
\(829\) −19.7700 19.7700i −0.686642 0.686642i 0.274846 0.961488i \(-0.411373\pi\)
−0.961488 + 0.274846i \(0.911373\pi\)
\(830\) −32.0091 + 44.0568i −1.11105 + 1.52923i
\(831\) 0 0
\(832\) −1.38625 + 0.332808i −0.0480595 + 0.0115381i
\(833\) 2.06466 26.2340i 0.0715362 0.908954i
\(834\) 0 0
\(835\) 10.8756 17.7474i 0.376367 0.614175i
\(836\) −15.0634 4.89438i −0.520977 0.169276i
\(837\) 0 0
\(838\) −2.38700 7.34644i −0.0824577 0.253779i
\(839\) 0.388483 + 4.93614i 0.0134119 + 0.170415i 0.999975 + 0.00703531i \(0.00223943\pi\)
−0.986563 + 0.163379i \(0.947761\pi\)
\(840\) 0 0
\(841\) −19.9301 + 10.1549i −0.687246 + 0.350169i
\(842\) 25.6448 2.01829i 0.883779 0.0695549i
\(843\) 0 0
\(844\) −8.39326 2.01504i −0.288908 0.0693607i
\(845\) −12.8116 + 39.4301i −0.440733 + 1.35644i
\(846\) 0 0
\(847\) −14.8534 + 6.15248i −0.510369 + 0.211402i
\(848\) 22.6857 + 1.78540i 0.779029 + 0.0613109i
\(849\) 0 0
\(850\) 54.2170 33.2242i 1.85963 1.13958i
\(851\) 37.9646 + 27.5829i 1.30141 + 0.945528i
\(852\) 0 0
\(853\) 15.0018 2.37604i 0.513650 0.0813542i 0.105772 0.994390i \(-0.466269\pi\)
0.407878 + 0.913036i \(0.366269\pi\)
\(854\) 32.1755 + 27.4805i 1.10102 + 0.940363i
\(855\) 0 0
\(856\) −0.140106 + 0.884594i −0.00478872 + 0.0302348i
\(857\) −20.1093 27.6781i −0.686922 0.945467i 0.313069 0.949730i \(-0.398643\pi\)
−0.999991 + 0.00426317i \(0.998643\pi\)
\(858\) 0 0
\(859\) −12.5277 + 24.5869i −0.427439 + 0.838896i 0.572382 + 0.819987i \(0.306019\pi\)
−0.999821 + 0.0189090i \(0.993981\pi\)
\(860\) 2.91561 0.0994214
\(861\) 0 0
\(862\) 58.1482 1.98054
\(863\) 25.0530 49.1693i 0.852814 1.67374i 0.120565 0.992705i \(-0.461529\pi\)
0.732249 0.681037i \(-0.238471\pi\)
\(864\) 0 0
\(865\) 18.8032 + 25.8803i 0.639327 + 0.879958i
\(866\) −0.972371 + 6.13931i −0.0330425 + 0.208622i
\(867\) 0 0
\(868\) 23.8629 + 20.3808i 0.809959 + 0.691770i
\(869\) 12.5249 1.98374i 0.424877 0.0672938i
\(870\) 0 0
\(871\) 13.9572 + 10.1405i 0.472921 + 0.343597i
\(872\) 20.1625 12.3556i 0.682788 0.418413i
\(873\) 0 0
\(874\) −39.5760 3.11470i −1.33868 0.105356i
\(875\) −59.5048 + 24.6477i −2.01163 + 0.833244i
\(876\) 0 0
\(877\) 1.57215 4.83859i 0.0530878 0.163387i −0.920997 0.389569i \(-0.872624\pi\)
0.974085 + 0.226181i \(0.0726241\pi\)
\(878\) −28.5399 6.85184i −0.963177 0.231238i
\(879\) 0 0
\(880\) 48.7321 3.83530i 1.64276 0.129288i
\(881\) 12.2787 6.25633i 0.413681 0.210781i −0.234748 0.972056i \(-0.575426\pi\)
0.648429 + 0.761275i \(0.275426\pi\)
\(882\) 0 0
\(883\) −3.75557 47.7191i −0.126385 1.60587i −0.654070 0.756434i \(-0.726940\pi\)
0.527685 0.849440i \(-0.323060\pi\)
\(884\) 2.03795 + 6.27216i 0.0685436 + 0.210956i
\(885\) 0 0
\(886\) 37.4155 + 12.1570i 1.25700 + 0.408423i
\(887\) 15.6778 25.5839i 0.526410 0.859023i −0.473351 0.880874i \(-0.656956\pi\)
0.999761 + 0.0218506i \(0.00695583\pi\)
\(888\) 0 0
\(889\) 4.83283 61.4069i 0.162088 2.05952i
\(890\) −100.865 + 24.2154i −3.38099 + 0.811703i
\(891\) 0 0
\(892\) −17.6900 + 24.3482i −0.592305 + 0.815239i
\(893\) −42.7987 42.7987i −1.43220 1.43220i
\(894\) 0 0
\(895\) −20.3597 + 23.8382i −0.680551 + 0.796823i
\(896\) 29.6052 25.2852i 0.989039 0.844719i
\(897\) 0 0
\(898\) −22.1620 + 16.1016i −0.739554 + 0.537317i
\(899\) −6.78368 + 16.3773i −0.226248 + 0.546212i
\(900\) 0 0
\(901\) 17.1293i 0.570658i
\(902\) 7.60064 28.7617i 0.253073 0.957659i
\(903\) 0 0
\(904\) −17.7889 9.06391i −0.591651 0.301461i
\(905\) 9.07336 + 3.75831i 0.301609 + 0.124930i
\(906\) 0 0
\(907\) −10.6037 1.67946i −0.352089 0.0557654i −0.0221149 0.999755i \(-0.507040\pi\)
−0.329974 + 0.943990i \(0.607040\pi\)
\(908\) 12.3755 + 14.4899i 0.410696 + 0.480864i
\(909\) 0 0
\(910\) −5.82804 36.7968i −0.193198 1.21980i
\(911\) 21.9898 21.9898i 0.728554 0.728554i −0.241778 0.970332i \(-0.577731\pi\)
0.970332 + 0.241778i \(0.0777306\pi\)
\(912\) 0 0
\(913\) 10.7915 + 17.6102i 0.357147 + 0.582811i
\(914\) 4.30538 + 17.9332i 0.142409 + 0.593177i
\(915\) 0 0
\(916\) 2.30391 + 5.56214i 0.0761235 + 0.183778i
\(917\) −20.3862 12.4927i −0.673213 0.412546i
\(918\) 0 0
\(919\) −8.98543 + 37.4270i −0.296402 + 1.23460i 0.603092 + 0.797671i \(0.293935\pi\)
−0.899494 + 0.436932i \(0.856065\pi\)
\(920\) 22.4274 7.28711i 0.739410 0.240249i
\(921\) 0 0
\(922\) −14.6010 28.6561i −0.480859 0.943739i
\(923\) −0.373618 0.733266i −0.0122978 0.0241358i
\(924\) 0 0
\(925\) −96.3946 + 31.3205i −3.16943 + 1.02981i
\(926\) 0.192784 0.803002i 0.00633527 0.0263883i
\(927\) 0 0
\(928\) −13.3300 8.16864i −0.437579 0.268149i
\(929\) 22.2144 + 53.6303i 0.728830 + 1.75955i 0.646458 + 0.762950i \(0.276250\pi\)
0.0823724 + 0.996602i \(0.473750\pi\)
\(930\) 0 0
\(931\) −8.28360 34.5037i −0.271484 1.13081i
\(932\) −9.66030 15.7642i −0.316434 0.516373i
\(933\) 0 0
\(934\) −42.4180 + 42.4180i −1.38796 + 1.38796i
\(935\) −5.75619 36.3432i −0.188248 1.18855i
\(936\) 0 0
\(937\) 29.8702 + 34.9735i 0.975817 + 1.14254i 0.989776 + 0.142633i \(0.0455568\pi\)
−0.0139582 + 0.999903i \(0.504443\pi\)
\(938\) 78.7626 + 12.4748i 2.57169 + 0.407316i
\(939\) 0 0
\(940\) −51.5145 21.3380i −1.68022 0.695969i
\(941\) −1.68174 0.856888i −0.0548231 0.0279338i 0.426364 0.904552i \(-0.359794\pi\)
−0.481187 + 0.876618i \(0.659794\pi\)
\(942\) 0 0
\(943\) 0.640967 28.1853i 0.0208728 0.917839i
\(944\) 59.8555i 1.94813i
\(945\) 0 0
\(946\) 1.11919 2.70197i 0.0363881 0.0878487i
\(947\) −5.71910 + 4.15517i −0.185846 + 0.135025i −0.676818 0.736150i \(-0.736642\pi\)
0.490972 + 0.871175i \(0.336642\pi\)
\(948\) 0 0
\(949\) −2.35109 + 2.00802i −0.0763197 + 0.0651832i
\(950\) 55.6855 65.1994i 1.80668 2.11535i
\(951\) 0 0
\(952\) −13.8991 13.8991i −0.450474 0.450474i
\(953\) −3.98479 + 5.48459i −0.129080 + 0.177663i −0.868665 0.495400i \(-0.835022\pi\)
0.739585 + 0.673063i \(0.235022\pi\)
\(954\) 0 0
\(955\) 18.3750 4.41144i 0.594600 0.142751i
\(956\) 0.418926 5.32296i 0.0135490 0.172157i
\(957\) 0 0
\(958\) −16.0508 + 26.1925i −0.518578 + 0.846242i
\(959\) −37.0263 12.0306i −1.19564 0.388487i
\(960\) 0 0
\(961\) −5.06235 15.5803i −0.163302 0.502591i
\(962\) −2.18135 27.7167i −0.0703296 0.893622i
\(963\) 0 0
\(964\) 32.7344 16.6790i 1.05430 0.537195i
\(965\) 22.0392 1.73452i 0.709465 0.0558361i
\(966\) 0 0
\(967\) −18.4416 4.42742i −0.593040 0.142376i −0.0741938 0.997244i \(-0.523638\pi\)
−0.518846 + 0.854867i \(0.673638\pi\)
\(968\) −1.86311 + 5.73405i −0.0598825 + 0.184299i
\(969\) 0 0
\(970\) 21.4238 8.87403i 0.687877 0.284928i
\(971\) 21.4588 + 1.68885i 0.688647 + 0.0541977i 0.417954 0.908468i \(-0.362747\pi\)
0.270693 + 0.962666i \(0.412747\pi\)
\(972\) 0 0
\(973\) −13.3509 + 8.18143i −0.428010 + 0.262285i
\(974\) −41.1917 29.9275i −1.31987 0.958941i
\(975\) 0 0
\(976\) 30.7886 4.87644i 0.985520 0.156091i
\(977\) 0.377440 + 0.322364i 0.0120754 + 0.0103133i 0.655465 0.755225i \(-0.272473\pi\)
−0.643390 + 0.765539i \(0.722473\pi\)
\(978\) 0 0
\(979\) −6.15434 + 38.8570i −0.196694 + 1.24187i
\(980\) −19.2141 26.4460i −0.613773 0.844786i
\(981\) 0 0
\(982\) 23.4346 45.9930i 0.747828 1.46769i
\(983\) 10.1572 0.323964 0.161982 0.986794i \(-0.448211\pi\)
0.161982 + 0.986794i \(0.448211\pi\)
\(984\) 0 0
\(985\) 64.7123 2.06190
\(986\) −7.81748 + 15.3427i −0.248959 + 0.488610i
\(987\) 0 0
\(988\) 5.22707 + 7.19444i 0.166295 + 0.228886i
\(989\) 0.433571 2.73746i 0.0137868 0.0870462i
\(990\) 0 0
\(991\) 30.2662 + 25.8498i 0.961437 + 0.821145i 0.983921 0.178602i \(-0.0571575\pi\)
−0.0224839 + 0.999747i \(0.507157\pi\)
\(992\) 41.2737 6.53711i 1.31044 0.207554i
\(993\) 0 0
\(994\) −3.07751 2.23594i −0.0976126 0.0709197i
\(995\) −7.51717 + 4.60653i −0.238310 + 0.146037i
\(996\) 0 0
\(997\) 43.0384 + 3.38719i 1.36304 + 0.107273i 0.738781 0.673945i \(-0.235402\pi\)
0.624257 + 0.781219i \(0.285402\pi\)
\(998\) −13.3732 + 5.53934i −0.423320 + 0.175345i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 369.2.ba.b.341.6 yes 112
3.2 odd 2 369.2.ba.a.341.2 yes 112
41.19 odd 40 369.2.ba.a.224.2 112
123.101 even 40 inner 369.2.ba.b.224.6 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
369.2.ba.a.224.2 112 41.19 odd 40
369.2.ba.a.341.2 yes 112 3.2 odd 2
369.2.ba.b.224.6 yes 112 123.101 even 40 inner
369.2.ba.b.341.6 yes 112 1.1 even 1 trivial