| L(s) = 1 | + (0.814 + 1.59i)2-s + (−0.714 + 0.983i)4-s + (0.595 + 3.76i)5-s + (2.85 − 2.43i)7-s + (1.38 + 0.219i)8-s + (−5.52 + 4.01i)10-s + (−2.20 − 1.35i)11-s + (1.45 − 0.114i)13-s + (6.21 + 2.57i)14-s + (1.53 + 4.71i)16-s + (−3.62 + 0.870i)17-s + (−5.01 − 0.394i)19-s + (−4.12 − 2.10i)20-s + (0.364 − 4.63i)22-s + (1.36 − 4.18i)23-s + ⋯ |
| L(s) = 1 | + (0.575 + 1.12i)2-s + (−0.357 + 0.491i)4-s + (0.266 + 1.68i)5-s + (1.07 − 0.920i)7-s + (0.490 + 0.0777i)8-s + (−1.74 + 1.26i)10-s + (−0.666 − 0.408i)11-s + (0.402 − 0.0316i)13-s + (1.66 + 0.687i)14-s + (0.382 + 1.17i)16-s + (−0.879 + 0.211i)17-s + (−1.14 − 0.0904i)19-s + (−0.922 − 0.470i)20-s + (0.0777 − 0.987i)22-s + (0.283 − 0.873i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.330 - 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.330 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.20537 + 1.69904i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.20537 + 1.69904i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 41 | \( 1 + (6.04 - 2.11i)T \) |
| good | 2 | \( 1 + (-0.814 - 1.59i)T + (-1.17 + 1.61i)T^{2} \) |
| 5 | \( 1 + (-0.595 - 3.76i)T + (-4.75 + 1.54i)T^{2} \) |
| 7 | \( 1 + (-2.85 + 2.43i)T + (1.09 - 6.91i)T^{2} \) |
| 11 | \( 1 + (2.20 + 1.35i)T + (4.99 + 9.80i)T^{2} \) |
| 13 | \( 1 + (-1.45 + 0.114i)T + (12.8 - 2.03i)T^{2} \) |
| 17 | \( 1 + (3.62 - 0.870i)T + (15.1 - 7.71i)T^{2} \) |
| 19 | \( 1 + (5.01 + 0.394i)T + (18.7 + 2.97i)T^{2} \) |
| 23 | \( 1 + (-1.36 + 4.18i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-2.50 - 0.601i)T + (25.8 + 13.1i)T^{2} \) |
| 31 | \( 1 + (4.04 + 5.56i)T + (-9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-8.62 - 6.26i)T + (11.4 + 35.1i)T^{2} \) |
| 43 | \( 1 + (0.560 - 0.285i)T + (25.2 - 34.7i)T^{2} \) |
| 47 | \( 1 + (-7.81 + 9.15i)T + (-7.35 - 46.4i)T^{2} \) |
| 53 | \( 1 + (-1.07 + 4.46i)T + (-47.2 - 24.0i)T^{2} \) |
| 59 | \( 1 + (11.4 + 3.73i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.85 + 5.60i)T + (-35.8 - 49.3i)T^{2} \) |
| 67 | \( 1 + (-10.1 + 6.19i)T + (30.4 - 59.6i)T^{2} \) |
| 71 | \( 1 + (0.295 - 0.482i)T + (-32.2 - 63.2i)T^{2} \) |
| 73 | \( 1 + (1.50 + 1.50i)T + 73iT^{2} \) |
| 79 | \( 1 + (4.52 - 1.87i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 - 7.97iT - 83T^{2} \) |
| 89 | \( 1 + (-9.86 - 11.5i)T + (-13.9 + 87.9i)T^{2} \) |
| 97 | \( 1 + (1.77 + 2.89i)T + (-44.0 + 86.4i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.20969680650351353009964808226, −10.87269453077074521991257589711, −10.21979656069921958917688052433, −8.379611240207147759094628930428, −7.67857365616874345190030232166, −6.72126730013544463428720327306, −6.24037782460038926720519236009, −4.91012634751489866047632642222, −3.87968017580771377578091794503, −2.24653946974150099593787131359,
1.48300153574019981342320352857, 2.39577601183602663414686427008, 4.25759892783539385074888200786, 4.88469189389889968323145546848, 5.71240953352104340556611269314, 7.62932276048768646249626036625, 8.627021874699506906516748137615, 9.212794067241586740312314586131, 10.51684454856848232724677925614, 11.34270657948537266318660305294