Properties

Label 3675.1.bf.c
Level $3675$
Weight $1$
Character orbit 3675.bf
Analytic conductor $1.834$
Analytic rank $0$
Dimension $16$
Projective image $D_{8}$
CM discriminant -15
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3675,1,Mod(68,3675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3675, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3675.68"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3675.bf (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,8,8,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,-16,0,-8,0,0,0,0,0,0,0,0,8,16,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(61)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.83406392143\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{48})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.0.13897288125.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{48}^{23} + \zeta_{48}^{5}) q^{2} - \zeta_{48}^{10} q^{3} + ( - \zeta_{48}^{22} + \cdots + \zeta_{48}^{4}) q^{4} + ( - \zeta_{48}^{15} - \zeta_{48}^{9}) q^{6} + ( - \zeta_{48}^{21} + \cdots + \zeta_{48}^{3}) q^{8} + \cdots + ( - \zeta_{48}^{23} - \zeta_{48}^{17}) q^{96} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{12} + 8 q^{16} + 8 q^{17} - 16 q^{36} - 8 q^{38} + 8 q^{47} + 16 q^{48} - 16 q^{62} + 8 q^{68} + 8 q^{81} + 16 q^{83}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3675\mathbb{Z}\right)^\times\).

\(n\) \(1177\) \(1226\) \(2551\)
\(\chi(n)\) \(\zeta_{48}^{12}\) \(-1\) \(\zeta_{48}^{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
68.1
−0.991445 + 0.130526i
−0.130526 0.991445i
0.130526 + 0.991445i
0.991445 0.130526i
−0.608761 0.793353i
0.793353 0.608761i
−0.793353 + 0.608761i
0.608761 + 0.793353i
−0.608761 + 0.793353i
0.793353 + 0.608761i
−0.793353 0.608761i
0.608761 0.793353i
−0.991445 0.130526i
−0.130526 + 0.991445i
0.130526 0.991445i
0.991445 + 0.130526i
−1.78480 + 0.478235i −0.258819 + 0.965926i 2.09077 1.20711i 0 1.84776i 0 −1.84776 + 1.84776i −0.866025 0.500000i 0
68.2 −0.739288 + 0.198092i 0.258819 0.965926i −0.358719 + 0.207107i 0 0.765367i 0 0.765367 0.765367i −0.866025 0.500000i 0
68.3 0.739288 0.198092i 0.258819 0.965926i −0.358719 + 0.207107i 0 0.765367i 0 −0.765367 + 0.765367i −0.866025 0.500000i 0
68.4 1.78480 0.478235i −0.258819 + 0.965926i 2.09077 1.20711i 0 1.84776i 0 1.84776 1.84776i −0.866025 0.500000i 0
668.1 −0.478235 + 1.78480i 0.965926 0.258819i −2.09077 1.20711i 0 1.84776i 0 1.84776 1.84776i 0.866025 0.500000i 0
668.2 −0.198092 + 0.739288i −0.965926 + 0.258819i 0.358719 + 0.207107i 0 0.765367i 0 −0.765367 + 0.765367i 0.866025 0.500000i 0
668.3 0.198092 0.739288i −0.965926 + 0.258819i 0.358719 + 0.207107i 0 0.765367i 0 0.765367 0.765367i 0.866025 0.500000i 0
668.4 0.478235 1.78480i 0.965926 0.258819i −2.09077 1.20711i 0 1.84776i 0 −1.84776 + 1.84776i 0.866025 0.500000i 0
1832.1 −0.478235 1.78480i 0.965926 + 0.258819i −2.09077 + 1.20711i 0 1.84776i 0 1.84776 + 1.84776i 0.866025 + 0.500000i 0
1832.2 −0.198092 0.739288i −0.965926 0.258819i 0.358719 0.207107i 0 0.765367i 0 −0.765367 0.765367i 0.866025 + 0.500000i 0
1832.3 0.198092 + 0.739288i −0.965926 0.258819i 0.358719 0.207107i 0 0.765367i 0 0.765367 + 0.765367i 0.866025 + 0.500000i 0
1832.4 0.478235 + 1.78480i 0.965926 + 0.258819i −2.09077 + 1.20711i 0 1.84776i 0 −1.84776 1.84776i 0.866025 + 0.500000i 0
2432.1 −1.78480 0.478235i −0.258819 0.965926i 2.09077 + 1.20711i 0 1.84776i 0 −1.84776 1.84776i −0.866025 + 0.500000i 0
2432.2 −0.739288 0.198092i 0.258819 + 0.965926i −0.358719 0.207107i 0 0.765367i 0 0.765367 + 0.765367i −0.866025 + 0.500000i 0
2432.3 0.739288 + 0.198092i 0.258819 + 0.965926i −0.358719 0.207107i 0 0.765367i 0 −0.765367 0.765367i −0.866025 + 0.500000i 0
2432.4 1.78480 + 0.478235i −0.258819 0.965926i 2.09077 + 1.20711i 0 1.84776i 0 1.84776 + 1.84776i −0.866025 + 0.500000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 68.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
5.c odd 4 1 inner
7.c even 3 1 inner
15.e even 4 1 inner
21.c even 2 1 inner
21.g even 6 1 inner
35.c odd 2 1 inner
35.f even 4 1 inner
35.i odd 6 1 inner
35.k even 12 1 inner
35.l odd 12 1 inner
105.k odd 4 1 inner
105.o odd 6 1 inner
105.w odd 12 1 inner
105.x even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3675.1.bf.c 16
3.b odd 2 1 3675.1.bf.d 16
5.b even 2 1 3675.1.bf.d 16
5.c odd 4 1 inner 3675.1.bf.c 16
5.c odd 4 1 3675.1.bf.d 16
7.b odd 2 1 3675.1.bf.d 16
7.c even 3 1 3675.1.k.c yes 8
7.c even 3 1 inner 3675.1.bf.c 16
7.d odd 6 1 3675.1.k.a 8
7.d odd 6 1 3675.1.bf.d 16
15.d odd 2 1 CM 3675.1.bf.c 16
15.e even 4 1 inner 3675.1.bf.c 16
15.e even 4 1 3675.1.bf.d 16
21.c even 2 1 inner 3675.1.bf.c 16
21.g even 6 1 3675.1.k.c yes 8
21.g even 6 1 inner 3675.1.bf.c 16
21.h odd 6 1 3675.1.k.a 8
21.h odd 6 1 3675.1.bf.d 16
35.c odd 2 1 inner 3675.1.bf.c 16
35.f even 4 1 inner 3675.1.bf.c 16
35.f even 4 1 3675.1.bf.d 16
35.i odd 6 1 3675.1.k.c yes 8
35.i odd 6 1 inner 3675.1.bf.c 16
35.j even 6 1 3675.1.k.a 8
35.j even 6 1 3675.1.bf.d 16
35.k even 12 1 3675.1.k.a 8
35.k even 12 1 3675.1.k.c yes 8
35.k even 12 1 inner 3675.1.bf.c 16
35.k even 12 1 3675.1.bf.d 16
35.l odd 12 1 3675.1.k.a 8
35.l odd 12 1 3675.1.k.c yes 8
35.l odd 12 1 inner 3675.1.bf.c 16
35.l odd 12 1 3675.1.bf.d 16
105.g even 2 1 3675.1.bf.d 16
105.k odd 4 1 inner 3675.1.bf.c 16
105.k odd 4 1 3675.1.bf.d 16
105.o odd 6 1 3675.1.k.c yes 8
105.o odd 6 1 inner 3675.1.bf.c 16
105.p even 6 1 3675.1.k.a 8
105.p even 6 1 3675.1.bf.d 16
105.w odd 12 1 3675.1.k.a 8
105.w odd 12 1 3675.1.k.c yes 8
105.w odd 12 1 inner 3675.1.bf.c 16
105.w odd 12 1 3675.1.bf.d 16
105.x even 12 1 3675.1.k.a 8
105.x even 12 1 3675.1.k.c yes 8
105.x even 12 1 inner 3675.1.bf.c 16
105.x even 12 1 3675.1.bf.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3675.1.k.a 8 7.d odd 6 1
3675.1.k.a 8 21.h odd 6 1
3675.1.k.a 8 35.j even 6 1
3675.1.k.a 8 35.k even 12 1
3675.1.k.a 8 35.l odd 12 1
3675.1.k.a 8 105.p even 6 1
3675.1.k.a 8 105.w odd 12 1
3675.1.k.a 8 105.x even 12 1
3675.1.k.c yes 8 7.c even 3 1
3675.1.k.c yes 8 21.g even 6 1
3675.1.k.c yes 8 35.i odd 6 1
3675.1.k.c yes 8 35.k even 12 1
3675.1.k.c yes 8 35.l odd 12 1
3675.1.k.c yes 8 105.o odd 6 1
3675.1.k.c yes 8 105.w odd 12 1
3675.1.k.c yes 8 105.x even 12 1
3675.1.bf.c 16 1.a even 1 1 trivial
3675.1.bf.c 16 5.c odd 4 1 inner
3675.1.bf.c 16 7.c even 3 1 inner
3675.1.bf.c 16 15.d odd 2 1 CM
3675.1.bf.c 16 15.e even 4 1 inner
3675.1.bf.c 16 21.c even 2 1 inner
3675.1.bf.c 16 21.g even 6 1 inner
3675.1.bf.c 16 35.c odd 2 1 inner
3675.1.bf.c 16 35.f even 4 1 inner
3675.1.bf.c 16 35.i odd 6 1 inner
3675.1.bf.c 16 35.k even 12 1 inner
3675.1.bf.c 16 35.l odd 12 1 inner
3675.1.bf.c 16 105.k odd 4 1 inner
3675.1.bf.c 16 105.o odd 6 1 inner
3675.1.bf.c 16 105.w odd 12 1 inner
3675.1.bf.c 16 105.x even 12 1 inner
3675.1.bf.d 16 3.b odd 2 1
3675.1.bf.d 16 5.b even 2 1
3675.1.bf.d 16 5.c odd 4 1
3675.1.bf.d 16 7.b odd 2 1
3675.1.bf.d 16 7.d odd 6 1
3675.1.bf.d 16 15.e even 4 1
3675.1.bf.d 16 21.h odd 6 1
3675.1.bf.d 16 35.f even 4 1
3675.1.bf.d 16 35.j even 6 1
3675.1.bf.d 16 35.k even 12 1
3675.1.bf.d 16 35.l odd 12 1
3675.1.bf.d 16 105.g even 2 1
3675.1.bf.d 16 105.k odd 4 1
3675.1.bf.d 16 105.p even 6 1
3675.1.bf.d 16 105.w odd 12 1
3675.1.bf.d 16 105.x even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3675, [\chi])\):

\( T_{2}^{16} - 12T_{2}^{12} + 140T_{2}^{8} - 48T_{2}^{4} + 16 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17}^{4} - 2T_{17}^{3} + 2T_{17}^{2} - 4T_{17} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} - 12 T^{12} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( (T^{8} - T^{4} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{16} \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( T^{16} \) Copy content Toggle raw display
$17$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{4} \) Copy content Toggle raw display
$19$ \( (T^{8} + 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{16} - 12 T^{12} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{16} \) Copy content Toggle raw display
$31$ \( (T^{8} - 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{16} \) Copy content Toggle raw display
$41$ \( T^{16} \) Copy content Toggle raw display
$43$ \( T^{16} \) Copy content Toggle raw display
$47$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{4} \) Copy content Toggle raw display
$53$ \( T^{16} - 12 T^{12} + \cdots + 16 \) Copy content Toggle raw display
$59$ \( T^{16} \) Copy content Toggle raw display
$61$ \( (T^{8} - 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} \) Copy content Toggle raw display
$71$ \( T^{16} \) Copy content Toggle raw display
$73$ \( T^{16} \) Copy content Toggle raw display
$79$ \( (T^{4} - 2 T^{2} + 4)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 2 T + 2)^{8} \) Copy content Toggle raw display
$89$ \( T^{16} \) Copy content Toggle raw display
$97$ \( T^{16} \) Copy content Toggle raw display
show more
show less