L(s) = 1 | + (0.739 + 0.198i)2-s + (0.258 + 0.965i)3-s + (−0.358 − 0.207i)4-s + 0.765i·6-s + (−0.765 − 0.765i)8-s + (−0.866 + 0.499i)9-s + (0.107 − 0.400i)12-s + (−0.207 − 0.358i)16-s + (1.36 − 0.366i)17-s + (−0.739 + 0.198i)18-s + (0.923 + 1.60i)19-s + (−0.478 + 1.78i)23-s + (0.541 − 0.937i)24-s + (−0.707 − 0.707i)27-s + (0.662 + 0.382i)31-s + (0.198 + 0.739i)32-s + ⋯ |
L(s) = 1 | + (0.739 + 0.198i)2-s + (0.258 + 0.965i)3-s + (−0.358 − 0.207i)4-s + 0.765i·6-s + (−0.765 − 0.765i)8-s + (−0.866 + 0.499i)9-s + (0.107 − 0.400i)12-s + (−0.207 − 0.358i)16-s + (1.36 − 0.366i)17-s + (−0.739 + 0.198i)18-s + (0.923 + 1.60i)19-s + (−0.478 + 1.78i)23-s + (0.541 − 0.937i)24-s + (−0.707 − 0.707i)27-s + (0.662 + 0.382i)31-s + (0.198 + 0.739i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0970 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0970 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.623833397\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.623833397\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.258 - 0.965i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.739 - 0.198i)T + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (-0.923 - 1.60i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.478 - 1.78i)T + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-0.662 - 0.382i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (1.78 - 0.478i)T + (0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.662 + 0.382i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-1 + i)T - iT^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.159120679447987933068379079906, −8.005560547930256891898904390283, −7.68570965102372263636509130522, −6.30761785980018029492433252379, −5.61985963367134866479038860254, −5.20232724634406037048830865642, −4.34006786691914630682010779362, −3.45180138216694015507808648944, −3.17562800832436947852161376722, −1.43570721513791330120912233095,
0.77476946922978747594034603304, 2.26000552133894352561455628296, 2.97299381808064652406138805628, 3.71868011471033230981219771940, 4.77514810177843232272756230151, 5.41604643135170371014504998253, 6.28928613560493220806309468769, 6.93681821854675048716459339341, 7.954895208211191814740982908123, 8.277774917921622080524407043331