Defining parameters
Level: | \( N \) | \(=\) | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3675.bf (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 105 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(560\) | ||
Trace bound: | \(61\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3675, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 256 | 80 | 176 |
Cusp forms | 64 | 48 | 16 |
Eisenstein series | 192 | 32 | 160 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 48 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3675, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3675.1.bf.a | $8$ | $1.834$ | \(\Q(\zeta_{24})\) | $D_{2}$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-35}) \) | \(\Q(\sqrt{105}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{24}^{7}q^{3}-\zeta_{24}^{10}q^{4}-\zeta_{24}^{2}q^{9}+\cdots\) |
3675.1.bf.b | $8$ | $1.834$ | \(\Q(\zeta_{24})\) | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{24}^{7}q^{3}-\zeta_{24}^{10}q^{4}-\zeta_{24}^{2}q^{9}+\cdots\) |
3675.1.bf.c | $16$ | $1.834$ | \(\Q(\zeta_{48})\) | $D_{8}$ | \(\Q(\sqrt{-15}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{48}^{5}-\zeta_{48}^{23})q^{2}-\zeta_{48}^{10}q^{3}+\cdots\) |
3675.1.bf.d | $16$ | $1.834$ | \(\Q(\zeta_{48})\) | $D_{8}$ | \(\Q(\sqrt{-15}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{48}^{7}+\zeta_{48}^{13})q^{2}-\zeta_{48}^{2}q^{3}+(-\zeta_{48}^{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3675, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3675, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 2}\)