Properties

Label 3654.2.g.p
Level $3654$
Weight $2$
Character orbit 3654.g
Analytic conductor $29.177$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(2899,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.2899"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,8,0,6,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.1773368986\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.2611456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{3} + 16x^{2} - 8x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 406)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} - q^{4} + ( - \beta_{2} + 1) q^{5} + q^{7} - \beta_{3} q^{8} + (\beta_{4} + \beta_{3}) q^{10} + ( - \beta_{5} - \beta_{4}) q^{11} + (\beta_{2} + 2 \beta_1 + 3) q^{13} + \beta_{3} q^{14}+ \cdots + \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 8 q^{5} + 6 q^{7} + 20 q^{13} + 6 q^{16} - 8 q^{20} + 4 q^{22} + 8 q^{23} + 10 q^{25} - 6 q^{28} - 16 q^{29} + 4 q^{34} + 8 q^{35} - 8 q^{38} + 6 q^{49} - 20 q^{52} - 12 q^{53} + 14 q^{58}+ \cdots - 28 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{3} + 16x^{2} - 8x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 16\nu^{4} + 4\nu^{3} - \nu^{2} + 181 ) / 63 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{5} - 17\nu^{4} - 20\nu^{3} + 5\nu^{2} - 149 ) / 63 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -16\nu^{5} - 4\nu^{4} - \nu^{3} + 16\nu^{2} - 252\nu + 65 ) / 63 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -44\nu^{5} - 11\nu^{4} + 13\nu^{3} + 107\nu^{2} - 630\nu + 163 ) / 63 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -16\nu^{5} - 4\nu^{4} - \nu^{3} + 37\nu^{2} - 252\nu + 65 ) / 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} + \beta_{4} + \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - 3\beta_{3} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{5} + 2\beta_{4} + \beta_{3} - 2\beta_{2} - 2\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{2} + 5\beta _1 - 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9\beta_{5} - 8\beta_{4} - 7\beta_{3} - 8\beta_{2} - 9\beta _1 + 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3654\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(2089\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2899.1
1.26704 + 1.26704i
−1.52569 1.52569i
0.258652 + 0.258652i
1.26704 1.26704i
−1.52569 + 1.52569i
0.258652 0.258652i
1.00000i 0 −1.00000 −1.74483 0 1.00000 1.00000i 0 1.74483i
2899.2 1.00000i 0 −1.00000 2.39593 0 1.00000 1.00000i 0 2.39593i
2899.3 1.00000i 0 −1.00000 3.34889 0 1.00000 1.00000i 0 3.34889i
2899.4 1.00000i 0 −1.00000 −1.74483 0 1.00000 1.00000i 0 1.74483i
2899.5 1.00000i 0 −1.00000 2.39593 0 1.00000 1.00000i 0 2.39593i
2899.6 1.00000i 0 −1.00000 3.34889 0 1.00000 1.00000i 0 3.34889i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2899.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3654.2.g.p 6
3.b odd 2 1 406.2.c.b 6
12.b even 2 1 3248.2.f.i 6
29.b even 2 1 inner 3654.2.g.p 6
87.d odd 2 1 406.2.c.b 6
348.b even 2 1 3248.2.f.i 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
406.2.c.b 6 3.b odd 2 1
406.2.c.b 6 87.d odd 2 1
3248.2.f.i 6 12.b even 2 1
3248.2.f.i 6 348.b even 2 1
3654.2.g.p 6 1.a even 1 1 trivial
3654.2.g.p 6 29.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3654, [\chi])\):

\( T_{5}^{3} - 4T_{5}^{2} - 2T_{5} + 14 \) Copy content Toggle raw display
\( T_{11}^{6} + 36T_{11}^{4} + 240T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{13}^{3} - 10T_{13}^{2} + 14T_{13} + 58 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T^{3} - 4 T^{2} - 2 T + 14)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 36 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( (T^{3} - 10 T^{2} + \cdots + 58)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 52 T^{4} + \cdots + 324 \) Copy content Toggle raw display
$19$ \( T^{6} + 40 T^{4} + \cdots + 1296 \) Copy content Toggle raw display
$23$ \( (T^{3} - 4 T^{2} - 12 T + 36)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} + 16 T^{5} + \cdots + 24389 \) Copy content Toggle raw display
$31$ \( T^{6} + 32 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$37$ \( T^{6} + 176 T^{4} + \cdots + 44944 \) Copy content Toggle raw display
$41$ \( T^{6} + 56 T^{4} + \cdots + 4356 \) Copy content Toggle raw display
$43$ \( T^{6} + 160 T^{4} + \cdots + 20736 \) Copy content Toggle raw display
$47$ \( T^{6} + 484 T^{4} + \cdots + 4137156 \) Copy content Toggle raw display
$53$ \( (T^{3} + 6 T^{2} + \cdots - 504)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} - 16 T^{2} + \cdots - 18)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 316 T^{4} + \cdots + 853776 \) Copy content Toggle raw display
$67$ \( (T^{3} + 14 T^{2} + \cdots - 648)^{2} \) Copy content Toggle raw display
$71$ \( (T^{3} + 4 T^{2} + \cdots - 212)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 104 T^{4} + \cdots + 37636 \) Copy content Toggle raw display
$79$ \( T^{6} + 160 T^{4} + \cdots + 20736 \) Copy content Toggle raw display
$83$ \( (T^{3} - 18 T^{2} + \cdots + 162)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + 144 T^{4} + \cdots + 2916 \) Copy content Toggle raw display
$97$ \( T^{6} + 108 T^{4} + \cdots + 26244 \) Copy content Toggle raw display
show more
show less