Properties

Label 2-3654-29.28-c1-0-43
Degree $2$
Conductor $3654$
Sign $0.802 - 0.596i$
Analytic cond. $29.1773$
Root an. cond. $5.40160$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s − 1.74·5-s + 7-s i·8-s − 1.74i·10-s + 2.95i·11-s + 5.32·13-s + i·14-s + 16-s − 6.27i·17-s + 4.95i·19-s + 1.74·20-s − 2.95·22-s + 4.95·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s − 0.780·5-s + 0.377·7-s − 0.353i·8-s − 0.551i·10-s + 0.891i·11-s + 1.47·13-s + 0.267i·14-s + 0.250·16-s − 1.52i·17-s + 1.13i·19-s + 0.390·20-s − 0.630·22-s + 1.03·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.802 - 0.596i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.802 - 0.596i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3654\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 29\)
Sign: $0.802 - 0.596i$
Analytic conductor: \(29.1773\)
Root analytic conductor: \(5.40160\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3654} (2899, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3654,\ (\ :1/2),\ 0.802 - 0.596i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.596407394\)
\(L(\frac12)\) \(\approx\) \(1.596407394\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
7 \( 1 - T \)
29 \( 1 + (3.21 + 4.32i)T \)
good5 \( 1 + 1.74T + 5T^{2} \)
11 \( 1 - 2.95iT - 11T^{2} \)
13 \( 1 - 5.32T + 13T^{2} \)
17 \( 1 + 6.27iT - 17T^{2} \)
19 \( 1 - 4.95iT - 19T^{2} \)
23 \( 1 - 4.95T + 23T^{2} \)
31 \( 1 + 3.21iT - 31T^{2} \)
37 \( 1 + 8.44iT - 37T^{2} \)
41 \( 1 + 4.27iT - 41T^{2} \)
43 \( 1 + 2.64iT - 43T^{2} \)
47 \( 1 - 13.5iT - 47T^{2} \)
53 \( 1 + 12.1T + 53T^{2} \)
59 \( 1 - 7.32T + 59T^{2} \)
61 \( 1 + 7.46iT - 61T^{2} \)
67 \( 1 - 6.55T + 67T^{2} \)
71 \( 1 - 8.44T + 71T^{2} \)
73 \( 1 + 5.85iT - 73T^{2} \)
79 \( 1 - 2.64iT - 79T^{2} \)
83 \( 1 - 5.09T + 83T^{2} \)
89 \( 1 - 2.36iT - 89T^{2} \)
97 \( 1 - 3.63iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.405105349936390175268960101340, −7.70946975441327850398100822353, −7.37278383143240049086126996112, −6.42209012046761957848377500152, −5.66810682761434009427890408743, −4.83629768835425214389978603812, −4.06848441072555231598506420974, −3.41252492480445306864716102132, −2.01832983160290841609484459981, −0.69381224564854372832712965890, 0.841969962653398602224178881293, 1.75261400454371125445332906038, 3.19241928798967655892347514556, 3.57497675123550365120845171126, 4.46228072824432986805656365331, 5.31988703895113529860133995418, 6.20375277534287285949991063583, 6.98097018896827655986274550962, 8.091692167526985845190850794263, 8.508507514951151186368334717472

Graph of the $Z$-function along the critical line