Properties

Label 3645.2.a.l.1.7
Level $3645$
Weight $2$
Character 3645.1
Self dual yes
Analytic conductor $29.105$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3645,2,Mod(1,3645)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3645.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3645, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3645 = 3^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3645.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,3,0,27,21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.1054715368\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 3645.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.10205 q^{2} -0.785475 q^{4} +1.00000 q^{5} -2.98606 q^{7} +3.06975 q^{8} -1.10205 q^{10} +6.32459 q^{11} -2.14633 q^{13} +3.29080 q^{14} -1.81208 q^{16} +2.38077 q^{17} -2.11446 q^{19} -0.785475 q^{20} -6.97004 q^{22} -1.32036 q^{23} +1.00000 q^{25} +2.36538 q^{26} +2.34547 q^{28} -1.47300 q^{29} +1.25775 q^{31} -4.14248 q^{32} -2.62374 q^{34} -2.98606 q^{35} +10.6656 q^{37} +2.33025 q^{38} +3.06975 q^{40} -4.41373 q^{41} +11.9163 q^{43} -4.96780 q^{44} +1.45511 q^{46} +4.46003 q^{47} +1.91653 q^{49} -1.10205 q^{50} +1.68589 q^{52} +4.32679 q^{53} +6.32459 q^{55} -9.16644 q^{56} +1.62333 q^{58} -9.57413 q^{59} -13.1281 q^{61} -1.38611 q^{62} +8.18940 q^{64} -2.14633 q^{65} -0.565126 q^{67} -1.87004 q^{68} +3.29080 q^{70} -9.69275 q^{71} +1.46433 q^{73} -11.7541 q^{74} +1.66086 q^{76} -18.8856 q^{77} -12.0754 q^{79} -1.81208 q^{80} +4.86417 q^{82} +11.5810 q^{83} +2.38077 q^{85} -13.1324 q^{86} +19.4149 q^{88} +9.49624 q^{89} +6.40907 q^{91} +1.03711 q^{92} -4.91520 q^{94} -2.11446 q^{95} -14.6234 q^{97} -2.11213 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 3 q^{2} + 27 q^{4} + 21 q^{5} + 12 q^{7} + 9 q^{8} + 3 q^{10} + 12 q^{13} + 39 q^{16} + 12 q^{17} + 24 q^{19} + 27 q^{20} + 18 q^{22} + 18 q^{23} + 21 q^{25} - 9 q^{26} + 30 q^{28} - 3 q^{29} + 24 q^{31}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10205 −0.779270 −0.389635 0.920969i \(-0.627399\pi\)
−0.389635 + 0.920969i \(0.627399\pi\)
\(3\) 0 0
\(4\) −0.785475 −0.392738
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.98606 −1.12862 −0.564312 0.825562i \(-0.690858\pi\)
−0.564312 + 0.825562i \(0.690858\pi\)
\(8\) 3.06975 1.08532
\(9\) 0 0
\(10\) −1.10205 −0.348500
\(11\) 6.32459 1.90693 0.953467 0.301497i \(-0.0974863\pi\)
0.953467 + 0.301497i \(0.0974863\pi\)
\(12\) 0 0
\(13\) −2.14633 −0.595286 −0.297643 0.954677i \(-0.596200\pi\)
−0.297643 + 0.954677i \(0.596200\pi\)
\(14\) 3.29080 0.879503
\(15\) 0 0
\(16\) −1.81208 −0.453020
\(17\) 2.38077 0.577422 0.288711 0.957416i \(-0.406773\pi\)
0.288711 + 0.957416i \(0.406773\pi\)
\(18\) 0 0
\(19\) −2.11446 −0.485091 −0.242545 0.970140i \(-0.577982\pi\)
−0.242545 + 0.970140i \(0.577982\pi\)
\(20\) −0.785475 −0.175638
\(21\) 0 0
\(22\) −6.97004 −1.48602
\(23\) −1.32036 −0.275314 −0.137657 0.990480i \(-0.543957\pi\)
−0.137657 + 0.990480i \(0.543957\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 2.36538 0.463888
\(27\) 0 0
\(28\) 2.34547 0.443253
\(29\) −1.47300 −0.273530 −0.136765 0.990604i \(-0.543670\pi\)
−0.136765 + 0.990604i \(0.543670\pi\)
\(30\) 0 0
\(31\) 1.25775 0.225899 0.112949 0.993601i \(-0.463970\pi\)
0.112949 + 0.993601i \(0.463970\pi\)
\(32\) −4.14248 −0.732294
\(33\) 0 0
\(34\) −2.62374 −0.449968
\(35\) −2.98606 −0.504736
\(36\) 0 0
\(37\) 10.6656 1.75341 0.876707 0.481024i \(-0.159735\pi\)
0.876707 + 0.481024i \(0.159735\pi\)
\(38\) 2.33025 0.378017
\(39\) 0 0
\(40\) 3.06975 0.485370
\(41\) −4.41373 −0.689309 −0.344655 0.938730i \(-0.612004\pi\)
−0.344655 + 0.938730i \(0.612004\pi\)
\(42\) 0 0
\(43\) 11.9163 1.81721 0.908606 0.417654i \(-0.137148\pi\)
0.908606 + 0.417654i \(0.137148\pi\)
\(44\) −4.96780 −0.748925
\(45\) 0 0
\(46\) 1.45511 0.214544
\(47\) 4.46003 0.650562 0.325281 0.945617i \(-0.394541\pi\)
0.325281 + 0.945617i \(0.394541\pi\)
\(48\) 0 0
\(49\) 1.91653 0.273791
\(50\) −1.10205 −0.155854
\(51\) 0 0
\(52\) 1.68589 0.233791
\(53\) 4.32679 0.594331 0.297165 0.954826i \(-0.403959\pi\)
0.297165 + 0.954826i \(0.403959\pi\)
\(54\) 0 0
\(55\) 6.32459 0.852807
\(56\) −9.16644 −1.22492
\(57\) 0 0
\(58\) 1.62333 0.213154
\(59\) −9.57413 −1.24645 −0.623223 0.782044i \(-0.714177\pi\)
−0.623223 + 0.782044i \(0.714177\pi\)
\(60\) 0 0
\(61\) −13.1281 −1.68088 −0.840441 0.541902i \(-0.817704\pi\)
−0.840441 + 0.541902i \(0.817704\pi\)
\(62\) −1.38611 −0.176036
\(63\) 0 0
\(64\) 8.18940 1.02368
\(65\) −2.14633 −0.266220
\(66\) 0 0
\(67\) −0.565126 −0.0690411 −0.0345205 0.999404i \(-0.510990\pi\)
−0.0345205 + 0.999404i \(0.510990\pi\)
\(68\) −1.87004 −0.226775
\(69\) 0 0
\(70\) 3.29080 0.393326
\(71\) −9.69275 −1.15032 −0.575159 0.818042i \(-0.695060\pi\)
−0.575159 + 0.818042i \(0.695060\pi\)
\(72\) 0 0
\(73\) 1.46433 0.171387 0.0856937 0.996322i \(-0.472689\pi\)
0.0856937 + 0.996322i \(0.472689\pi\)
\(74\) −11.7541 −1.36638
\(75\) 0 0
\(76\) 1.66086 0.190513
\(77\) −18.8856 −2.15221
\(78\) 0 0
\(79\) −12.0754 −1.35858 −0.679292 0.733868i \(-0.737713\pi\)
−0.679292 + 0.733868i \(0.737713\pi\)
\(80\) −1.81208 −0.202597
\(81\) 0 0
\(82\) 4.86417 0.537158
\(83\) 11.5810 1.27118 0.635591 0.772026i \(-0.280756\pi\)
0.635591 + 0.772026i \(0.280756\pi\)
\(84\) 0 0
\(85\) 2.38077 0.258231
\(86\) −13.1324 −1.41610
\(87\) 0 0
\(88\) 19.4149 2.06963
\(89\) 9.49624 1.00660 0.503300 0.864112i \(-0.332119\pi\)
0.503300 + 0.864112i \(0.332119\pi\)
\(90\) 0 0
\(91\) 6.40907 0.671853
\(92\) 1.03711 0.108126
\(93\) 0 0
\(94\) −4.91520 −0.506964
\(95\) −2.11446 −0.216939
\(96\) 0 0
\(97\) −14.6234 −1.48479 −0.742393 0.669965i \(-0.766309\pi\)
−0.742393 + 0.669965i \(0.766309\pi\)
\(98\) −2.11213 −0.213357
\(99\) 0 0
\(100\) −0.785475 −0.0785475
\(101\) 13.2719 1.32060 0.660300 0.751002i \(-0.270429\pi\)
0.660300 + 0.751002i \(0.270429\pi\)
\(102\) 0 0
\(103\) −1.76885 −0.174290 −0.0871450 0.996196i \(-0.527774\pi\)
−0.0871450 + 0.996196i \(0.527774\pi\)
\(104\) −6.58870 −0.646075
\(105\) 0 0
\(106\) −4.76837 −0.463145
\(107\) −7.20592 −0.696622 −0.348311 0.937379i \(-0.613245\pi\)
−0.348311 + 0.937379i \(0.613245\pi\)
\(108\) 0 0
\(109\) −5.49119 −0.525960 −0.262980 0.964801i \(-0.584705\pi\)
−0.262980 + 0.964801i \(0.584705\pi\)
\(110\) −6.97004 −0.664567
\(111\) 0 0
\(112\) 5.41097 0.511289
\(113\) 11.3260 1.06546 0.532730 0.846285i \(-0.321166\pi\)
0.532730 + 0.846285i \(0.321166\pi\)
\(114\) 0 0
\(115\) −1.32036 −0.123124
\(116\) 1.15701 0.107425
\(117\) 0 0
\(118\) 10.5512 0.971318
\(119\) −7.10912 −0.651692
\(120\) 0 0
\(121\) 29.0004 2.63640
\(122\) 14.4679 1.30986
\(123\) 0 0
\(124\) −0.987933 −0.0887190
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 12.0223 1.06680 0.533402 0.845862i \(-0.320913\pi\)
0.533402 + 0.845862i \(0.320913\pi\)
\(128\) −0.740203 −0.0654253
\(129\) 0 0
\(130\) 2.36538 0.207457
\(131\) 1.86898 0.163294 0.0816468 0.996661i \(-0.473982\pi\)
0.0816468 + 0.996661i \(0.473982\pi\)
\(132\) 0 0
\(133\) 6.31390 0.547485
\(134\) 0.622800 0.0538017
\(135\) 0 0
\(136\) 7.30836 0.626687
\(137\) 5.52754 0.472250 0.236125 0.971723i \(-0.424123\pi\)
0.236125 + 0.971723i \(0.424123\pi\)
\(138\) 0 0
\(139\) 1.85048 0.156955 0.0784776 0.996916i \(-0.474994\pi\)
0.0784776 + 0.996916i \(0.474994\pi\)
\(140\) 2.34547 0.198229
\(141\) 0 0
\(142\) 10.6819 0.896409
\(143\) −13.5747 −1.13517
\(144\) 0 0
\(145\) −1.47300 −0.122326
\(146\) −1.61378 −0.133557
\(147\) 0 0
\(148\) −8.37757 −0.688632
\(149\) −10.9328 −0.895646 −0.447823 0.894122i \(-0.647801\pi\)
−0.447823 + 0.894122i \(0.647801\pi\)
\(150\) 0 0
\(151\) 19.1695 1.55999 0.779995 0.625786i \(-0.215222\pi\)
0.779995 + 0.625786i \(0.215222\pi\)
\(152\) −6.49086 −0.526479
\(153\) 0 0
\(154\) 20.8129 1.67715
\(155\) 1.25775 0.101025
\(156\) 0 0
\(157\) −8.40393 −0.670706 −0.335353 0.942093i \(-0.608856\pi\)
−0.335353 + 0.942093i \(0.608856\pi\)
\(158\) 13.3077 1.05870
\(159\) 0 0
\(160\) −4.14248 −0.327492
\(161\) 3.94267 0.310726
\(162\) 0 0
\(163\) 8.05469 0.630892 0.315446 0.948944i \(-0.397846\pi\)
0.315446 + 0.948944i \(0.397846\pi\)
\(164\) 3.46688 0.270718
\(165\) 0 0
\(166\) −12.7629 −0.990595
\(167\) 8.18879 0.633667 0.316834 0.948481i \(-0.397380\pi\)
0.316834 + 0.948481i \(0.397380\pi\)
\(168\) 0 0
\(169\) −8.39326 −0.645635
\(170\) −2.62374 −0.201232
\(171\) 0 0
\(172\) −9.35992 −0.713687
\(173\) −3.31363 −0.251931 −0.125965 0.992035i \(-0.540203\pi\)
−0.125965 + 0.992035i \(0.540203\pi\)
\(174\) 0 0
\(175\) −2.98606 −0.225725
\(176\) −11.4606 −0.863879
\(177\) 0 0
\(178\) −10.4654 −0.784413
\(179\) 14.7586 1.10311 0.551554 0.834139i \(-0.314035\pi\)
0.551554 + 0.834139i \(0.314035\pi\)
\(180\) 0 0
\(181\) 12.4562 0.925859 0.462929 0.886395i \(-0.346798\pi\)
0.462929 + 0.886395i \(0.346798\pi\)
\(182\) −7.06315 −0.523555
\(183\) 0 0
\(184\) −4.05317 −0.298803
\(185\) 10.6656 0.784151
\(186\) 0 0
\(187\) 15.0574 1.10111
\(188\) −3.50324 −0.255500
\(189\) 0 0
\(190\) 2.33025 0.169054
\(191\) −5.22247 −0.377884 −0.188942 0.981988i \(-0.560506\pi\)
−0.188942 + 0.981988i \(0.560506\pi\)
\(192\) 0 0
\(193\) 12.4843 0.898636 0.449318 0.893372i \(-0.351667\pi\)
0.449318 + 0.893372i \(0.351667\pi\)
\(194\) 16.1158 1.15705
\(195\) 0 0
\(196\) −1.50539 −0.107528
\(197\) 14.8163 1.05562 0.527809 0.849363i \(-0.323014\pi\)
0.527809 + 0.849363i \(0.323014\pi\)
\(198\) 0 0
\(199\) 13.1014 0.928732 0.464366 0.885643i \(-0.346282\pi\)
0.464366 + 0.885643i \(0.346282\pi\)
\(200\) 3.06975 0.217064
\(201\) 0 0
\(202\) −14.6263 −1.02910
\(203\) 4.39847 0.308712
\(204\) 0 0
\(205\) −4.41373 −0.308268
\(206\) 1.94937 0.135819
\(207\) 0 0
\(208\) 3.88932 0.269676
\(209\) −13.3731 −0.925037
\(210\) 0 0
\(211\) 18.9059 1.30154 0.650768 0.759277i \(-0.274447\pi\)
0.650768 + 0.759277i \(0.274447\pi\)
\(212\) −3.39859 −0.233416
\(213\) 0 0
\(214\) 7.94131 0.542857
\(215\) 11.9163 0.812682
\(216\) 0 0
\(217\) −3.75572 −0.254955
\(218\) 6.05159 0.409865
\(219\) 0 0
\(220\) −4.96780 −0.334929
\(221\) −5.10993 −0.343731
\(222\) 0 0
\(223\) 3.52199 0.235850 0.117925 0.993023i \(-0.462376\pi\)
0.117925 + 0.993023i \(0.462376\pi\)
\(224\) 12.3697 0.826485
\(225\) 0 0
\(226\) −12.4819 −0.830282
\(227\) −7.65761 −0.508253 −0.254127 0.967171i \(-0.581788\pi\)
−0.254127 + 0.967171i \(0.581788\pi\)
\(228\) 0 0
\(229\) −3.01587 −0.199295 −0.0996473 0.995023i \(-0.531771\pi\)
−0.0996473 + 0.995023i \(0.531771\pi\)
\(230\) 1.45511 0.0959469
\(231\) 0 0
\(232\) −4.52174 −0.296867
\(233\) 18.8533 1.23512 0.617561 0.786523i \(-0.288121\pi\)
0.617561 + 0.786523i \(0.288121\pi\)
\(234\) 0 0
\(235\) 4.46003 0.290940
\(236\) 7.52024 0.489526
\(237\) 0 0
\(238\) 7.83464 0.507844
\(239\) 9.09243 0.588140 0.294070 0.955784i \(-0.404990\pi\)
0.294070 + 0.955784i \(0.404990\pi\)
\(240\) 0 0
\(241\) 11.9662 0.770810 0.385405 0.922747i \(-0.374062\pi\)
0.385405 + 0.922747i \(0.374062\pi\)
\(242\) −31.9600 −2.05447
\(243\) 0 0
\(244\) 10.3118 0.660146
\(245\) 1.91653 0.122443
\(246\) 0 0
\(247\) 4.53834 0.288768
\(248\) 3.86098 0.245172
\(249\) 0 0
\(250\) −1.10205 −0.0697001
\(251\) −11.8579 −0.748466 −0.374233 0.927335i \(-0.622094\pi\)
−0.374233 + 0.927335i \(0.622094\pi\)
\(252\) 0 0
\(253\) −8.35072 −0.525005
\(254\) −13.2492 −0.831329
\(255\) 0 0
\(256\) −15.5631 −0.972691
\(257\) −15.1159 −0.942907 −0.471453 0.881891i \(-0.656270\pi\)
−0.471453 + 0.881891i \(0.656270\pi\)
\(258\) 0 0
\(259\) −31.8481 −1.97894
\(260\) 1.68589 0.104555
\(261\) 0 0
\(262\) −2.05972 −0.127250
\(263\) 3.85290 0.237580 0.118790 0.992919i \(-0.462099\pi\)
0.118790 + 0.992919i \(0.462099\pi\)
\(264\) 0 0
\(265\) 4.32679 0.265793
\(266\) −6.95827 −0.426639
\(267\) 0 0
\(268\) 0.443892 0.0271150
\(269\) −4.09700 −0.249798 −0.124899 0.992169i \(-0.539861\pi\)
−0.124899 + 0.992169i \(0.539861\pi\)
\(270\) 0 0
\(271\) 27.2630 1.65611 0.828053 0.560650i \(-0.189448\pi\)
0.828053 + 0.560650i \(0.189448\pi\)
\(272\) −4.31414 −0.261583
\(273\) 0 0
\(274\) −6.09166 −0.368010
\(275\) 6.32459 0.381387
\(276\) 0 0
\(277\) 7.56826 0.454733 0.227366 0.973809i \(-0.426988\pi\)
0.227366 + 0.973809i \(0.426988\pi\)
\(278\) −2.03933 −0.122311
\(279\) 0 0
\(280\) −9.16644 −0.547799
\(281\) 2.15365 0.128476 0.0642381 0.997935i \(-0.479538\pi\)
0.0642381 + 0.997935i \(0.479538\pi\)
\(282\) 0 0
\(283\) −6.24260 −0.371084 −0.185542 0.982636i \(-0.559404\pi\)
−0.185542 + 0.982636i \(0.559404\pi\)
\(284\) 7.61342 0.451773
\(285\) 0 0
\(286\) 14.9600 0.884605
\(287\) 13.1797 0.777970
\(288\) 0 0
\(289\) −11.3319 −0.666584
\(290\) 1.62333 0.0953252
\(291\) 0 0
\(292\) −1.15020 −0.0673103
\(293\) 16.0504 0.937676 0.468838 0.883284i \(-0.344673\pi\)
0.468838 + 0.883284i \(0.344673\pi\)
\(294\) 0 0
\(295\) −9.57413 −0.557427
\(296\) 32.7407 1.90301
\(297\) 0 0
\(298\) 12.0485 0.697951
\(299\) 2.83393 0.163890
\(300\) 0 0
\(301\) −35.5826 −2.05095
\(302\) −21.1258 −1.21565
\(303\) 0 0
\(304\) 3.83157 0.219756
\(305\) −13.1281 −0.751714
\(306\) 0 0
\(307\) 31.6554 1.80667 0.903336 0.428934i \(-0.141111\pi\)
0.903336 + 0.428934i \(0.141111\pi\)
\(308\) 14.8341 0.845254
\(309\) 0 0
\(310\) −1.38611 −0.0787258
\(311\) −26.2069 −1.48606 −0.743029 0.669259i \(-0.766612\pi\)
−0.743029 + 0.669259i \(0.766612\pi\)
\(312\) 0 0
\(313\) 11.6850 0.660473 0.330237 0.943898i \(-0.392871\pi\)
0.330237 + 0.943898i \(0.392871\pi\)
\(314\) 9.26159 0.522662
\(315\) 0 0
\(316\) 9.48489 0.533567
\(317\) −10.9375 −0.614313 −0.307156 0.951659i \(-0.599377\pi\)
−0.307156 + 0.951659i \(0.599377\pi\)
\(318\) 0 0
\(319\) −9.31613 −0.521603
\(320\) 8.18940 0.457801
\(321\) 0 0
\(322\) −4.34503 −0.242139
\(323\) −5.03405 −0.280102
\(324\) 0 0
\(325\) −2.14633 −0.119057
\(326\) −8.87671 −0.491635
\(327\) 0 0
\(328\) −13.5490 −0.748120
\(329\) −13.3179 −0.734240
\(330\) 0 0
\(331\) 25.7747 1.41670 0.708352 0.705859i \(-0.249439\pi\)
0.708352 + 0.705859i \(0.249439\pi\)
\(332\) −9.09660 −0.499241
\(333\) 0 0
\(334\) −9.02449 −0.493798
\(335\) −0.565126 −0.0308761
\(336\) 0 0
\(337\) 16.5714 0.902699 0.451350 0.892347i \(-0.350943\pi\)
0.451350 + 0.892347i \(0.350943\pi\)
\(338\) 9.24983 0.503124
\(339\) 0 0
\(340\) −1.87004 −0.101417
\(341\) 7.95476 0.430774
\(342\) 0 0
\(343\) 15.1795 0.819617
\(344\) 36.5799 1.97226
\(345\) 0 0
\(346\) 3.65180 0.196322
\(347\) 13.3005 0.714010 0.357005 0.934103i \(-0.383798\pi\)
0.357005 + 0.934103i \(0.383798\pi\)
\(348\) 0 0
\(349\) −6.02053 −0.322272 −0.161136 0.986932i \(-0.551516\pi\)
−0.161136 + 0.986932i \(0.551516\pi\)
\(350\) 3.29080 0.175901
\(351\) 0 0
\(352\) −26.1995 −1.39644
\(353\) 9.01971 0.480071 0.240035 0.970764i \(-0.422841\pi\)
0.240035 + 0.970764i \(0.422841\pi\)
\(354\) 0 0
\(355\) −9.69275 −0.514438
\(356\) −7.45906 −0.395329
\(357\) 0 0
\(358\) −16.2648 −0.859619
\(359\) −27.8517 −1.46996 −0.734979 0.678090i \(-0.762808\pi\)
−0.734979 + 0.678090i \(0.762808\pi\)
\(360\) 0 0
\(361\) −14.5290 −0.764687
\(362\) −13.7274 −0.721494
\(363\) 0 0
\(364\) −5.03417 −0.263862
\(365\) 1.46433 0.0766468
\(366\) 0 0
\(367\) 7.13633 0.372514 0.186257 0.982501i \(-0.440364\pi\)
0.186257 + 0.982501i \(0.440364\pi\)
\(368\) 2.39259 0.124723
\(369\) 0 0
\(370\) −11.7541 −0.611066
\(371\) −12.9201 −0.670776
\(372\) 0 0
\(373\) 6.79183 0.351668 0.175834 0.984420i \(-0.443738\pi\)
0.175834 + 0.984420i \(0.443738\pi\)
\(374\) −16.5941 −0.858059
\(375\) 0 0
\(376\) 13.6912 0.706068
\(377\) 3.16155 0.162828
\(378\) 0 0
\(379\) 0.676912 0.0347706 0.0173853 0.999849i \(-0.494466\pi\)
0.0173853 + 0.999849i \(0.494466\pi\)
\(380\) 1.66086 0.0852002
\(381\) 0 0
\(382\) 5.75544 0.294474
\(383\) 30.6023 1.56370 0.781852 0.623464i \(-0.214275\pi\)
0.781852 + 0.623464i \(0.214275\pi\)
\(384\) 0 0
\(385\) −18.8856 −0.962498
\(386\) −13.7583 −0.700281
\(387\) 0 0
\(388\) 11.4864 0.583131
\(389\) 21.9112 1.11094 0.555471 0.831536i \(-0.312538\pi\)
0.555471 + 0.831536i \(0.312538\pi\)
\(390\) 0 0
\(391\) −3.14347 −0.158972
\(392\) 5.88327 0.297150
\(393\) 0 0
\(394\) −16.3284 −0.822611
\(395\) −12.0754 −0.607577
\(396\) 0 0
\(397\) −1.83744 −0.0922184 −0.0461092 0.998936i \(-0.514682\pi\)
−0.0461092 + 0.998936i \(0.514682\pi\)
\(398\) −14.4384 −0.723733
\(399\) 0 0
\(400\) −1.81208 −0.0906039
\(401\) 23.3160 1.16434 0.582172 0.813065i \(-0.302203\pi\)
0.582172 + 0.813065i \(0.302203\pi\)
\(402\) 0 0
\(403\) −2.69955 −0.134474
\(404\) −10.4247 −0.518649
\(405\) 0 0
\(406\) −4.84735 −0.240570
\(407\) 67.4555 3.34365
\(408\) 0 0
\(409\) 33.7068 1.66670 0.833348 0.552748i \(-0.186421\pi\)
0.833348 + 0.552748i \(0.186421\pi\)
\(410\) 4.86417 0.240224
\(411\) 0 0
\(412\) 1.38939 0.0684502
\(413\) 28.5889 1.40677
\(414\) 0 0
\(415\) 11.5810 0.568490
\(416\) 8.89115 0.435924
\(417\) 0 0
\(418\) 14.7379 0.720854
\(419\) 23.8504 1.16517 0.582585 0.812770i \(-0.302041\pi\)
0.582585 + 0.812770i \(0.302041\pi\)
\(420\) 0 0
\(421\) 19.8913 0.969444 0.484722 0.874668i \(-0.338921\pi\)
0.484722 + 0.874668i \(0.338921\pi\)
\(422\) −20.8353 −1.01425
\(423\) 0 0
\(424\) 13.2822 0.645039
\(425\) 2.38077 0.115484
\(426\) 0 0
\(427\) 39.2013 1.89708
\(428\) 5.66007 0.273590
\(429\) 0 0
\(430\) −13.1324 −0.633299
\(431\) −12.6250 −0.608124 −0.304062 0.952652i \(-0.598343\pi\)
−0.304062 + 0.952652i \(0.598343\pi\)
\(432\) 0 0
\(433\) −3.03476 −0.145841 −0.0729207 0.997338i \(-0.523232\pi\)
−0.0729207 + 0.997338i \(0.523232\pi\)
\(434\) 4.13901 0.198679
\(435\) 0 0
\(436\) 4.31319 0.206564
\(437\) 2.79185 0.133552
\(438\) 0 0
\(439\) 3.13184 0.149474 0.0747372 0.997203i \(-0.476188\pi\)
0.0747372 + 0.997203i \(0.476188\pi\)
\(440\) 19.4149 0.925568
\(441\) 0 0
\(442\) 5.63142 0.267859
\(443\) −37.0348 −1.75958 −0.879788 0.475366i \(-0.842316\pi\)
−0.879788 + 0.475366i \(0.842316\pi\)
\(444\) 0 0
\(445\) 9.49624 0.450165
\(446\) −3.88143 −0.183791
\(447\) 0 0
\(448\) −24.4540 −1.15534
\(449\) −26.4419 −1.24787 −0.623934 0.781477i \(-0.714467\pi\)
−0.623934 + 0.781477i \(0.714467\pi\)
\(450\) 0 0
\(451\) −27.9150 −1.31447
\(452\) −8.89629 −0.418446
\(453\) 0 0
\(454\) 8.43911 0.396067
\(455\) 6.40907 0.300462
\(456\) 0 0
\(457\) 0.180552 0.00844585 0.00422293 0.999991i \(-0.498656\pi\)
0.00422293 + 0.999991i \(0.498656\pi\)
\(458\) 3.32366 0.155304
\(459\) 0 0
\(460\) 1.03711 0.0483554
\(461\) −24.4642 −1.13941 −0.569706 0.821849i \(-0.692943\pi\)
−0.569706 + 0.821849i \(0.692943\pi\)
\(462\) 0 0
\(463\) −2.61337 −0.121454 −0.0607268 0.998154i \(-0.519342\pi\)
−0.0607268 + 0.998154i \(0.519342\pi\)
\(464\) 2.66920 0.123914
\(465\) 0 0
\(466\) −20.7774 −0.962493
\(467\) −7.82295 −0.362003 −0.181001 0.983483i \(-0.557934\pi\)
−0.181001 + 0.983483i \(0.557934\pi\)
\(468\) 0 0
\(469\) 1.68750 0.0779214
\(470\) −4.91520 −0.226721
\(471\) 0 0
\(472\) −29.3902 −1.35279
\(473\) 75.3654 3.46530
\(474\) 0 0
\(475\) −2.11446 −0.0970182
\(476\) 5.58403 0.255944
\(477\) 0 0
\(478\) −10.0204 −0.458320
\(479\) 18.0144 0.823097 0.411548 0.911388i \(-0.364988\pi\)
0.411548 + 0.911388i \(0.364988\pi\)
\(480\) 0 0
\(481\) −22.8919 −1.04378
\(482\) −13.1874 −0.600670
\(483\) 0 0
\(484\) −22.7791 −1.03541
\(485\) −14.6234 −0.664017
\(486\) 0 0
\(487\) −27.2884 −1.23656 −0.618278 0.785960i \(-0.712169\pi\)
−0.618278 + 0.785960i \(0.712169\pi\)
\(488\) −40.3000 −1.82429
\(489\) 0 0
\(490\) −2.11213 −0.0954161
\(491\) −4.85541 −0.219122 −0.109561 0.993980i \(-0.534944\pi\)
−0.109561 + 0.993980i \(0.534944\pi\)
\(492\) 0 0
\(493\) −3.50688 −0.157942
\(494\) −5.00150 −0.225028
\(495\) 0 0
\(496\) −2.27914 −0.102337
\(497\) 28.9431 1.29828
\(498\) 0 0
\(499\) 21.3770 0.956967 0.478484 0.878097i \(-0.341187\pi\)
0.478484 + 0.878097i \(0.341187\pi\)
\(500\) −0.785475 −0.0351275
\(501\) 0 0
\(502\) 13.0681 0.583257
\(503\) −22.4759 −1.00215 −0.501076 0.865403i \(-0.667062\pi\)
−0.501076 + 0.865403i \(0.667062\pi\)
\(504\) 0 0
\(505\) 13.2719 0.590590
\(506\) 9.20295 0.409121
\(507\) 0 0
\(508\) −9.44319 −0.418974
\(509\) −12.5542 −0.556453 −0.278227 0.960515i \(-0.589747\pi\)
−0.278227 + 0.960515i \(0.589747\pi\)
\(510\) 0 0
\(511\) −4.37259 −0.193432
\(512\) 18.6317 0.823415
\(513\) 0 0
\(514\) 16.6586 0.734779
\(515\) −1.76885 −0.0779448
\(516\) 0 0
\(517\) 28.2078 1.24058
\(518\) 35.0984 1.54213
\(519\) 0 0
\(520\) −6.58870 −0.288933
\(521\) 7.05754 0.309196 0.154598 0.987977i \(-0.450592\pi\)
0.154598 + 0.987977i \(0.450592\pi\)
\(522\) 0 0
\(523\) −32.0118 −1.39978 −0.699890 0.714251i \(-0.746768\pi\)
−0.699890 + 0.714251i \(0.746768\pi\)
\(524\) −1.46804 −0.0641315
\(525\) 0 0
\(526\) −4.24610 −0.185139
\(527\) 2.99442 0.130439
\(528\) 0 0
\(529\) −21.2567 −0.924202
\(530\) −4.76837 −0.207125
\(531\) 0 0
\(532\) −4.95941 −0.215018
\(533\) 9.47334 0.410336
\(534\) 0 0
\(535\) −7.20592 −0.311539
\(536\) −1.73479 −0.0749316
\(537\) 0 0
\(538\) 4.51511 0.194660
\(539\) 12.1213 0.522101
\(540\) 0 0
\(541\) −5.23538 −0.225087 −0.112543 0.993647i \(-0.535900\pi\)
−0.112543 + 0.993647i \(0.535900\pi\)
\(542\) −30.0453 −1.29055
\(543\) 0 0
\(544\) −9.86230 −0.422843
\(545\) −5.49119 −0.235217
\(546\) 0 0
\(547\) 26.0365 1.11324 0.556620 0.830767i \(-0.312098\pi\)
0.556620 + 0.830767i \(0.312098\pi\)
\(548\) −4.34175 −0.185470
\(549\) 0 0
\(550\) −6.97004 −0.297204
\(551\) 3.11461 0.132687
\(552\) 0 0
\(553\) 36.0577 1.53333
\(554\) −8.34064 −0.354360
\(555\) 0 0
\(556\) −1.45350 −0.0616422
\(557\) −3.08656 −0.130782 −0.0653909 0.997860i \(-0.520829\pi\)
−0.0653909 + 0.997860i \(0.520829\pi\)
\(558\) 0 0
\(559\) −25.5762 −1.08176
\(560\) 5.41097 0.228655
\(561\) 0 0
\(562\) −2.37344 −0.100118
\(563\) 17.4421 0.735098 0.367549 0.930004i \(-0.380197\pi\)
0.367549 + 0.930004i \(0.380197\pi\)
\(564\) 0 0
\(565\) 11.3260 0.476488
\(566\) 6.87968 0.289175
\(567\) 0 0
\(568\) −29.7543 −1.24846
\(569\) −10.4586 −0.438446 −0.219223 0.975675i \(-0.570352\pi\)
−0.219223 + 0.975675i \(0.570352\pi\)
\(570\) 0 0
\(571\) 35.9938 1.50629 0.753146 0.657853i \(-0.228535\pi\)
0.753146 + 0.657853i \(0.228535\pi\)
\(572\) 10.6626 0.445824
\(573\) 0 0
\(574\) −14.5247 −0.606249
\(575\) −1.32036 −0.0550628
\(576\) 0 0
\(577\) −16.1141 −0.670839 −0.335419 0.942069i \(-0.608878\pi\)
−0.335419 + 0.942069i \(0.608878\pi\)
\(578\) 12.4884 0.519449
\(579\) 0 0
\(580\) 1.15701 0.0480421
\(581\) −34.5816 −1.43469
\(582\) 0 0
\(583\) 27.3652 1.13335
\(584\) 4.49514 0.186010
\(585\) 0 0
\(586\) −17.6885 −0.730703
\(587\) −23.0827 −0.952724 −0.476362 0.879249i \(-0.658045\pi\)
−0.476362 + 0.879249i \(0.658045\pi\)
\(588\) 0 0
\(589\) −2.65947 −0.109581
\(590\) 10.5512 0.434387
\(591\) 0 0
\(592\) −19.3269 −0.794331
\(593\) −14.7166 −0.604338 −0.302169 0.953254i \(-0.597711\pi\)
−0.302169 + 0.953254i \(0.597711\pi\)
\(594\) 0 0
\(595\) −7.10912 −0.291445
\(596\) 8.58741 0.351754
\(597\) 0 0
\(598\) −3.12314 −0.127715
\(599\) 34.2273 1.39849 0.699245 0.714882i \(-0.253520\pi\)
0.699245 + 0.714882i \(0.253520\pi\)
\(600\) 0 0
\(601\) 8.76721 0.357622 0.178811 0.983883i \(-0.442775\pi\)
0.178811 + 0.983883i \(0.442775\pi\)
\(602\) 39.2140 1.59824
\(603\) 0 0
\(604\) −15.0571 −0.612666
\(605\) 29.0004 1.17903
\(606\) 0 0
\(607\) 12.7090 0.515843 0.257922 0.966166i \(-0.416962\pi\)
0.257922 + 0.966166i \(0.416962\pi\)
\(608\) 8.75912 0.355229
\(609\) 0 0
\(610\) 14.4679 0.585788
\(611\) −9.57271 −0.387270
\(612\) 0 0
\(613\) −26.8798 −1.08566 −0.542832 0.839842i \(-0.682648\pi\)
−0.542832 + 0.839842i \(0.682648\pi\)
\(614\) −34.8860 −1.40789
\(615\) 0 0
\(616\) −57.9739 −2.33584
\(617\) −21.9813 −0.884935 −0.442467 0.896785i \(-0.645897\pi\)
−0.442467 + 0.896785i \(0.645897\pi\)
\(618\) 0 0
\(619\) 10.5269 0.423111 0.211556 0.977366i \(-0.432147\pi\)
0.211556 + 0.977366i \(0.432147\pi\)
\(620\) −0.987933 −0.0396763
\(621\) 0 0
\(622\) 28.8815 1.15804
\(623\) −28.3563 −1.13607
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −12.8775 −0.514687
\(627\) 0 0
\(628\) 6.60107 0.263412
\(629\) 25.3924 1.01246
\(630\) 0 0
\(631\) 1.62235 0.0645845 0.0322923 0.999478i \(-0.489719\pi\)
0.0322923 + 0.999478i \(0.489719\pi\)
\(632\) −37.0683 −1.47450
\(633\) 0 0
\(634\) 12.0538 0.478716
\(635\) 12.0223 0.477089
\(636\) 0 0
\(637\) −4.11352 −0.162984
\(638\) 10.2669 0.406470
\(639\) 0 0
\(640\) −0.740203 −0.0292591
\(641\) 11.0381 0.435977 0.217989 0.975951i \(-0.430050\pi\)
0.217989 + 0.975951i \(0.430050\pi\)
\(642\) 0 0
\(643\) −37.3045 −1.47114 −0.735572 0.677446i \(-0.763087\pi\)
−0.735572 + 0.677446i \(0.763087\pi\)
\(644\) −3.09687 −0.122034
\(645\) 0 0
\(646\) 5.54780 0.218275
\(647\) 16.0085 0.629358 0.314679 0.949198i \(-0.398103\pi\)
0.314679 + 0.949198i \(0.398103\pi\)
\(648\) 0 0
\(649\) −60.5524 −2.37689
\(650\) 2.36538 0.0927777
\(651\) 0 0
\(652\) −6.32676 −0.247775
\(653\) −23.9070 −0.935551 −0.467776 0.883847i \(-0.654944\pi\)
−0.467776 + 0.883847i \(0.654944\pi\)
\(654\) 0 0
\(655\) 1.86898 0.0730271
\(656\) 7.99803 0.312271
\(657\) 0 0
\(658\) 14.6771 0.572171
\(659\) 26.1865 1.02008 0.510040 0.860150i \(-0.329630\pi\)
0.510040 + 0.860150i \(0.329630\pi\)
\(660\) 0 0
\(661\) −10.2638 −0.399214 −0.199607 0.979876i \(-0.563967\pi\)
−0.199607 + 0.979876i \(0.563967\pi\)
\(662\) −28.4051 −1.10400
\(663\) 0 0
\(664\) 35.5508 1.37964
\(665\) 6.31390 0.244843
\(666\) 0 0
\(667\) 1.94489 0.0753065
\(668\) −6.43209 −0.248865
\(669\) 0 0
\(670\) 0.622800 0.0240608
\(671\) −83.0299 −3.20533
\(672\) 0 0
\(673\) 37.6444 1.45109 0.725543 0.688176i \(-0.241589\pi\)
0.725543 + 0.688176i \(0.241589\pi\)
\(674\) −18.2625 −0.703447
\(675\) 0 0
\(676\) 6.59269 0.253565
\(677\) −27.5834 −1.06012 −0.530058 0.847961i \(-0.677830\pi\)
−0.530058 + 0.847961i \(0.677830\pi\)
\(678\) 0 0
\(679\) 43.6664 1.67576
\(680\) 7.30836 0.280263
\(681\) 0 0
\(682\) −8.76658 −0.335690
\(683\) 24.4114 0.934077 0.467038 0.884237i \(-0.345321\pi\)
0.467038 + 0.884237i \(0.345321\pi\)
\(684\) 0 0
\(685\) 5.52754 0.211197
\(686\) −16.7287 −0.638703
\(687\) 0 0
\(688\) −21.5932 −0.823233
\(689\) −9.28674 −0.353797
\(690\) 0 0
\(691\) −1.25298 −0.0476658 −0.0238329 0.999716i \(-0.507587\pi\)
−0.0238329 + 0.999716i \(0.507587\pi\)
\(692\) 2.60277 0.0989427
\(693\) 0 0
\(694\) −14.6579 −0.556407
\(695\) 1.85048 0.0701925
\(696\) 0 0
\(697\) −10.5081 −0.398022
\(698\) 6.63495 0.251137
\(699\) 0 0
\(700\) 2.34547 0.0886506
\(701\) −20.1909 −0.762598 −0.381299 0.924452i \(-0.624523\pi\)
−0.381299 + 0.924452i \(0.624523\pi\)
\(702\) 0 0
\(703\) −22.5520 −0.850566
\(704\) 51.7946 1.95208
\(705\) 0 0
\(706\) −9.94021 −0.374105
\(707\) −39.6305 −1.49046
\(708\) 0 0
\(709\) −45.2979 −1.70120 −0.850600 0.525814i \(-0.823761\pi\)
−0.850600 + 0.525814i \(0.823761\pi\)
\(710\) 10.6819 0.400886
\(711\) 0 0
\(712\) 29.1510 1.09248
\(713\) −1.66068 −0.0621931
\(714\) 0 0
\(715\) −13.5747 −0.507664
\(716\) −11.5925 −0.433232
\(717\) 0 0
\(718\) 30.6941 1.14549
\(719\) 50.2214 1.87294 0.936472 0.350744i \(-0.114071\pi\)
0.936472 + 0.350744i \(0.114071\pi\)
\(720\) 0 0
\(721\) 5.28189 0.196708
\(722\) 16.0118 0.595898
\(723\) 0 0
\(724\) −9.78400 −0.363619
\(725\) −1.47300 −0.0547059
\(726\) 0 0
\(727\) −26.1403 −0.969491 −0.484745 0.874655i \(-0.661088\pi\)
−0.484745 + 0.874655i \(0.661088\pi\)
\(728\) 19.6742 0.729175
\(729\) 0 0
\(730\) −1.61378 −0.0597286
\(731\) 28.3699 1.04930
\(732\) 0 0
\(733\) 7.44658 0.275046 0.137523 0.990499i \(-0.456086\pi\)
0.137523 + 0.990499i \(0.456086\pi\)
\(734\) −7.86463 −0.290289
\(735\) 0 0
\(736\) 5.46956 0.201611
\(737\) −3.57419 −0.131657
\(738\) 0 0
\(739\) −13.4071 −0.493190 −0.246595 0.969119i \(-0.579312\pi\)
−0.246595 + 0.969119i \(0.579312\pi\)
\(740\) −8.37757 −0.307966
\(741\) 0 0
\(742\) 14.2386 0.522716
\(743\) 4.61377 0.169263 0.0846314 0.996412i \(-0.473029\pi\)
0.0846314 + 0.996412i \(0.473029\pi\)
\(744\) 0 0
\(745\) −10.9328 −0.400545
\(746\) −7.48497 −0.274044
\(747\) 0 0
\(748\) −11.8272 −0.432445
\(749\) 21.5173 0.786224
\(750\) 0 0
\(751\) 47.1671 1.72115 0.860576 0.509323i \(-0.170104\pi\)
0.860576 + 0.509323i \(0.170104\pi\)
\(752\) −8.08193 −0.294717
\(753\) 0 0
\(754\) −3.48420 −0.126887
\(755\) 19.1695 0.697648
\(756\) 0 0
\(757\) 10.4087 0.378309 0.189155 0.981947i \(-0.439425\pi\)
0.189155 + 0.981947i \(0.439425\pi\)
\(758\) −0.745994 −0.0270957
\(759\) 0 0
\(760\) −6.49086 −0.235448
\(761\) −17.6905 −0.641278 −0.320639 0.947201i \(-0.603898\pi\)
−0.320639 + 0.947201i \(0.603898\pi\)
\(762\) 0 0
\(763\) 16.3970 0.593611
\(764\) 4.10212 0.148409
\(765\) 0 0
\(766\) −33.7254 −1.21855
\(767\) 20.5493 0.741991
\(768\) 0 0
\(769\) −32.0669 −1.15636 −0.578182 0.815908i \(-0.696238\pi\)
−0.578182 + 0.815908i \(0.696238\pi\)
\(770\) 20.8129 0.750046
\(771\) 0 0
\(772\) −9.80607 −0.352928
\(773\) −50.0261 −1.79931 −0.899656 0.436599i \(-0.856183\pi\)
−0.899656 + 0.436599i \(0.856183\pi\)
\(774\) 0 0
\(775\) 1.25775 0.0451798
\(776\) −44.8903 −1.61147
\(777\) 0 0
\(778\) −24.1473 −0.865724
\(779\) 9.33267 0.334378
\(780\) 0 0
\(781\) −61.3026 −2.19358
\(782\) 3.46428 0.123882
\(783\) 0 0
\(784\) −3.47291 −0.124033
\(785\) −8.40393 −0.299949
\(786\) 0 0
\(787\) −23.1591 −0.825533 −0.412767 0.910837i \(-0.635437\pi\)
−0.412767 + 0.910837i \(0.635437\pi\)
\(788\) −11.6378 −0.414580
\(789\) 0 0
\(790\) 13.3077 0.473467
\(791\) −33.8201 −1.20250
\(792\) 0 0
\(793\) 28.1773 1.00061
\(794\) 2.02496 0.0718631
\(795\) 0 0
\(796\) −10.2908 −0.364748
\(797\) 17.8879 0.633622 0.316811 0.948489i \(-0.397388\pi\)
0.316811 + 0.948489i \(0.397388\pi\)
\(798\) 0 0
\(799\) 10.6183 0.375649
\(800\) −4.14248 −0.146459
\(801\) 0 0
\(802\) −25.6955 −0.907339
\(803\) 9.26131 0.326825
\(804\) 0 0
\(805\) 3.94267 0.138961
\(806\) 2.97506 0.104792
\(807\) 0 0
\(808\) 40.7412 1.43327
\(809\) 18.4115 0.647315 0.323658 0.946174i \(-0.395087\pi\)
0.323658 + 0.946174i \(0.395087\pi\)
\(810\) 0 0
\(811\) 16.5890 0.582519 0.291259 0.956644i \(-0.405926\pi\)
0.291259 + 0.956644i \(0.405926\pi\)
\(812\) −3.45489 −0.121243
\(813\) 0 0
\(814\) −74.3397 −2.60561
\(815\) 8.05469 0.282143
\(816\) 0 0
\(817\) −25.1965 −0.881513
\(818\) −37.1468 −1.29881
\(819\) 0 0
\(820\) 3.46688 0.121069
\(821\) −1.98361 −0.0692286 −0.0346143 0.999401i \(-0.511020\pi\)
−0.0346143 + 0.999401i \(0.511020\pi\)
\(822\) 0 0
\(823\) 1.37974 0.0480949 0.0240474 0.999711i \(-0.492345\pi\)
0.0240474 + 0.999711i \(0.492345\pi\)
\(824\) −5.42992 −0.189160
\(825\) 0 0
\(826\) −31.5065 −1.09625
\(827\) 17.5290 0.609544 0.304772 0.952425i \(-0.401420\pi\)
0.304772 + 0.952425i \(0.401420\pi\)
\(828\) 0 0
\(829\) −24.7693 −0.860275 −0.430138 0.902763i \(-0.641535\pi\)
−0.430138 + 0.902763i \(0.641535\pi\)
\(830\) −12.7629 −0.443007
\(831\) 0 0
\(832\) −17.5772 −0.609379
\(833\) 4.56283 0.158093
\(834\) 0 0
\(835\) 8.18879 0.283385
\(836\) 10.5042 0.363297
\(837\) 0 0
\(838\) −26.2845 −0.907982
\(839\) −38.6617 −1.33475 −0.667375 0.744722i \(-0.732582\pi\)
−0.667375 + 0.744722i \(0.732582\pi\)
\(840\) 0 0
\(841\) −26.8303 −0.925182
\(842\) −21.9213 −0.755459
\(843\) 0 0
\(844\) −14.8501 −0.511162
\(845\) −8.39326 −0.288737
\(846\) 0 0
\(847\) −86.5968 −2.97550
\(848\) −7.84049 −0.269244
\(849\) 0 0
\(850\) −2.62374 −0.0899935
\(851\) −14.0824 −0.482739
\(852\) 0 0
\(853\) 1.04257 0.0356969 0.0178485 0.999841i \(-0.494318\pi\)
0.0178485 + 0.999841i \(0.494318\pi\)
\(854\) −43.2020 −1.47834
\(855\) 0 0
\(856\) −22.1203 −0.756057
\(857\) 46.0501 1.57304 0.786521 0.617564i \(-0.211880\pi\)
0.786521 + 0.617564i \(0.211880\pi\)
\(858\) 0 0
\(859\) 22.3369 0.762126 0.381063 0.924549i \(-0.375558\pi\)
0.381063 + 0.924549i \(0.375558\pi\)
\(860\) −9.35992 −0.319171
\(861\) 0 0
\(862\) 13.9134 0.473893
\(863\) 7.44818 0.253539 0.126770 0.991932i \(-0.459539\pi\)
0.126770 + 0.991932i \(0.459539\pi\)
\(864\) 0 0
\(865\) −3.31363 −0.112667
\(866\) 3.34448 0.113650
\(867\) 0 0
\(868\) 2.95002 0.100130
\(869\) −76.3716 −2.59073
\(870\) 0 0
\(871\) 1.21295 0.0410992
\(872\) −16.8566 −0.570835
\(873\) 0 0
\(874\) −3.07677 −0.104073
\(875\) −2.98606 −0.100947
\(876\) 0 0
\(877\) −3.74467 −0.126449 −0.0632243 0.997999i \(-0.520138\pi\)
−0.0632243 + 0.997999i \(0.520138\pi\)
\(878\) −3.45146 −0.116481
\(879\) 0 0
\(880\) −11.4606 −0.386338
\(881\) −19.2395 −0.648196 −0.324098 0.946024i \(-0.605061\pi\)
−0.324098 + 0.946024i \(0.605061\pi\)
\(882\) 0 0
\(883\) 5.31811 0.178969 0.0894844 0.995988i \(-0.471478\pi\)
0.0894844 + 0.995988i \(0.471478\pi\)
\(884\) 4.01372 0.134996
\(885\) 0 0
\(886\) 40.8144 1.37119
\(887\) 6.29425 0.211340 0.105670 0.994401i \(-0.466301\pi\)
0.105670 + 0.994401i \(0.466301\pi\)
\(888\) 0 0
\(889\) −35.8992 −1.20402
\(890\) −10.4654 −0.350800
\(891\) 0 0
\(892\) −2.76644 −0.0926272
\(893\) −9.43057 −0.315582
\(894\) 0 0
\(895\) 14.7586 0.493325
\(896\) 2.21029 0.0738405
\(897\) 0 0
\(898\) 29.1404 0.972427
\(899\) −1.85267 −0.0617900
\(900\) 0 0
\(901\) 10.3011 0.343180
\(902\) 30.7639 1.02433
\(903\) 0 0
\(904\) 34.7680 1.15636
\(905\) 12.4562 0.414057
\(906\) 0 0
\(907\) 24.5506 0.815190 0.407595 0.913163i \(-0.366368\pi\)
0.407595 + 0.913163i \(0.366368\pi\)
\(908\) 6.01486 0.199610
\(909\) 0 0
\(910\) −7.06315 −0.234141
\(911\) −25.7040 −0.851611 −0.425806 0.904815i \(-0.640009\pi\)
−0.425806 + 0.904815i \(0.640009\pi\)
\(912\) 0 0
\(913\) 73.2452 2.42406
\(914\) −0.198978 −0.00658160
\(915\) 0 0
\(916\) 2.36889 0.0782705
\(917\) −5.58088 −0.184297
\(918\) 0 0
\(919\) 32.3013 1.06552 0.532761 0.846266i \(-0.321154\pi\)
0.532761 + 0.846266i \(0.321154\pi\)
\(920\) −4.05317 −0.133629
\(921\) 0 0
\(922\) 26.9609 0.887910
\(923\) 20.8039 0.684768
\(924\) 0 0
\(925\) 10.6656 0.350683
\(926\) 2.88008 0.0946452
\(927\) 0 0
\(928\) 6.10189 0.200304
\(929\) −25.8875 −0.849341 −0.424670 0.905348i \(-0.639610\pi\)
−0.424670 + 0.905348i \(0.639610\pi\)
\(930\) 0 0
\(931\) −4.05244 −0.132813
\(932\) −14.8088 −0.485078
\(933\) 0 0
\(934\) 8.62132 0.282098
\(935\) 15.0574 0.492429
\(936\) 0 0
\(937\) −14.9948 −0.489860 −0.244930 0.969541i \(-0.578765\pi\)
−0.244930 + 0.969541i \(0.578765\pi\)
\(938\) −1.85971 −0.0607218
\(939\) 0 0
\(940\) −3.50324 −0.114263
\(941\) −52.8090 −1.72153 −0.860763 0.509006i \(-0.830013\pi\)
−0.860763 + 0.509006i \(0.830013\pi\)
\(942\) 0 0
\(943\) 5.82771 0.189776
\(944\) 17.3491 0.564664
\(945\) 0 0
\(946\) −83.0568 −2.70041
\(947\) −15.6157 −0.507443 −0.253722 0.967277i \(-0.581655\pi\)
−0.253722 + 0.967277i \(0.581655\pi\)
\(948\) 0 0
\(949\) −3.14295 −0.102024
\(950\) 2.33025 0.0756034
\(951\) 0 0
\(952\) −21.8232 −0.707294
\(953\) −20.3578 −0.659455 −0.329727 0.944076i \(-0.606957\pi\)
−0.329727 + 0.944076i \(0.606957\pi\)
\(954\) 0 0
\(955\) −5.22247 −0.168995
\(956\) −7.14188 −0.230985
\(957\) 0 0
\(958\) −19.8528 −0.641415
\(959\) −16.5056 −0.532992
\(960\) 0 0
\(961\) −29.4181 −0.948970
\(962\) 25.2282 0.813389
\(963\) 0 0
\(964\) −9.39915 −0.302726
\(965\) 12.4843 0.401882
\(966\) 0 0
\(967\) −3.76239 −0.120990 −0.0604952 0.998168i \(-0.519268\pi\)
−0.0604952 + 0.998168i \(0.519268\pi\)
\(968\) 89.0238 2.86133
\(969\) 0 0
\(970\) 16.1158 0.517449
\(971\) −13.8225 −0.443586 −0.221793 0.975094i \(-0.571191\pi\)
−0.221793 + 0.975094i \(0.571191\pi\)
\(972\) 0 0
\(973\) −5.52562 −0.177143
\(974\) 30.0733 0.963612
\(975\) 0 0
\(976\) 23.7892 0.761473
\(977\) 46.3648 1.48334 0.741671 0.670764i \(-0.234034\pi\)
0.741671 + 0.670764i \(0.234034\pi\)
\(978\) 0 0
\(979\) 60.0598 1.91952
\(980\) −1.50539 −0.0480879
\(981\) 0 0
\(982\) 5.35093 0.170755
\(983\) 43.2210 1.37854 0.689268 0.724507i \(-0.257932\pi\)
0.689268 + 0.724507i \(0.257932\pi\)
\(984\) 0 0
\(985\) 14.8163 0.472086
\(986\) 3.86477 0.123079
\(987\) 0 0
\(988\) −3.56475 −0.113410
\(989\) −15.7337 −0.500304
\(990\) 0 0
\(991\) 22.1879 0.704821 0.352410 0.935846i \(-0.385362\pi\)
0.352410 + 0.935846i \(0.385362\pi\)
\(992\) −5.21021 −0.165424
\(993\) 0 0
\(994\) −31.8969 −1.01171
\(995\) 13.1014 0.415342
\(996\) 0 0
\(997\) 48.5158 1.53651 0.768256 0.640143i \(-0.221125\pi\)
0.768256 + 0.640143i \(0.221125\pi\)
\(998\) −23.5587 −0.745736
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3645.2.a.l.1.7 21
3.2 odd 2 3645.2.a.k.1.15 21
27.4 even 9 135.2.k.b.16.3 42
27.7 even 9 135.2.k.b.76.3 yes 42
27.20 odd 18 405.2.k.b.361.5 42
27.23 odd 18 405.2.k.b.46.5 42
135.4 even 18 675.2.l.e.151.5 42
135.7 odd 36 675.2.u.d.49.5 84
135.34 even 18 675.2.l.e.76.5 42
135.58 odd 36 675.2.u.d.124.5 84
135.88 odd 36 675.2.u.d.49.10 84
135.112 odd 36 675.2.u.d.124.10 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.k.b.16.3 42 27.4 even 9
135.2.k.b.76.3 yes 42 27.7 even 9
405.2.k.b.46.5 42 27.23 odd 18
405.2.k.b.361.5 42 27.20 odd 18
675.2.l.e.76.5 42 135.34 even 18
675.2.l.e.151.5 42 135.4 even 18
675.2.u.d.49.5 84 135.7 odd 36
675.2.u.d.49.10 84 135.88 odd 36
675.2.u.d.124.5 84 135.58 odd 36
675.2.u.d.124.10 84 135.112 odd 36
3645.2.a.k.1.15 21 3.2 odd 2
3645.2.a.l.1.7 21 1.1 even 1 trivial