Properties

Label 3645.2
Level 3645
Weight 2
Dimension 340200
Nonzero newspaces 18
Sturm bound 1889568
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3645 = 3^{6} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(1889568\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3645))\).

Total New Old
Modular forms 477576 344088 133488
Cusp forms 467209 340200 127009
Eisenstein series 10367 3888 6479

Trace form

\( 340200 q - 216 q^{2} - 324 q^{3} - 360 q^{4} - 324 q^{5} - 972 q^{6} - 360 q^{7} - 216 q^{8} - 324 q^{9} - 756 q^{10} - 648 q^{11} - 324 q^{12} - 360 q^{13} - 216 q^{14} - 486 q^{15} - 1080 q^{16} - 216 q^{17}+ \cdots - 324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3645))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3645.2.a \(\chi_{3645}(1, \cdot)\) 3645.2.a.a 3 1
3645.2.a.b 3
3645.2.a.c 6
3645.2.a.d 6
3645.2.a.e 9
3645.2.a.f 9
3645.2.a.g 15
3645.2.a.h 15
3645.2.a.i 18
3645.2.a.j 18
3645.2.a.k 21
3645.2.a.l 21
3645.2.b \(\chi_{3645}(1459, \cdot)\) n/a 204 1
3645.2.e \(\chi_{3645}(1216, \cdot)\) n/a 288 2
3645.2.f \(\chi_{3645}(728, \cdot)\) n/a 408 2
3645.2.j \(\chi_{3645}(244, \cdot)\) n/a 408 2
3645.2.k \(\chi_{3645}(406, \cdot)\) n/a 864 6
3645.2.m \(\chi_{3645}(242, \cdot)\) n/a 816 4
3645.2.p \(\chi_{3645}(649, \cdot)\) n/a 1260 6
3645.2.q \(\chi_{3645}(136, \cdot)\) n/a 2592 18
3645.2.r \(\chi_{3645}(323, \cdot)\) n/a 2520 12
3645.2.t \(\chi_{3645}(109, \cdot)\) n/a 3744 18
3645.2.w \(\chi_{3645}(46, \cdot)\) n/a 5832 54
3645.2.y \(\chi_{3645}(53, \cdot)\) n/a 7488 36
3645.2.ba \(\chi_{3645}(19, \cdot)\) n/a 8640 54
3645.2.bc \(\chi_{3645}(16, \cdot)\) n/a 52488 162
3645.2.be \(\chi_{3645}(8, \cdot)\) n/a 17280 108
3645.2.bh \(\chi_{3645}(4, \cdot)\) n/a 78408 162
3645.2.bj \(\chi_{3645}(2, \cdot)\) n/a 156816 324

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3645))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3645)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(243))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(405))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(729))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1215))\)\(^{\oplus 2}\)