Properties

Label 3645.2.a.l
Level $3645$
Weight $2$
Character orbit 3645.a
Self dual yes
Analytic conductor $29.105$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3645,2,Mod(1,3645)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3645, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3645.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3645 = 3^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3645.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.1054715368\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 21 q + 3 q^{2} + 27 q^{4} + 21 q^{5} + 12 q^{7} + 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 21 q + 3 q^{2} + 27 q^{4} + 21 q^{5} + 12 q^{7} + 9 q^{8} + 3 q^{10} + 12 q^{13} + 39 q^{16} + 12 q^{17} + 24 q^{19} + 27 q^{20} + 18 q^{22} + 18 q^{23} + 21 q^{25} - 9 q^{26} + 30 q^{28} - 3 q^{29} + 24 q^{31} + 6 q^{32} + 18 q^{34} + 12 q^{35} + 24 q^{37} + 18 q^{38} + 9 q^{40} - 9 q^{41} + 42 q^{43} - 12 q^{44} + 30 q^{46} + 21 q^{47} + 39 q^{49} + 3 q^{50} + 36 q^{52} + 18 q^{53} - 30 q^{56} + 30 q^{58} - 6 q^{59} + 33 q^{61} + 18 q^{62} + 63 q^{64} + 12 q^{65} + 63 q^{67} + 36 q^{68} - 12 q^{71} + 39 q^{73} - 21 q^{74} + 48 q^{76} + 9 q^{77} + 48 q^{79} + 39 q^{80} + 24 q^{82} + 33 q^{83} + 12 q^{85} - 69 q^{86} + 54 q^{88} - 9 q^{89} + 69 q^{91} + 21 q^{92} + 30 q^{94} + 24 q^{95} + 30 q^{97} + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.73681 0 5.49012 1.00000 0 2.52580 −9.55181 0 −2.73681
1.2 −2.55634 0 4.53488 1.00000 0 −1.54869 −6.48002 0 −2.55634
1.3 −2.36288 0 3.58321 1.00000 0 4.48489 −3.74094 0 −2.36288
1.4 −1.82612 0 1.33471 1.00000 0 0.744888 1.21490 0 −1.82612
1.5 −1.77329 0 1.14456 1.00000 0 −2.80275 1.51694 0 −1.77329
1.6 −1.47739 0 0.182671 1.00000 0 3.69781 2.68490 0 −1.47739
1.7 −1.10205 0 −0.785475 1.00000 0 −2.98606 3.06975 0 −1.10205
1.8 −0.821398 0 −1.32531 1.00000 0 −2.45268 2.73140 0 −0.821398
1.9 −0.299055 0 −1.91057 1.00000 0 1.30634 1.16947 0 −0.299055
1.10 −0.258561 0 −1.93315 1.00000 0 4.58199 1.01696 0 −0.258561
1.11 −0.167968 0 −1.97179 1.00000 0 −1.84136 0.667132 0 −0.167968
1.12 0.785389 0 −1.38316 1.00000 0 1.42323 −2.65710 0 0.785389
1.13 0.923028 0 −1.14802 1.00000 0 3.73011 −2.90571 0 0.923028
1.14 1.02657 0 −0.946158 1.00000 0 −4.10302 −3.02443 0 1.02657
1.15 1.68624 0 0.843417 1.00000 0 2.05910 −1.95028 0 1.68624
1.16 1.80271 0 1.24978 1.00000 0 −3.41591 −1.35244 0 1.80271
1.17 1.86636 0 1.48328 1.00000 0 3.47631 −0.964379 0 1.86636
1.18 2.34963 0 3.52074 1.00000 0 4.64813 3.57318 0 2.34963
1.19 2.57683 0 4.64004 1.00000 0 −3.03943 6.80293 0 2.57683
1.20 2.63794 0 4.95872 1.00000 0 −0.0340824 7.80492 0 2.63794
See all 21 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.21
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3645.2.a.l 21
3.b odd 2 1 3645.2.a.k 21
27.e even 9 2 135.2.k.b 42
27.f odd 18 2 405.2.k.b 42
135.p even 18 2 675.2.l.e 42
135.r odd 36 4 675.2.u.d 84
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.2.k.b 42 27.e even 9 2
405.2.k.b 42 27.f odd 18 2
675.2.l.e 42 135.p even 18 2
675.2.u.d 84 135.r odd 36 4
3645.2.a.k 21 3.b odd 2 1
3645.2.a.l 21 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{21} - 3 T_{2}^{20} - 30 T_{2}^{19} + 92 T_{2}^{18} + 372 T_{2}^{17} - 1173 T_{2}^{16} - 2477 T_{2}^{15} + 8088 T_{2}^{14} + 9657 T_{2}^{13} - 32891 T_{2}^{12} - 22665 T_{2}^{11} + 80781 T_{2}^{10} + 32123 T_{2}^{9} + \cdots + 171 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3645))\). Copy content Toggle raw display