Newspace parameters
Level: | \( N \) | \(=\) | \( 3645 = 3^{6} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3645.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(29.1054715368\) |
Analytic rank: | \(0\) |
Dimension: | \(21\) |
Twist minimal: | no (minimal twist has level 135) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.73681 | 0 | 5.49012 | 1.00000 | 0 | 2.52580 | −9.55181 | 0 | −2.73681 | ||||||||||||||||||
1.2 | −2.55634 | 0 | 4.53488 | 1.00000 | 0 | −1.54869 | −6.48002 | 0 | −2.55634 | ||||||||||||||||||
1.3 | −2.36288 | 0 | 3.58321 | 1.00000 | 0 | 4.48489 | −3.74094 | 0 | −2.36288 | ||||||||||||||||||
1.4 | −1.82612 | 0 | 1.33471 | 1.00000 | 0 | 0.744888 | 1.21490 | 0 | −1.82612 | ||||||||||||||||||
1.5 | −1.77329 | 0 | 1.14456 | 1.00000 | 0 | −2.80275 | 1.51694 | 0 | −1.77329 | ||||||||||||||||||
1.6 | −1.47739 | 0 | 0.182671 | 1.00000 | 0 | 3.69781 | 2.68490 | 0 | −1.47739 | ||||||||||||||||||
1.7 | −1.10205 | 0 | −0.785475 | 1.00000 | 0 | −2.98606 | 3.06975 | 0 | −1.10205 | ||||||||||||||||||
1.8 | −0.821398 | 0 | −1.32531 | 1.00000 | 0 | −2.45268 | 2.73140 | 0 | −0.821398 | ||||||||||||||||||
1.9 | −0.299055 | 0 | −1.91057 | 1.00000 | 0 | 1.30634 | 1.16947 | 0 | −0.299055 | ||||||||||||||||||
1.10 | −0.258561 | 0 | −1.93315 | 1.00000 | 0 | 4.58199 | 1.01696 | 0 | −0.258561 | ||||||||||||||||||
1.11 | −0.167968 | 0 | −1.97179 | 1.00000 | 0 | −1.84136 | 0.667132 | 0 | −0.167968 | ||||||||||||||||||
1.12 | 0.785389 | 0 | −1.38316 | 1.00000 | 0 | 1.42323 | −2.65710 | 0 | 0.785389 | ||||||||||||||||||
1.13 | 0.923028 | 0 | −1.14802 | 1.00000 | 0 | 3.73011 | −2.90571 | 0 | 0.923028 | ||||||||||||||||||
1.14 | 1.02657 | 0 | −0.946158 | 1.00000 | 0 | −4.10302 | −3.02443 | 0 | 1.02657 | ||||||||||||||||||
1.15 | 1.68624 | 0 | 0.843417 | 1.00000 | 0 | 2.05910 | −1.95028 | 0 | 1.68624 | ||||||||||||||||||
1.16 | 1.80271 | 0 | 1.24978 | 1.00000 | 0 | −3.41591 | −1.35244 | 0 | 1.80271 | ||||||||||||||||||
1.17 | 1.86636 | 0 | 1.48328 | 1.00000 | 0 | 3.47631 | −0.964379 | 0 | 1.86636 | ||||||||||||||||||
1.18 | 2.34963 | 0 | 3.52074 | 1.00000 | 0 | 4.64813 | 3.57318 | 0 | 2.34963 | ||||||||||||||||||
1.19 | 2.57683 | 0 | 4.64004 | 1.00000 | 0 | −3.03943 | 6.80293 | 0 | 2.57683 | ||||||||||||||||||
1.20 | 2.63794 | 0 | 4.95872 | 1.00000 | 0 | −0.0340824 | 7.80492 | 0 | 2.63794 | ||||||||||||||||||
See all 21 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(1\) |
\(5\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3645.2.a.l | 21 | |
3.b | odd | 2 | 1 | 3645.2.a.k | 21 | ||
27.e | even | 9 | 2 | 135.2.k.b | ✓ | 42 | |
27.f | odd | 18 | 2 | 405.2.k.b | 42 | ||
135.p | even | 18 | 2 | 675.2.l.e | 42 | ||
135.r | odd | 36 | 4 | 675.2.u.d | 84 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
135.2.k.b | ✓ | 42 | 27.e | even | 9 | 2 | |
405.2.k.b | 42 | 27.f | odd | 18 | 2 | ||
675.2.l.e | 42 | 135.p | even | 18 | 2 | ||
675.2.u.d | 84 | 135.r | odd | 36 | 4 | ||
3645.2.a.k | 21 | 3.b | odd | 2 | 1 | ||
3645.2.a.l | 21 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{21} - 3 T_{2}^{20} - 30 T_{2}^{19} + 92 T_{2}^{18} + 372 T_{2}^{17} - 1173 T_{2}^{16} - 2477 T_{2}^{15} + 8088 T_{2}^{14} + 9657 T_{2}^{13} - 32891 T_{2}^{12} - 22665 T_{2}^{11} + 80781 T_{2}^{10} + 32123 T_{2}^{9} + \cdots + 171 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3645))\).