Properties

Label 3645.2.a.c.1.5
Level $3645$
Weight $2$
Character 3645.1
Self dual yes
Analytic conductor $29.105$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 279330657 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3645,2,Mod(1,3645)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3645.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3645, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3645 = 3^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3645.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,9,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.1054715368\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.3916917.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 6x^{4} + 12x^{3} + 18x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.75528\) of defining polynomial
Character \(\chi\) \(=\) 3645.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.75528 q^{2} +1.08100 q^{4} +1.00000 q^{5} -0.223190 q^{7} -1.61309 q^{8} +1.75528 q^{10} -0.190142 q^{11} -6.78155 q^{13} -0.391761 q^{14} -4.99344 q^{16} +1.48457 q^{17} -0.985031 q^{19} +1.08100 q^{20} -0.333752 q^{22} +7.07520 q^{23} +1.00000 q^{25} -11.9035 q^{26} -0.241270 q^{28} -2.57705 q^{29} -2.51422 q^{31} -5.53869 q^{32} +2.60583 q^{34} -0.223190 q^{35} -9.93302 q^{37} -1.72900 q^{38} -1.61309 q^{40} -5.70334 q^{41} +6.55808 q^{43} -0.205544 q^{44} +12.4190 q^{46} -8.85966 q^{47} -6.95019 q^{49} +1.75528 q^{50} -7.33089 q^{52} -1.90890 q^{53} -0.190142 q^{55} +0.360027 q^{56} -4.52344 q^{58} -9.38596 q^{59} +0.0161816 q^{61} -4.41316 q^{62} +0.264929 q^{64} -6.78155 q^{65} -9.87354 q^{67} +1.60482 q^{68} -0.391761 q^{70} +5.03559 q^{71} +7.91456 q^{73} -17.4352 q^{74} -1.06482 q^{76} +0.0424378 q^{77} -9.91847 q^{79} -4.99344 q^{80} -10.0109 q^{82} +13.2221 q^{83} +1.48457 q^{85} +11.5113 q^{86} +0.306716 q^{88} -6.08753 q^{89} +1.51358 q^{91} +7.64832 q^{92} -15.5512 q^{94} -0.985031 q^{95} +3.75293 q^{97} -12.1995 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 9 q^{4} + 6 q^{5} + 3 q^{7} - 3 q^{8} - 3 q^{10} - 9 q^{11} - 6 q^{13} - 24 q^{14} - 9 q^{16} + 15 q^{17} - 9 q^{19} + 9 q^{20} + 3 q^{22} - 6 q^{23} + 6 q^{25} - 3 q^{26} + 12 q^{28} - 30 q^{29}+ \cdots - 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.75528 1.24117 0.620585 0.784139i \(-0.286895\pi\)
0.620585 + 0.784139i \(0.286895\pi\)
\(3\) 0 0
\(4\) 1.08100 0.540502
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.223190 −0.0843580 −0.0421790 0.999110i \(-0.513430\pi\)
−0.0421790 + 0.999110i \(0.513430\pi\)
\(8\) −1.61309 −0.570315
\(9\) 0 0
\(10\) 1.75528 0.555068
\(11\) −0.190142 −0.0573299 −0.0286649 0.999589i \(-0.509126\pi\)
−0.0286649 + 0.999589i \(0.509126\pi\)
\(12\) 0 0
\(13\) −6.78155 −1.88086 −0.940432 0.339981i \(-0.889579\pi\)
−0.940432 + 0.339981i \(0.889579\pi\)
\(14\) −0.391761 −0.104703
\(15\) 0 0
\(16\) −4.99344 −1.24836
\(17\) 1.48457 0.360060 0.180030 0.983661i \(-0.442380\pi\)
0.180030 + 0.983661i \(0.442380\pi\)
\(18\) 0 0
\(19\) −0.985031 −0.225982 −0.112991 0.993596i \(-0.536043\pi\)
−0.112991 + 0.993596i \(0.536043\pi\)
\(20\) 1.08100 0.241720
\(21\) 0 0
\(22\) −0.333752 −0.0711561
\(23\) 7.07520 1.47528 0.737641 0.675193i \(-0.235940\pi\)
0.737641 + 0.675193i \(0.235940\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −11.9035 −2.33447
\(27\) 0 0
\(28\) −0.241270 −0.0455957
\(29\) −2.57705 −0.478546 −0.239273 0.970952i \(-0.576909\pi\)
−0.239273 + 0.970952i \(0.576909\pi\)
\(30\) 0 0
\(31\) −2.51422 −0.451567 −0.225784 0.974177i \(-0.572494\pi\)
−0.225784 + 0.974177i \(0.572494\pi\)
\(32\) −5.53869 −0.979111
\(33\) 0 0
\(34\) 2.60583 0.446896
\(35\) −0.223190 −0.0377260
\(36\) 0 0
\(37\) −9.93302 −1.63298 −0.816489 0.577361i \(-0.804082\pi\)
−0.816489 + 0.577361i \(0.804082\pi\)
\(38\) −1.72900 −0.280482
\(39\) 0 0
\(40\) −1.61309 −0.255052
\(41\) −5.70334 −0.890712 −0.445356 0.895354i \(-0.646923\pi\)
−0.445356 + 0.895354i \(0.646923\pi\)
\(42\) 0 0
\(43\) 6.55808 1.00010 0.500049 0.865997i \(-0.333315\pi\)
0.500049 + 0.865997i \(0.333315\pi\)
\(44\) −0.205544 −0.0309869
\(45\) 0 0
\(46\) 12.4190 1.83107
\(47\) −8.85966 −1.29231 −0.646157 0.763204i \(-0.723625\pi\)
−0.646157 + 0.763204i \(0.723625\pi\)
\(48\) 0 0
\(49\) −6.95019 −0.992884
\(50\) 1.75528 0.248234
\(51\) 0 0
\(52\) −7.33089 −1.01661
\(53\) −1.90890 −0.262208 −0.131104 0.991369i \(-0.541852\pi\)
−0.131104 + 0.991369i \(0.541852\pi\)
\(54\) 0 0
\(55\) −0.190142 −0.0256387
\(56\) 0.360027 0.0481106
\(57\) 0 0
\(58\) −4.52344 −0.593957
\(59\) −9.38596 −1.22195 −0.610974 0.791651i \(-0.709222\pi\)
−0.610974 + 0.791651i \(0.709222\pi\)
\(60\) 0 0
\(61\) 0.0161816 0.00207184 0.00103592 0.999999i \(-0.499670\pi\)
0.00103592 + 0.999999i \(0.499670\pi\)
\(62\) −4.41316 −0.560472
\(63\) 0 0
\(64\) 0.264929 0.0331161
\(65\) −6.78155 −0.841148
\(66\) 0 0
\(67\) −9.87354 −1.20625 −0.603123 0.797649i \(-0.706077\pi\)
−0.603123 + 0.797649i \(0.706077\pi\)
\(68\) 1.60482 0.194613
\(69\) 0 0
\(70\) −0.391761 −0.0468244
\(71\) 5.03559 0.597615 0.298807 0.954313i \(-0.403411\pi\)
0.298807 + 0.954313i \(0.403411\pi\)
\(72\) 0 0
\(73\) 7.91456 0.926329 0.463165 0.886272i \(-0.346714\pi\)
0.463165 + 0.886272i \(0.346714\pi\)
\(74\) −17.4352 −2.02680
\(75\) 0 0
\(76\) −1.06482 −0.122144
\(77\) 0.0424378 0.00483623
\(78\) 0 0
\(79\) −9.91847 −1.11591 −0.557957 0.829870i \(-0.688415\pi\)
−0.557957 + 0.829870i \(0.688415\pi\)
\(80\) −4.99344 −0.558283
\(81\) 0 0
\(82\) −10.0109 −1.10552
\(83\) 13.2221 1.45132 0.725659 0.688055i \(-0.241535\pi\)
0.725659 + 0.688055i \(0.241535\pi\)
\(84\) 0 0
\(85\) 1.48457 0.161024
\(86\) 11.5113 1.24129
\(87\) 0 0
\(88\) 0.306716 0.0326961
\(89\) −6.08753 −0.645277 −0.322639 0.946522i \(-0.604570\pi\)
−0.322639 + 0.946522i \(0.604570\pi\)
\(90\) 0 0
\(91\) 1.51358 0.158666
\(92\) 7.64832 0.797393
\(93\) 0 0
\(94\) −15.5512 −1.60398
\(95\) −0.985031 −0.101062
\(96\) 0 0
\(97\) 3.75293 0.381052 0.190526 0.981682i \(-0.438981\pi\)
0.190526 + 0.981682i \(0.438981\pi\)
\(98\) −12.1995 −1.23234
\(99\) 0 0
\(100\) 1.08100 0.108100
\(101\) −0.511790 −0.0509250 −0.0254625 0.999676i \(-0.508106\pi\)
−0.0254625 + 0.999676i \(0.508106\pi\)
\(102\) 0 0
\(103\) −1.19413 −0.117661 −0.0588305 0.998268i \(-0.518737\pi\)
−0.0588305 + 0.998268i \(0.518737\pi\)
\(104\) 10.9393 1.07268
\(105\) 0 0
\(106\) −3.35066 −0.325444
\(107\) −10.6681 −1.03133 −0.515664 0.856791i \(-0.672455\pi\)
−0.515664 + 0.856791i \(0.672455\pi\)
\(108\) 0 0
\(109\) 0.263959 0.0252827 0.0126413 0.999920i \(-0.495976\pi\)
0.0126413 + 0.999920i \(0.495976\pi\)
\(110\) −0.333752 −0.0318220
\(111\) 0 0
\(112\) 1.11449 0.105309
\(113\) −12.8150 −1.20553 −0.602766 0.797918i \(-0.705935\pi\)
−0.602766 + 0.797918i \(0.705935\pi\)
\(114\) 0 0
\(115\) 7.07520 0.659766
\(116\) −2.78580 −0.258655
\(117\) 0 0
\(118\) −16.4750 −1.51664
\(119\) −0.331341 −0.0303739
\(120\) 0 0
\(121\) −10.9638 −0.996713
\(122\) 0.0284032 0.00257151
\(123\) 0 0
\(124\) −2.71788 −0.244073
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −9.55770 −0.848108 −0.424054 0.905637i \(-0.639393\pi\)
−0.424054 + 0.905637i \(0.639393\pi\)
\(128\) 11.5424 1.02021
\(129\) 0 0
\(130\) −11.9035 −1.04401
\(131\) 18.1182 1.58300 0.791498 0.611171i \(-0.209301\pi\)
0.791498 + 0.611171i \(0.209301\pi\)
\(132\) 0 0
\(133\) 0.219849 0.0190633
\(134\) −17.3308 −1.49715
\(135\) 0 0
\(136\) −2.39474 −0.205348
\(137\) 11.4313 0.976645 0.488323 0.872663i \(-0.337609\pi\)
0.488323 + 0.872663i \(0.337609\pi\)
\(138\) 0 0
\(139\) 11.9723 1.01548 0.507740 0.861510i \(-0.330481\pi\)
0.507740 + 0.861510i \(0.330481\pi\)
\(140\) −0.241270 −0.0203910
\(141\) 0 0
\(142\) 8.83887 0.741741
\(143\) 1.28946 0.107830
\(144\) 0 0
\(145\) −2.57705 −0.214012
\(146\) 13.8923 1.14973
\(147\) 0 0
\(148\) −10.7376 −0.882628
\(149\) −5.53546 −0.453483 −0.226741 0.973955i \(-0.572807\pi\)
−0.226741 + 0.973955i \(0.572807\pi\)
\(150\) 0 0
\(151\) 17.3970 1.41575 0.707873 0.706340i \(-0.249655\pi\)
0.707873 + 0.706340i \(0.249655\pi\)
\(152\) 1.58895 0.128881
\(153\) 0 0
\(154\) 0.0744901 0.00600258
\(155\) −2.51422 −0.201947
\(156\) 0 0
\(157\) 8.87697 0.708460 0.354230 0.935158i \(-0.384743\pi\)
0.354230 + 0.935158i \(0.384743\pi\)
\(158\) −17.4097 −1.38504
\(159\) 0 0
\(160\) −5.53869 −0.437872
\(161\) −1.57912 −0.124452
\(162\) 0 0
\(163\) −2.76730 −0.216751 −0.108376 0.994110i \(-0.534565\pi\)
−0.108376 + 0.994110i \(0.534565\pi\)
\(164\) −6.16533 −0.481432
\(165\) 0 0
\(166\) 23.2085 1.80133
\(167\) 7.69467 0.595431 0.297716 0.954655i \(-0.403775\pi\)
0.297716 + 0.954655i \(0.403775\pi\)
\(168\) 0 0
\(169\) 32.9895 2.53765
\(170\) 2.60583 0.199858
\(171\) 0 0
\(172\) 7.08932 0.540555
\(173\) 11.8826 0.903416 0.451708 0.892166i \(-0.350815\pi\)
0.451708 + 0.892166i \(0.350815\pi\)
\(174\) 0 0
\(175\) −0.223190 −0.0168716
\(176\) 0.949461 0.0715683
\(177\) 0 0
\(178\) −10.6853 −0.800899
\(179\) −20.7864 −1.55365 −0.776826 0.629716i \(-0.783171\pi\)
−0.776826 + 0.629716i \(0.783171\pi\)
\(180\) 0 0
\(181\) 11.2246 0.834318 0.417159 0.908834i \(-0.363026\pi\)
0.417159 + 0.908834i \(0.363026\pi\)
\(182\) 2.65675 0.196931
\(183\) 0 0
\(184\) −11.4130 −0.841375
\(185\) −9.93302 −0.730290
\(186\) 0 0
\(187\) −0.282278 −0.0206422
\(188\) −9.57733 −0.698499
\(189\) 0 0
\(190\) −1.72900 −0.125435
\(191\) 14.7637 1.06826 0.534131 0.845402i \(-0.320639\pi\)
0.534131 + 0.845402i \(0.320639\pi\)
\(192\) 0 0
\(193\) −25.8760 −1.86260 −0.931298 0.364257i \(-0.881323\pi\)
−0.931298 + 0.364257i \(0.881323\pi\)
\(194\) 6.58743 0.472950
\(195\) 0 0
\(196\) −7.51318 −0.536656
\(197\) −23.5478 −1.67771 −0.838857 0.544352i \(-0.816776\pi\)
−0.838857 + 0.544352i \(0.816776\pi\)
\(198\) 0 0
\(199\) 24.9325 1.76741 0.883707 0.468040i \(-0.155040\pi\)
0.883707 + 0.468040i \(0.155040\pi\)
\(200\) −1.61309 −0.114063
\(201\) 0 0
\(202\) −0.898335 −0.0632066
\(203\) 0.575172 0.0403691
\(204\) 0 0
\(205\) −5.70334 −0.398338
\(206\) −2.09603 −0.146037
\(207\) 0 0
\(208\) 33.8633 2.34800
\(209\) 0.187295 0.0129555
\(210\) 0 0
\(211\) 16.2681 1.11994 0.559970 0.828513i \(-0.310813\pi\)
0.559970 + 0.828513i \(0.310813\pi\)
\(212\) −2.06353 −0.141724
\(213\) 0 0
\(214\) −18.7256 −1.28005
\(215\) 6.55808 0.447257
\(216\) 0 0
\(217\) 0.561149 0.0380933
\(218\) 0.463322 0.0313801
\(219\) 0 0
\(220\) −0.205544 −0.0138578
\(221\) −10.0677 −0.677224
\(222\) 0 0
\(223\) −10.4632 −0.700665 −0.350333 0.936625i \(-0.613931\pi\)
−0.350333 + 0.936625i \(0.613931\pi\)
\(224\) 1.23618 0.0825958
\(225\) 0 0
\(226\) −22.4939 −1.49627
\(227\) −21.6774 −1.43878 −0.719388 0.694608i \(-0.755578\pi\)
−0.719388 + 0.694608i \(0.755578\pi\)
\(228\) 0 0
\(229\) 24.9218 1.64688 0.823438 0.567406i \(-0.192053\pi\)
0.823438 + 0.567406i \(0.192053\pi\)
\(230\) 12.4190 0.818881
\(231\) 0 0
\(232\) 4.15702 0.272922
\(233\) −14.9463 −0.979167 −0.489584 0.871956i \(-0.662851\pi\)
−0.489584 + 0.871956i \(0.662851\pi\)
\(234\) 0 0
\(235\) −8.85966 −0.577940
\(236\) −10.1463 −0.660465
\(237\) 0 0
\(238\) −0.581595 −0.0376992
\(239\) −5.53501 −0.358030 −0.179015 0.983846i \(-0.557291\pi\)
−0.179015 + 0.983846i \(0.557291\pi\)
\(240\) 0 0
\(241\) −1.88415 −0.121369 −0.0606843 0.998157i \(-0.519328\pi\)
−0.0606843 + 0.998157i \(0.519328\pi\)
\(242\) −19.2446 −1.23709
\(243\) 0 0
\(244\) 0.0174924 0.00111983
\(245\) −6.95019 −0.444031
\(246\) 0 0
\(247\) 6.68004 0.425041
\(248\) 4.05567 0.257536
\(249\) 0 0
\(250\) 1.75528 0.111014
\(251\) −22.4584 −1.41756 −0.708779 0.705430i \(-0.750754\pi\)
−0.708779 + 0.705430i \(0.750754\pi\)
\(252\) 0 0
\(253\) −1.34529 −0.0845777
\(254\) −16.7764 −1.05265
\(255\) 0 0
\(256\) 19.7303 1.23314
\(257\) −25.8465 −1.61226 −0.806131 0.591737i \(-0.798443\pi\)
−0.806131 + 0.591737i \(0.798443\pi\)
\(258\) 0 0
\(259\) 2.21695 0.137755
\(260\) −7.33089 −0.454643
\(261\) 0 0
\(262\) 31.8025 1.96477
\(263\) 22.3794 1.37997 0.689987 0.723822i \(-0.257616\pi\)
0.689987 + 0.723822i \(0.257616\pi\)
\(264\) 0 0
\(265\) −1.90890 −0.117263
\(266\) 0.385897 0.0236608
\(267\) 0 0
\(268\) −10.6733 −0.651978
\(269\) 18.6149 1.13497 0.567486 0.823383i \(-0.307916\pi\)
0.567486 + 0.823383i \(0.307916\pi\)
\(270\) 0 0
\(271\) −19.1389 −1.16261 −0.581304 0.813686i \(-0.697457\pi\)
−0.581304 + 0.813686i \(0.697457\pi\)
\(272\) −7.41309 −0.449485
\(273\) 0 0
\(274\) 20.0652 1.21218
\(275\) −0.190142 −0.0114660
\(276\) 0 0
\(277\) −4.01820 −0.241430 −0.120715 0.992687i \(-0.538519\pi\)
−0.120715 + 0.992687i \(0.538519\pi\)
\(278\) 21.0148 1.26038
\(279\) 0 0
\(280\) 0.360027 0.0215157
\(281\) 15.3460 0.915466 0.457733 0.889090i \(-0.348662\pi\)
0.457733 + 0.889090i \(0.348662\pi\)
\(282\) 0 0
\(283\) −31.2708 −1.85886 −0.929429 0.369001i \(-0.879700\pi\)
−0.929429 + 0.369001i \(0.879700\pi\)
\(284\) 5.44350 0.323012
\(285\) 0 0
\(286\) 2.26336 0.133835
\(287\) 1.27293 0.0751386
\(288\) 0 0
\(289\) −14.7961 −0.870357
\(290\) −4.52344 −0.265625
\(291\) 0 0
\(292\) 8.55568 0.500683
\(293\) −3.57602 −0.208913 −0.104457 0.994529i \(-0.533310\pi\)
−0.104457 + 0.994529i \(0.533310\pi\)
\(294\) 0 0
\(295\) −9.38596 −0.546472
\(296\) 16.0229 0.931311
\(297\) 0 0
\(298\) −9.71628 −0.562849
\(299\) −47.9809 −2.77480
\(300\) 0 0
\(301\) −1.46370 −0.0843662
\(302\) 30.5366 1.75718
\(303\) 0 0
\(304\) 4.91869 0.282106
\(305\) 0.0161816 0.000926556 0
\(306\) 0 0
\(307\) −11.1729 −0.637671 −0.318835 0.947810i \(-0.603292\pi\)
−0.318835 + 0.947810i \(0.603292\pi\)
\(308\) 0.0458754 0.00261399
\(309\) 0 0
\(310\) −4.41316 −0.250651
\(311\) −15.5457 −0.881517 −0.440758 0.897626i \(-0.645290\pi\)
−0.440758 + 0.897626i \(0.645290\pi\)
\(312\) 0 0
\(313\) 29.2641 1.65410 0.827052 0.562125i \(-0.190016\pi\)
0.827052 + 0.562125i \(0.190016\pi\)
\(314\) 15.5816 0.879319
\(315\) 0 0
\(316\) −10.7219 −0.603154
\(317\) 32.9848 1.85261 0.926306 0.376773i \(-0.122966\pi\)
0.926306 + 0.376773i \(0.122966\pi\)
\(318\) 0 0
\(319\) 0.490004 0.0274350
\(320\) 0.264929 0.0148100
\(321\) 0 0
\(322\) −2.77179 −0.154466
\(323\) −1.46234 −0.0813670
\(324\) 0 0
\(325\) −6.78155 −0.376173
\(326\) −4.85738 −0.269025
\(327\) 0 0
\(328\) 9.20002 0.507986
\(329\) 1.97739 0.109017
\(330\) 0 0
\(331\) 21.6263 1.18869 0.594345 0.804210i \(-0.297412\pi\)
0.594345 + 0.804210i \(0.297412\pi\)
\(332\) 14.2932 0.784440
\(333\) 0 0
\(334\) 13.5063 0.739031
\(335\) −9.87354 −0.539449
\(336\) 0 0
\(337\) 19.5789 1.06653 0.533264 0.845949i \(-0.320965\pi\)
0.533264 + 0.845949i \(0.320965\pi\)
\(338\) 57.9057 3.14966
\(339\) 0 0
\(340\) 1.60482 0.0870337
\(341\) 0.478058 0.0258883
\(342\) 0 0
\(343\) 3.11354 0.168116
\(344\) −10.5788 −0.570371
\(345\) 0 0
\(346\) 20.8572 1.12129
\(347\) −9.66065 −0.518611 −0.259305 0.965795i \(-0.583494\pi\)
−0.259305 + 0.965795i \(0.583494\pi\)
\(348\) 0 0
\(349\) −0.438994 −0.0234988 −0.0117494 0.999931i \(-0.503740\pi\)
−0.0117494 + 0.999931i \(0.503740\pi\)
\(350\) −0.391761 −0.0209405
\(351\) 0 0
\(352\) 1.05314 0.0561323
\(353\) 14.0546 0.748051 0.374025 0.927418i \(-0.377977\pi\)
0.374025 + 0.927418i \(0.377977\pi\)
\(354\) 0 0
\(355\) 5.03559 0.267261
\(356\) −6.58065 −0.348774
\(357\) 0 0
\(358\) −36.4860 −1.92834
\(359\) −5.28300 −0.278826 −0.139413 0.990234i \(-0.544522\pi\)
−0.139413 + 0.990234i \(0.544522\pi\)
\(360\) 0 0
\(361\) −18.0297 −0.948932
\(362\) 19.7023 1.03553
\(363\) 0 0
\(364\) 1.63618 0.0857593
\(365\) 7.91456 0.414267
\(366\) 0 0
\(367\) 5.35973 0.279775 0.139888 0.990167i \(-0.455326\pi\)
0.139888 + 0.990167i \(0.455326\pi\)
\(368\) −35.3296 −1.84168
\(369\) 0 0
\(370\) −17.4352 −0.906414
\(371\) 0.426048 0.0221193
\(372\) 0 0
\(373\) 24.5532 1.27132 0.635659 0.771970i \(-0.280729\pi\)
0.635659 + 0.771970i \(0.280729\pi\)
\(374\) −0.495477 −0.0256205
\(375\) 0 0
\(376\) 14.2915 0.737026
\(377\) 17.4764 0.900080
\(378\) 0 0
\(379\) 37.9306 1.94836 0.974182 0.225764i \(-0.0724878\pi\)
0.974182 + 0.225764i \(0.0724878\pi\)
\(380\) −1.06482 −0.0546243
\(381\) 0 0
\(382\) 25.9144 1.32589
\(383\) −4.45900 −0.227844 −0.113922 0.993490i \(-0.536341\pi\)
−0.113922 + 0.993490i \(0.536341\pi\)
\(384\) 0 0
\(385\) 0.0424378 0.00216283
\(386\) −45.4196 −2.31180
\(387\) 0 0
\(388\) 4.05693 0.205959
\(389\) −30.7009 −1.55660 −0.778298 0.627895i \(-0.783917\pi\)
−0.778298 + 0.627895i \(0.783917\pi\)
\(390\) 0 0
\(391\) 10.5036 0.531190
\(392\) 11.2113 0.566256
\(393\) 0 0
\(394\) −41.3330 −2.08233
\(395\) −9.91847 −0.499052
\(396\) 0 0
\(397\) −6.41781 −0.322101 −0.161050 0.986946i \(-0.551488\pi\)
−0.161050 + 0.986946i \(0.551488\pi\)
\(398\) 43.7634 2.19366
\(399\) 0 0
\(400\) −4.99344 −0.249672
\(401\) −22.8020 −1.13868 −0.569338 0.822104i \(-0.692800\pi\)
−0.569338 + 0.822104i \(0.692800\pi\)
\(402\) 0 0
\(403\) 17.0503 0.849337
\(404\) −0.553248 −0.0275251
\(405\) 0 0
\(406\) 1.00959 0.0501050
\(407\) 1.88868 0.0936184
\(408\) 0 0
\(409\) 35.8450 1.77242 0.886211 0.463281i \(-0.153328\pi\)
0.886211 + 0.463281i \(0.153328\pi\)
\(410\) −10.0109 −0.494405
\(411\) 0 0
\(412\) −1.29086 −0.0635960
\(413\) 2.09485 0.103081
\(414\) 0 0
\(415\) 13.2221 0.649049
\(416\) 37.5609 1.84158
\(417\) 0 0
\(418\) 0.328756 0.0160800
\(419\) −4.75964 −0.232524 −0.116262 0.993219i \(-0.537091\pi\)
−0.116262 + 0.993219i \(0.537091\pi\)
\(420\) 0 0
\(421\) −22.7101 −1.10682 −0.553412 0.832908i \(-0.686674\pi\)
−0.553412 + 0.832908i \(0.686674\pi\)
\(422\) 28.5550 1.39004
\(423\) 0 0
\(424\) 3.07924 0.149541
\(425\) 1.48457 0.0720120
\(426\) 0 0
\(427\) −0.00361157 −0.000174776 0
\(428\) −11.5323 −0.557436
\(429\) 0 0
\(430\) 11.5113 0.555122
\(431\) 26.1473 1.25947 0.629736 0.776809i \(-0.283163\pi\)
0.629736 + 0.776809i \(0.283163\pi\)
\(432\) 0 0
\(433\) 16.2090 0.778953 0.389476 0.921036i \(-0.372656\pi\)
0.389476 + 0.921036i \(0.372656\pi\)
\(434\) 0.984974 0.0472803
\(435\) 0 0
\(436\) 0.285341 0.0136653
\(437\) −6.96929 −0.333386
\(438\) 0 0
\(439\) 21.9212 1.04624 0.523121 0.852258i \(-0.324767\pi\)
0.523121 + 0.852258i \(0.324767\pi\)
\(440\) 0.306716 0.0146221
\(441\) 0 0
\(442\) −17.6716 −0.840550
\(443\) −15.2120 −0.722746 −0.361373 0.932421i \(-0.617692\pi\)
−0.361373 + 0.932421i \(0.617692\pi\)
\(444\) 0 0
\(445\) −6.08753 −0.288577
\(446\) −18.3658 −0.869644
\(447\) 0 0
\(448\) −0.0591295 −0.00279361
\(449\) −5.37836 −0.253821 −0.126910 0.991914i \(-0.540506\pi\)
−0.126910 + 0.991914i \(0.540506\pi\)
\(450\) 0 0
\(451\) 1.08444 0.0510644
\(452\) −13.8531 −0.651593
\(453\) 0 0
\(454\) −38.0498 −1.78577
\(455\) 1.51358 0.0709575
\(456\) 0 0
\(457\) 1.23577 0.0578068 0.0289034 0.999582i \(-0.490798\pi\)
0.0289034 + 0.999582i \(0.490798\pi\)
\(458\) 43.7446 2.04405
\(459\) 0 0
\(460\) 7.64832 0.356605
\(461\) −10.0263 −0.466970 −0.233485 0.972360i \(-0.575013\pi\)
−0.233485 + 0.972360i \(0.575013\pi\)
\(462\) 0 0
\(463\) −21.3391 −0.991712 −0.495856 0.868405i \(-0.665146\pi\)
−0.495856 + 0.868405i \(0.665146\pi\)
\(464\) 12.8683 0.597397
\(465\) 0 0
\(466\) −26.2350 −1.21531
\(467\) −3.39845 −0.157261 −0.0786307 0.996904i \(-0.525055\pi\)
−0.0786307 + 0.996904i \(0.525055\pi\)
\(468\) 0 0
\(469\) 2.20368 0.101756
\(470\) −15.5512 −0.717322
\(471\) 0 0
\(472\) 15.1404 0.696895
\(473\) −1.24696 −0.0573355
\(474\) 0 0
\(475\) −0.985031 −0.0451963
\(476\) −0.358181 −0.0164172
\(477\) 0 0
\(478\) −9.71548 −0.444376
\(479\) −21.5971 −0.986798 −0.493399 0.869803i \(-0.664246\pi\)
−0.493399 + 0.869803i \(0.664246\pi\)
\(480\) 0 0
\(481\) 67.3613 3.07141
\(482\) −3.30720 −0.150639
\(483\) 0 0
\(484\) −11.8520 −0.538726
\(485\) 3.75293 0.170412
\(486\) 0 0
\(487\) 18.1927 0.824390 0.412195 0.911096i \(-0.364762\pi\)
0.412195 + 0.911096i \(0.364762\pi\)
\(488\) −0.0261024 −0.00118160
\(489\) 0 0
\(490\) −12.1995 −0.551118
\(491\) 0.913715 0.0412354 0.0206177 0.999787i \(-0.493437\pi\)
0.0206177 + 0.999787i \(0.493437\pi\)
\(492\) 0 0
\(493\) −3.82580 −0.172305
\(494\) 11.7253 0.527548
\(495\) 0 0
\(496\) 12.5546 0.563719
\(497\) −1.12389 −0.0504135
\(498\) 0 0
\(499\) −6.93641 −0.310516 −0.155258 0.987874i \(-0.549621\pi\)
−0.155258 + 0.987874i \(0.549621\pi\)
\(500\) 1.08100 0.0483440
\(501\) 0 0
\(502\) −39.4207 −1.75943
\(503\) −6.21600 −0.277158 −0.138579 0.990351i \(-0.544253\pi\)
−0.138579 + 0.990351i \(0.544253\pi\)
\(504\) 0 0
\(505\) −0.511790 −0.0227744
\(506\) −2.36136 −0.104975
\(507\) 0 0
\(508\) −10.3319 −0.458405
\(509\) −5.16768 −0.229053 −0.114527 0.993420i \(-0.536535\pi\)
−0.114527 + 0.993420i \(0.536535\pi\)
\(510\) 0 0
\(511\) −1.76645 −0.0781433
\(512\) 11.5473 0.510325
\(513\) 0 0
\(514\) −45.3679 −2.00109
\(515\) −1.19413 −0.0526196
\(516\) 0 0
\(517\) 1.68459 0.0740882
\(518\) 3.89137 0.170977
\(519\) 0 0
\(520\) 10.9393 0.479719
\(521\) 34.4176 1.50786 0.753931 0.656954i \(-0.228155\pi\)
0.753931 + 0.656954i \(0.228155\pi\)
\(522\) 0 0
\(523\) −42.1655 −1.84377 −0.921885 0.387464i \(-0.873351\pi\)
−0.921885 + 0.387464i \(0.873351\pi\)
\(524\) 19.5859 0.855613
\(525\) 0 0
\(526\) 39.2821 1.71278
\(527\) −3.73253 −0.162591
\(528\) 0 0
\(529\) 27.0585 1.17646
\(530\) −3.35066 −0.145543
\(531\) 0 0
\(532\) 0.237658 0.0103038
\(533\) 38.6775 1.67531
\(534\) 0 0
\(535\) −10.6681 −0.461224
\(536\) 15.9269 0.687939
\(537\) 0 0
\(538\) 32.6744 1.40869
\(539\) 1.32152 0.0569219
\(540\) 0 0
\(541\) 20.0990 0.864122 0.432061 0.901844i \(-0.357787\pi\)
0.432061 + 0.901844i \(0.357787\pi\)
\(542\) −33.5942 −1.44299
\(543\) 0 0
\(544\) −8.22255 −0.352539
\(545\) 0.263959 0.0113068
\(546\) 0 0
\(547\) −20.9334 −0.895047 −0.447523 0.894272i \(-0.647694\pi\)
−0.447523 + 0.894272i \(0.647694\pi\)
\(548\) 12.3573 0.527879
\(549\) 0 0
\(550\) −0.333752 −0.0142312
\(551\) 2.53847 0.108143
\(552\) 0 0
\(553\) 2.21370 0.0941363
\(554\) −7.05306 −0.299656
\(555\) 0 0
\(556\) 12.9422 0.548870
\(557\) −9.92402 −0.420494 −0.210247 0.977648i \(-0.567427\pi\)
−0.210247 + 0.977648i \(0.567427\pi\)
\(558\) 0 0
\(559\) −44.4740 −1.88105
\(560\) 1.11449 0.0470956
\(561\) 0 0
\(562\) 26.9365 1.13625
\(563\) −20.9705 −0.883800 −0.441900 0.897064i \(-0.645695\pi\)
−0.441900 + 0.897064i \(0.645695\pi\)
\(564\) 0 0
\(565\) −12.8150 −0.539130
\(566\) −54.8890 −2.30716
\(567\) 0 0
\(568\) −8.12288 −0.340828
\(569\) −13.9928 −0.586610 −0.293305 0.956019i \(-0.594755\pi\)
−0.293305 + 0.956019i \(0.594755\pi\)
\(570\) 0 0
\(571\) 9.51846 0.398335 0.199168 0.979965i \(-0.436176\pi\)
0.199168 + 0.979965i \(0.436176\pi\)
\(572\) 1.39391 0.0582822
\(573\) 0 0
\(574\) 2.23435 0.0932598
\(575\) 7.07520 0.295056
\(576\) 0 0
\(577\) 25.4415 1.05914 0.529571 0.848266i \(-0.322353\pi\)
0.529571 + 0.848266i \(0.322353\pi\)
\(578\) −25.9712 −1.08026
\(579\) 0 0
\(580\) −2.78580 −0.115674
\(581\) −2.95105 −0.122430
\(582\) 0 0
\(583\) 0.362962 0.0150323
\(584\) −12.7669 −0.528299
\(585\) 0 0
\(586\) −6.27691 −0.259297
\(587\) −26.0782 −1.07636 −0.538181 0.842829i \(-0.680888\pi\)
−0.538181 + 0.842829i \(0.680888\pi\)
\(588\) 0 0
\(589\) 2.47659 0.102046
\(590\) −16.4750 −0.678264
\(591\) 0 0
\(592\) 49.5999 2.03854
\(593\) 18.7253 0.768957 0.384478 0.923134i \(-0.374381\pi\)
0.384478 + 0.923134i \(0.374381\pi\)
\(594\) 0 0
\(595\) −0.331341 −0.0135836
\(596\) −5.98386 −0.245108
\(597\) 0 0
\(598\) −84.2198 −3.44400
\(599\) −9.75105 −0.398417 −0.199208 0.979957i \(-0.563837\pi\)
−0.199208 + 0.979957i \(0.563837\pi\)
\(600\) 0 0
\(601\) −32.7671 −1.33660 −0.668300 0.743892i \(-0.732978\pi\)
−0.668300 + 0.743892i \(0.732978\pi\)
\(602\) −2.56920 −0.104713
\(603\) 0 0
\(604\) 18.8062 0.765214
\(605\) −10.9638 −0.445744
\(606\) 0 0
\(607\) 18.7538 0.761192 0.380596 0.924741i \(-0.375719\pi\)
0.380596 + 0.924741i \(0.375719\pi\)
\(608\) 5.45578 0.221261
\(609\) 0 0
\(610\) 0.0284032 0.00115001
\(611\) 60.0823 2.43067
\(612\) 0 0
\(613\) 24.1403 0.975018 0.487509 0.873118i \(-0.337906\pi\)
0.487509 + 0.873118i \(0.337906\pi\)
\(614\) −19.6115 −0.791458
\(615\) 0 0
\(616\) −0.0684561 −0.00275817
\(617\) 21.7940 0.877393 0.438696 0.898635i \(-0.355440\pi\)
0.438696 + 0.898635i \(0.355440\pi\)
\(618\) 0 0
\(619\) 5.79745 0.233019 0.116510 0.993190i \(-0.462829\pi\)
0.116510 + 0.993190i \(0.462829\pi\)
\(620\) −2.71788 −0.109153
\(621\) 0 0
\(622\) −27.2871 −1.09411
\(623\) 1.35868 0.0544343
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 51.3667 2.05302
\(627\) 0 0
\(628\) 9.59605 0.382924
\(629\) −14.7462 −0.587970
\(630\) 0 0
\(631\) 39.1135 1.55709 0.778543 0.627591i \(-0.215959\pi\)
0.778543 + 0.627591i \(0.215959\pi\)
\(632\) 15.9994 0.636423
\(633\) 0 0
\(634\) 57.8975 2.29940
\(635\) −9.55770 −0.379286
\(636\) 0 0
\(637\) 47.1331 1.86748
\(638\) 0.860094 0.0340515
\(639\) 0 0
\(640\) 11.5424 0.456254
\(641\) −11.1146 −0.439000 −0.219500 0.975613i \(-0.570443\pi\)
−0.219500 + 0.975613i \(0.570443\pi\)
\(642\) 0 0
\(643\) −15.8727 −0.625960 −0.312980 0.949760i \(-0.601327\pi\)
−0.312980 + 0.949760i \(0.601327\pi\)
\(644\) −1.70703 −0.0672664
\(645\) 0 0
\(646\) −2.56682 −0.100990
\(647\) 4.73752 0.186251 0.0931256 0.995654i \(-0.470314\pi\)
0.0931256 + 0.995654i \(0.470314\pi\)
\(648\) 0 0
\(649\) 1.78466 0.0700541
\(650\) −11.9035 −0.466894
\(651\) 0 0
\(652\) −2.99146 −0.117155
\(653\) −27.0730 −1.05945 −0.529725 0.848170i \(-0.677705\pi\)
−0.529725 + 0.848170i \(0.677705\pi\)
\(654\) 0 0
\(655\) 18.1182 0.707938
\(656\) 28.4793 1.11193
\(657\) 0 0
\(658\) 3.47087 0.135309
\(659\) −23.6004 −0.919341 −0.459670 0.888090i \(-0.652032\pi\)
−0.459670 + 0.888090i \(0.652032\pi\)
\(660\) 0 0
\(661\) −18.6986 −0.727292 −0.363646 0.931537i \(-0.618468\pi\)
−0.363646 + 0.931537i \(0.618468\pi\)
\(662\) 37.9602 1.47537
\(663\) 0 0
\(664\) −21.3285 −0.827708
\(665\) 0.219849 0.00852539
\(666\) 0 0
\(667\) −18.2331 −0.705990
\(668\) 8.31797 0.321832
\(669\) 0 0
\(670\) −17.3308 −0.669548
\(671\) −0.00307680 −0.000118778 0
\(672\) 0 0
\(673\) 30.8041 1.18741 0.593706 0.804682i \(-0.297664\pi\)
0.593706 + 0.804682i \(0.297664\pi\)
\(674\) 34.3664 1.32374
\(675\) 0 0
\(676\) 35.6618 1.37161
\(677\) 41.4658 1.59366 0.796830 0.604204i \(-0.206509\pi\)
0.796830 + 0.604204i \(0.206509\pi\)
\(678\) 0 0
\(679\) −0.837616 −0.0321448
\(680\) −2.39474 −0.0918342
\(681\) 0 0
\(682\) 0.839126 0.0321318
\(683\) 16.4639 0.629973 0.314987 0.949096i \(-0.398000\pi\)
0.314987 + 0.949096i \(0.398000\pi\)
\(684\) 0 0
\(685\) 11.4313 0.436769
\(686\) 5.46514 0.208660
\(687\) 0 0
\(688\) −32.7474 −1.24848
\(689\) 12.9453 0.493178
\(690\) 0 0
\(691\) 28.9840 1.10260 0.551301 0.834306i \(-0.314132\pi\)
0.551301 + 0.834306i \(0.314132\pi\)
\(692\) 12.8451 0.488298
\(693\) 0 0
\(694\) −16.9571 −0.643684
\(695\) 11.9723 0.454137
\(696\) 0 0
\(697\) −8.46698 −0.320710
\(698\) −0.770557 −0.0291660
\(699\) 0 0
\(700\) −0.241270 −0.00911913
\(701\) −4.97591 −0.187937 −0.0939687 0.995575i \(-0.529955\pi\)
−0.0939687 + 0.995575i \(0.529955\pi\)
\(702\) 0 0
\(703\) 9.78433 0.369023
\(704\) −0.0503740 −0.00189854
\(705\) 0 0
\(706\) 24.6697 0.928458
\(707\) 0.114227 0.00429593
\(708\) 0 0
\(709\) −24.0390 −0.902805 −0.451402 0.892321i \(-0.649076\pi\)
−0.451402 + 0.892321i \(0.649076\pi\)
\(710\) 8.83887 0.331717
\(711\) 0 0
\(712\) 9.81976 0.368011
\(713\) −17.7886 −0.666189
\(714\) 0 0
\(715\) 1.28946 0.0482229
\(716\) −22.4702 −0.839752
\(717\) 0 0
\(718\) −9.27313 −0.346070
\(719\) 50.8582 1.89669 0.948346 0.317238i \(-0.102755\pi\)
0.948346 + 0.317238i \(0.102755\pi\)
\(720\) 0 0
\(721\) 0.266518 0.00992563
\(722\) −31.6472 −1.17779
\(723\) 0 0
\(724\) 12.1338 0.450951
\(725\) −2.57705 −0.0957092
\(726\) 0 0
\(727\) −42.0631 −1.56004 −0.780018 0.625757i \(-0.784790\pi\)
−0.780018 + 0.625757i \(0.784790\pi\)
\(728\) −2.44154 −0.0904895
\(729\) 0 0
\(730\) 13.8923 0.514176
\(731\) 9.73590 0.360095
\(732\) 0 0
\(733\) −28.5875 −1.05591 −0.527953 0.849274i \(-0.677040\pi\)
−0.527953 + 0.849274i \(0.677040\pi\)
\(734\) 9.40781 0.347249
\(735\) 0 0
\(736\) −39.1873 −1.44446
\(737\) 1.87737 0.0691539
\(738\) 0 0
\(739\) 13.0317 0.479379 0.239690 0.970850i \(-0.422954\pi\)
0.239690 + 0.970850i \(0.422954\pi\)
\(740\) −10.7376 −0.394723
\(741\) 0 0
\(742\) 0.747833 0.0274538
\(743\) 2.50040 0.0917307 0.0458654 0.998948i \(-0.485395\pi\)
0.0458654 + 0.998948i \(0.485395\pi\)
\(744\) 0 0
\(745\) −5.53546 −0.202804
\(746\) 43.0977 1.57792
\(747\) 0 0
\(748\) −0.305144 −0.0111572
\(749\) 2.38103 0.0870008
\(750\) 0 0
\(751\) −12.9896 −0.473997 −0.236999 0.971510i \(-0.576164\pi\)
−0.236999 + 0.971510i \(0.576164\pi\)
\(752\) 44.2402 1.61327
\(753\) 0 0
\(754\) 30.6759 1.11715
\(755\) 17.3970 0.633141
\(756\) 0 0
\(757\) −0.526184 −0.0191245 −0.00956223 0.999954i \(-0.503044\pi\)
−0.00956223 + 0.999954i \(0.503044\pi\)
\(758\) 66.5788 2.41825
\(759\) 0 0
\(760\) 1.58895 0.0576372
\(761\) 27.7858 1.00723 0.503617 0.863927i \(-0.332002\pi\)
0.503617 + 0.863927i \(0.332002\pi\)
\(762\) 0 0
\(763\) −0.0589130 −0.00213280
\(764\) 15.9596 0.577398
\(765\) 0 0
\(766\) −7.82679 −0.282794
\(767\) 63.6514 2.29832
\(768\) 0 0
\(769\) −28.3274 −1.02151 −0.510756 0.859726i \(-0.670635\pi\)
−0.510756 + 0.859726i \(0.670635\pi\)
\(770\) 0.0744901 0.00268444
\(771\) 0 0
\(772\) −27.9721 −1.00674
\(773\) −0.566959 −0.0203921 −0.0101960 0.999948i \(-0.503246\pi\)
−0.0101960 + 0.999948i \(0.503246\pi\)
\(774\) 0 0
\(775\) −2.51422 −0.0903135
\(776\) −6.05382 −0.217320
\(777\) 0 0
\(778\) −53.8886 −1.93200
\(779\) 5.61796 0.201284
\(780\) 0 0
\(781\) −0.957476 −0.0342612
\(782\) 18.4368 0.659297
\(783\) 0 0
\(784\) 34.7053 1.23948
\(785\) 8.87697 0.316833
\(786\) 0 0
\(787\) −31.5499 −1.12463 −0.562316 0.826923i \(-0.690089\pi\)
−0.562316 + 0.826923i \(0.690089\pi\)
\(788\) −25.4553 −0.906808
\(789\) 0 0
\(790\) −17.4097 −0.619409
\(791\) 2.86018 0.101696
\(792\) 0 0
\(793\) −0.109736 −0.00389685
\(794\) −11.2651 −0.399782
\(795\) 0 0
\(796\) 26.9521 0.955292
\(797\) −51.6290 −1.82879 −0.914396 0.404821i \(-0.867334\pi\)
−0.914396 + 0.404821i \(0.867334\pi\)
\(798\) 0 0
\(799\) −13.1528 −0.465311
\(800\) −5.53869 −0.195822
\(801\) 0 0
\(802\) −40.0238 −1.41329
\(803\) −1.50489 −0.0531064
\(804\) 0 0
\(805\) −1.57912 −0.0556565
\(806\) 29.9281 1.05417
\(807\) 0 0
\(808\) 0.825566 0.0290433
\(809\) −38.2838 −1.34599 −0.672993 0.739649i \(-0.734992\pi\)
−0.672993 + 0.739649i \(0.734992\pi\)
\(810\) 0 0
\(811\) 4.03388 0.141649 0.0708243 0.997489i \(-0.477437\pi\)
0.0708243 + 0.997489i \(0.477437\pi\)
\(812\) 0.621763 0.0218196
\(813\) 0 0
\(814\) 3.31516 0.116196
\(815\) −2.76730 −0.0969341
\(816\) 0 0
\(817\) −6.45991 −0.226004
\(818\) 62.9180 2.19988
\(819\) 0 0
\(820\) −6.16533 −0.215303
\(821\) 38.7589 1.35270 0.676348 0.736582i \(-0.263562\pi\)
0.676348 + 0.736582i \(0.263562\pi\)
\(822\) 0 0
\(823\) 16.6299 0.579680 0.289840 0.957075i \(-0.406398\pi\)
0.289840 + 0.957075i \(0.406398\pi\)
\(824\) 1.92624 0.0671037
\(825\) 0 0
\(826\) 3.67705 0.127941
\(827\) −42.0718 −1.46298 −0.731490 0.681853i \(-0.761175\pi\)
−0.731490 + 0.681853i \(0.761175\pi\)
\(828\) 0 0
\(829\) −41.4389 −1.43923 −0.719616 0.694372i \(-0.755682\pi\)
−0.719616 + 0.694372i \(0.755682\pi\)
\(830\) 23.2085 0.805580
\(831\) 0 0
\(832\) −1.79663 −0.0622869
\(833\) −10.3180 −0.357498
\(834\) 0 0
\(835\) 7.69467 0.266285
\(836\) 0.202467 0.00700248
\(837\) 0 0
\(838\) −8.35450 −0.288601
\(839\) 9.54808 0.329636 0.164818 0.986324i \(-0.447296\pi\)
0.164818 + 0.986324i \(0.447296\pi\)
\(840\) 0 0
\(841\) −22.3588 −0.770994
\(842\) −39.8626 −1.37376
\(843\) 0 0
\(844\) 17.5859 0.605330
\(845\) 32.9895 1.13487
\(846\) 0 0
\(847\) 2.44702 0.0840807
\(848\) 9.53199 0.327330
\(849\) 0 0
\(850\) 2.60583 0.0893792
\(851\) −70.2781 −2.40910
\(852\) 0 0
\(853\) 9.42489 0.322702 0.161351 0.986897i \(-0.448415\pi\)
0.161351 + 0.986897i \(0.448415\pi\)
\(854\) −0.00633932 −0.000216927 0
\(855\) 0 0
\(856\) 17.2087 0.588182
\(857\) −14.0842 −0.481106 −0.240553 0.970636i \(-0.577329\pi\)
−0.240553 + 0.970636i \(0.577329\pi\)
\(858\) 0 0
\(859\) −38.5901 −1.31668 −0.658338 0.752722i \(-0.728740\pi\)
−0.658338 + 0.752722i \(0.728740\pi\)
\(860\) 7.08932 0.241744
\(861\) 0 0
\(862\) 45.8958 1.56322
\(863\) −19.4106 −0.660745 −0.330372 0.943851i \(-0.607174\pi\)
−0.330372 + 0.943851i \(0.607174\pi\)
\(864\) 0 0
\(865\) 11.8826 0.404020
\(866\) 28.4512 0.966813
\(867\) 0 0
\(868\) 0.606605 0.0205895
\(869\) 1.88591 0.0639753
\(870\) 0 0
\(871\) 66.9580 2.26878
\(872\) −0.425790 −0.0144191
\(873\) 0 0
\(874\) −12.2331 −0.413789
\(875\) −0.223190 −0.00754520
\(876\) 0 0
\(877\) 5.72736 0.193399 0.0966996 0.995314i \(-0.469171\pi\)
0.0966996 + 0.995314i \(0.469171\pi\)
\(878\) 38.4778 1.29856
\(879\) 0 0
\(880\) 0.949461 0.0320063
\(881\) 43.6561 1.47081 0.735406 0.677627i \(-0.236991\pi\)
0.735406 + 0.677627i \(0.236991\pi\)
\(882\) 0 0
\(883\) −44.8290 −1.50861 −0.754307 0.656521i \(-0.772027\pi\)
−0.754307 + 0.656521i \(0.772027\pi\)
\(884\) −10.8832 −0.366041
\(885\) 0 0
\(886\) −26.7014 −0.897051
\(887\) −7.02999 −0.236044 −0.118022 0.993011i \(-0.537655\pi\)
−0.118022 + 0.993011i \(0.537655\pi\)
\(888\) 0 0
\(889\) 2.13318 0.0715447
\(890\) −10.6853 −0.358173
\(891\) 0 0
\(892\) −11.3107 −0.378711
\(893\) 8.72704 0.292039
\(894\) 0 0
\(895\) −20.7864 −0.694814
\(896\) −2.57615 −0.0860632
\(897\) 0 0
\(898\) −9.44053 −0.315034
\(899\) 6.47927 0.216096
\(900\) 0 0
\(901\) −2.83389 −0.0944106
\(902\) 1.90350 0.0633796
\(903\) 0 0
\(904\) 20.6718 0.687533
\(905\) 11.2246 0.373118
\(906\) 0 0
\(907\) −39.6162 −1.31544 −0.657718 0.753264i \(-0.728478\pi\)
−0.657718 + 0.753264i \(0.728478\pi\)
\(908\) −23.4333 −0.777662
\(909\) 0 0
\(910\) 2.65675 0.0880704
\(911\) 23.3132 0.772400 0.386200 0.922415i \(-0.373787\pi\)
0.386200 + 0.922415i \(0.373787\pi\)
\(912\) 0 0
\(913\) −2.51408 −0.0832039
\(914\) 2.16912 0.0717480
\(915\) 0 0
\(916\) 26.9405 0.890140
\(917\) −4.04381 −0.133538
\(918\) 0 0
\(919\) −35.5890 −1.17397 −0.586987 0.809596i \(-0.699686\pi\)
−0.586987 + 0.809596i \(0.699686\pi\)
\(920\) −11.4130 −0.376274
\(921\) 0 0
\(922\) −17.5989 −0.579589
\(923\) −34.1491 −1.12403
\(924\) 0 0
\(925\) −9.93302 −0.326596
\(926\) −37.4561 −1.23088
\(927\) 0 0
\(928\) 14.2735 0.468550
\(929\) 23.5289 0.771959 0.385979 0.922507i \(-0.373864\pi\)
0.385979 + 0.922507i \(0.373864\pi\)
\(930\) 0 0
\(931\) 6.84615 0.224373
\(932\) −16.1571 −0.529242
\(933\) 0 0
\(934\) −5.96522 −0.195188
\(935\) −0.282278 −0.00923148
\(936\) 0 0
\(937\) 2.42367 0.0791779 0.0395889 0.999216i \(-0.487395\pi\)
0.0395889 + 0.999216i \(0.487395\pi\)
\(938\) 3.86807 0.126297
\(939\) 0 0
\(940\) −9.57733 −0.312378
\(941\) 25.9943 0.847388 0.423694 0.905805i \(-0.360733\pi\)
0.423694 + 0.905805i \(0.360733\pi\)
\(942\) 0 0
\(943\) −40.3523 −1.31405
\(944\) 46.8682 1.52543
\(945\) 0 0
\(946\) −2.18877 −0.0711631
\(947\) −28.4680 −0.925085 −0.462542 0.886597i \(-0.653063\pi\)
−0.462542 + 0.886597i \(0.653063\pi\)
\(948\) 0 0
\(949\) −53.6730 −1.74230
\(950\) −1.72900 −0.0560963
\(951\) 0 0
\(952\) 0.534483 0.0173227
\(953\) −5.57136 −0.180474 −0.0902370 0.995920i \(-0.528762\pi\)
−0.0902370 + 0.995920i \(0.528762\pi\)
\(954\) 0 0
\(955\) 14.7637 0.477741
\(956\) −5.98337 −0.193516
\(957\) 0 0
\(958\) −37.9090 −1.22478
\(959\) −2.55136 −0.0823878
\(960\) 0 0
\(961\) −24.6787 −0.796087
\(962\) 118.238 3.81214
\(963\) 0 0
\(964\) −2.03677 −0.0656000
\(965\) −25.8760 −0.832979
\(966\) 0 0
\(967\) −6.74985 −0.217060 −0.108530 0.994093i \(-0.534614\pi\)
−0.108530 + 0.994093i \(0.534614\pi\)
\(968\) 17.6857 0.568440
\(969\) 0 0
\(970\) 6.58743 0.211510
\(971\) 12.4963 0.401026 0.200513 0.979691i \(-0.435739\pi\)
0.200513 + 0.979691i \(0.435739\pi\)
\(972\) 0 0
\(973\) −2.67211 −0.0856639
\(974\) 31.9333 1.02321
\(975\) 0 0
\(976\) −0.0808018 −0.00258640
\(977\) 4.07191 0.130272 0.0651359 0.997876i \(-0.479252\pi\)
0.0651359 + 0.997876i \(0.479252\pi\)
\(978\) 0 0
\(979\) 1.15749 0.0369937
\(980\) −7.51318 −0.240000
\(981\) 0 0
\(982\) 1.60382 0.0511801
\(983\) 1.37070 0.0437184 0.0218592 0.999761i \(-0.493041\pi\)
0.0218592 + 0.999761i \(0.493041\pi\)
\(984\) 0 0
\(985\) −23.5478 −0.750297
\(986\) −6.71534 −0.213860
\(987\) 0 0
\(988\) 7.22115 0.229736
\(989\) 46.3997 1.47543
\(990\) 0 0
\(991\) 8.58059 0.272571 0.136286 0.990670i \(-0.456484\pi\)
0.136286 + 0.990670i \(0.456484\pi\)
\(992\) 13.9255 0.442135
\(993\) 0 0
\(994\) −1.97275 −0.0625718
\(995\) 24.9325 0.790412
\(996\) 0 0
\(997\) 1.86063 0.0589266 0.0294633 0.999566i \(-0.490620\pi\)
0.0294633 + 0.999566i \(0.490620\pi\)
\(998\) −12.1753 −0.385404
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3645.2.a.c.1.5 6
3.2 odd 2 3645.2.a.d.1.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3645.2.a.c.1.5 6 1.1 even 1 trivial
3645.2.a.d.1.2 yes 6 3.2 odd 2