[N,k,chi] = [3645,2,Mod(1,3645)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3645, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3645.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(-1\)
\(5\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} + 3T_{2}^{5} - 6T_{2}^{4} - 22T_{2}^{3} + 3T_{2}^{2} + 39T_{2} + 19 \)
T2^6 + 3*T2^5 - 6*T2^4 - 22*T2^3 + 3*T2^2 + 39*T2 + 19
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3645))\).
$p$
$F_p(T)$
$2$
\( T^{6} + 3 T^{5} - 6 T^{4} - 22 T^{3} + \cdots + 19 \)
T^6 + 3*T^5 - 6*T^4 - 22*T^3 + 3*T^2 + 39*T + 19
$3$
\( T^{6} \)
T^6
$5$
\( (T - 1)^{6} \)
(T - 1)^6
$7$
\( T^{6} - 3 T^{5} - 15 T^{4} + 48 T^{3} + \cdots - 3 \)
T^6 - 3*T^5 - 15*T^4 + 48*T^3 - 9*T^2 - 18*T - 3
$11$
\( T^{6} + 9 T^{5} + 6 T^{4} - 67 T^{3} + \cdots + 1 \)
T^6 + 9*T^5 + 6*T^4 - 67*T^3 - 9*T^2 + 6*T + 1
$13$
\( T^{6} + 6 T^{5} - 42 T^{4} - 176 T^{3} + \cdots - 683 \)
T^6 + 6*T^5 - 42*T^4 - 176*T^3 + 579*T^2 + 474*T - 683
$17$
\( T^{6} - 15 T^{5} + 21 T^{4} + \cdots + 127 \)
T^6 - 15*T^5 + 21*T^4 + 590*T^3 - 2823*T^2 + 2802*T + 127
$19$
\( T^{6} + 9 T^{5} + 6 T^{4} - 68 T^{3} + \cdots + 37 \)
T^6 + 9*T^5 + 6*T^4 - 68*T^3 - 18*T^2 + 84*T + 37
$23$
\( T^{6} + 6 T^{5} - 60 T^{4} - 321 T^{3} + \cdots - 381 \)
T^6 + 6*T^5 - 60*T^4 - 321*T^3 + 486*T^2 + 1170*T - 381
$29$
\( T^{6} + 30 T^{5} + 357 T^{4} + \cdots + 6823 \)
T^6 + 30*T^5 + 357*T^4 + 2149*T^3 + 6864*T^2 + 10965*T + 6823
$31$
\( T^{6} + 3 T^{5} - 99 T^{4} + \cdots + 10377 \)
T^6 + 3*T^5 - 99*T^4 - 588*T^3 + 252*T^2 + 6885*T + 10377
$37$
\( T^{6} + 18 T^{5} + 42 T^{4} + \cdots + 361 \)
T^6 + 18*T^5 + 42*T^4 - 580*T^3 - 2052*T^2 - 489*T + 361
$41$
\( T^{6} + 15 T^{5} - 27 T^{4} + \cdots + 6661 \)
T^6 + 15*T^5 - 27*T^4 - 1532*T^3 - 8790*T^2 - 13977*T + 6661
$43$
\( T^{6} + 3 T^{5} - 66 T^{4} + \cdots + 4591 \)
T^6 + 3*T^5 - 66*T^4 - 236*T^3 + 897*T^2 + 4503*T + 4591
$47$
\( T^{6} + 15 T^{5} - 54 T^{4} + \cdots + 10009 \)
T^6 + 15*T^5 - 54*T^4 - 1507*T^3 - 3225*T^2 + 15462*T + 10009
$53$
\( T^{6} + 33 T^{5} + 387 T^{4} + \cdots - 1961 \)
T^6 + 33*T^5 + 387*T^4 + 1940*T^3 + 3750*T^2 + 1341*T - 1961
$59$
\( T^{6} + 27 T^{5} + 222 T^{4} + \cdots - 31337 \)
T^6 + 27*T^5 + 222*T^4 + 104*T^3 - 6561*T^2 - 27219*T - 31337
$61$
\( T^{6} - 3 T^{5} - 126 T^{4} + 907 T^{3} + \cdots - 17 \)
T^6 - 3*T^5 - 126*T^4 + 907*T^3 - 1833*T^2 + 1080*T - 17
$67$
\( T^{6} + 33 T^{5} + 318 T^{4} + \cdots + 61881 \)
T^6 + 33*T^5 + 318*T^4 + 165*T^3 - 9882*T^2 - 21087*T + 61881
$71$
\( T^{6} + 27 T^{5} + 204 T^{4} + \cdots - 11789 \)
T^6 + 27*T^5 + 204*T^4 - 50*T^3 - 5391*T^2 - 15891*T - 11789
$73$
\( T^{6} + 9 T^{5} - 174 T^{4} + \cdots + 77689 \)
T^6 + 9*T^5 - 174*T^4 - 1634*T^3 + 5877*T^2 + 65919*T + 77689
$79$
\( T^{6} - 18 T^{5} - 51 T^{4} + \cdots + 58803 \)
T^6 - 18*T^5 - 51*T^4 + 2007*T^3 - 5094*T^2 - 21609*T + 58803
$83$
\( T^{6} + 15 T^{5} - 198 T^{4} + \cdots - 86661 \)
T^6 + 15*T^5 - 198*T^4 - 2922*T^3 + 3114*T^2 + 71334*T - 86661
$89$
\( T^{6} - 15 T^{5} - 72 T^{4} + \cdots + 35001 \)
T^6 - 15*T^5 - 72*T^4 + 1392*T^3 + 495*T^2 - 30105*T + 35001
$97$
\( T^{6} + 15 T^{5} - 54 T^{4} + \cdots - 25973 \)
T^6 + 15*T^5 - 54*T^4 - 913*T^3 + 2517*T^2 + 9468*T - 25973
show more
show less