Properties

Label 363.3.h.i.269.1
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,-6,0,10,-26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.1
Root \(-0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.i.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.951057 + 0.309017i) q^{2} +(0.303706 + 2.98459i) q^{3} +(-2.42705 + 1.76336i) q^{4} +(-6.29412 - 2.04508i) q^{5} +(-1.21113 - 2.74466i) q^{6} +(-7.16312 + 5.20431i) q^{7} +(4.11450 - 5.66312i) q^{8} +(-8.81553 + 1.81288i) q^{9} +6.61803 q^{10} +(-6.00000 - 6.70820i) q^{12} +(4.09017 + 12.5882i) q^{13} +(5.20431 - 7.16312i) q^{14} +(4.19217 - 19.4065i) q^{15} +(1.54508 - 4.75528i) q^{16} +(-5.70634 - 1.85410i) q^{17} +(7.82385 - 4.44829i) q^{18} +(7.38197 + 5.36331i) q^{19} +(18.8824 - 6.13525i) q^{20} +(-17.7082 - 19.7984i) q^{21} -17.5279i q^{23} +(18.1517 + 10.5602i) q^{24} +(15.2082 + 11.0494i) q^{25} +(-7.77997 - 10.7082i) q^{26} +(-8.08802 - 25.7601i) q^{27} +(8.20820 - 25.2623i) q^{28} +(15.5147 + 21.3541i) q^{29} +(2.00994 + 19.7521i) q^{30} +(-1.91641 - 5.89810i) q^{31} +33.0000i q^{32} +6.00000 q^{34} +(55.7288 - 18.1074i) q^{35} +(18.1990 - 19.9448i) q^{36} +(15.8541 - 11.5187i) q^{37} +(-8.67802 - 2.81966i) q^{38} +(-36.3285 + 16.0306i) q^{39} +(-37.4787 + 27.2299i) q^{40} +(-3.28969 + 4.52786i) q^{41} +(22.9595 + 13.3572i) q^{42} +26.2918 q^{43} +(59.1935 + 6.61803i) q^{45} +(5.41641 + 16.6700i) q^{46} +(-10.4086 + 14.3262i) q^{47} +(14.6618 + 3.16723i) q^{48} +(9.08359 - 27.9564i) q^{49} +(-17.8783 - 5.80902i) q^{50} +(3.80068 - 17.5942i) q^{51} +(-32.1246 - 23.3399i) q^{52} +(-21.1805 + 6.88197i) q^{53} +(15.6525 + 22.0000i) q^{54} +61.9787i q^{56} +(-13.7653 + 23.6610i) q^{57} +(-21.3541 - 15.5147i) q^{58} +(-12.8783 - 17.7254i) q^{59} +(24.0459 + 54.4928i) q^{60} +(28.8541 - 88.8038i) q^{61} +(3.64522 + 5.01722i) q^{62} +(53.7119 - 58.8646i) q^{63} +(-4.01722 - 12.3637i) q^{64} -87.5967i q^{65} -76.7902 q^{67} +(17.1190 - 5.56231i) q^{68} +(52.3134 - 5.32332i) q^{69} +(-47.4058 + 34.4423i) q^{70} +(-62.5982 - 20.3394i) q^{71} +(-26.0049 + 57.3824i) q^{72} +(12.1525 - 8.82929i) q^{73} +(-11.5187 + 15.8541i) q^{74} +(-28.3591 + 48.7460i) q^{75} -27.3738 q^{76} +(29.5967 - 26.4721i) q^{78} +(-36.4828 - 112.282i) q^{79} +(-19.4499 + 26.7705i) q^{80} +(74.4270 - 31.9629i) q^{81} +(1.72949 - 5.32282i) q^{82} +(105.744 + 34.3582i) q^{83} +(77.8903 + 16.8258i) q^{84} +(32.1246 + 23.3399i) q^{85} +(-25.0050 + 8.12461i) q^{86} +(-59.0213 + 52.7902i) q^{87} -97.6656i q^{89} +(-58.3414 + 11.9977i) q^{90} +(-94.8115 - 68.8846i) q^{91} +(30.9079 + 42.5410i) q^{92} +(17.0214 - 7.51098i) q^{93} +(5.47214 - 16.8415i) q^{94} +(-35.4946 - 48.8541i) q^{95} +(-98.4914 + 10.0223i) q^{96} +(-37.4483 - 115.254i) q^{97} +29.3951i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 6 q^{4} + 10 q^{6} - 26 q^{7} + 2 q^{9} + 44 q^{10} - 48 q^{12} - 12 q^{13} + 60 q^{15} - 10 q^{16} + 40 q^{18} + 68 q^{19} - 88 q^{21} + 70 q^{24} + 68 q^{25} - 44 q^{27} + 12 q^{28} + 32 q^{30}+ \cdots - 474 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.951057 + 0.309017i −0.475528 + 0.154508i −0.536969 0.843602i \(-0.680431\pi\)
0.0614403 + 0.998111i \(0.480431\pi\)
\(3\) 0.303706 + 2.98459i 0.101235 + 0.994862i
\(4\) −2.42705 + 1.76336i −0.606763 + 0.440839i
\(5\) −6.29412 2.04508i −1.25882 0.409017i −0.397749 0.917494i \(-0.630209\pi\)
−0.861076 + 0.508477i \(0.830209\pi\)
\(6\) −1.21113 2.74466i −0.201855 0.457444i
\(7\) −7.16312 + 5.20431i −1.02330 + 0.743473i −0.966957 0.254938i \(-0.917945\pi\)
−0.0563454 + 0.998411i \(0.517945\pi\)
\(8\) 4.11450 5.66312i 0.514312 0.707890i
\(9\) −8.81553 + 1.81288i −0.979503 + 0.201431i
\(10\) 6.61803 0.661803
\(11\) 0 0
\(12\) −6.00000 6.70820i −0.500000 0.559017i
\(13\) 4.09017 + 12.5882i 0.314628 + 0.968327i 0.975907 + 0.218186i \(0.0700141\pi\)
−0.661279 + 0.750140i \(0.729986\pi\)
\(14\) 5.20431 7.16312i 0.371736 0.511651i
\(15\) 4.19217 19.4065i 0.279478 1.29376i
\(16\) 1.54508 4.75528i 0.0965678 0.297205i
\(17\) −5.70634 1.85410i −0.335667 0.109065i 0.136334 0.990663i \(-0.456468\pi\)
−0.472001 + 0.881598i \(0.656468\pi\)
\(18\) 7.82385 4.44829i 0.434659 0.247127i
\(19\) 7.38197 + 5.36331i 0.388525 + 0.282280i 0.764851 0.644208i \(-0.222813\pi\)
−0.376326 + 0.926487i \(0.622813\pi\)
\(20\) 18.8824 6.13525i 0.944119 0.306763i
\(21\) −17.7082 19.7984i −0.843248 0.942780i
\(22\) 0 0
\(23\) 17.5279i 0.762081i −0.924558 0.381041i \(-0.875566\pi\)
0.924558 0.381041i \(-0.124434\pi\)
\(24\) 18.1517 + 10.5602i 0.756320 + 0.440006i
\(25\) 15.2082 + 11.0494i 0.608328 + 0.441976i
\(26\) −7.77997 10.7082i −0.299229 0.411854i
\(27\) −8.08802 25.7601i −0.299556 0.954079i
\(28\) 8.20820 25.2623i 0.293150 0.902223i
\(29\) 15.5147 + 21.3541i 0.534988 + 0.736348i 0.987880 0.155217i \(-0.0496077\pi\)
−0.452892 + 0.891565i \(0.649608\pi\)
\(30\) 2.00994 + 19.7521i 0.0669979 + 0.658403i
\(31\) −1.91641 5.89810i −0.0618196 0.190261i 0.915377 0.402598i \(-0.131893\pi\)
−0.977197 + 0.212337i \(0.931893\pi\)
\(32\) 33.0000i 1.03125i
\(33\) 0 0
\(34\) 6.00000 0.176471
\(35\) 55.7288 18.1074i 1.59225 0.517354i
\(36\) 18.1990 19.9448i 0.505527 0.554024i
\(37\) 15.8541 11.5187i 0.428489 0.311316i −0.352555 0.935791i \(-0.614687\pi\)
0.781045 + 0.624475i \(0.214687\pi\)
\(38\) −8.67802 2.81966i −0.228369 0.0742016i
\(39\) −36.3285 + 16.0306i −0.931501 + 0.411041i
\(40\) −37.4787 + 27.2299i −0.936968 + 0.680747i
\(41\) −3.28969 + 4.52786i −0.0802362 + 0.110436i −0.847249 0.531197i \(-0.821743\pi\)
0.767012 + 0.641632i \(0.221743\pi\)
\(42\) 22.9595 + 13.3572i 0.546656 + 0.318029i
\(43\) 26.2918 0.611437 0.305719 0.952122i \(-0.401103\pi\)
0.305719 + 0.952122i \(0.401103\pi\)
\(44\) 0 0
\(45\) 59.1935 + 6.61803i 1.31541 + 0.147067i
\(46\) 5.41641 + 16.6700i 0.117748 + 0.362391i
\(47\) −10.4086 + 14.3262i −0.221460 + 0.304814i −0.905262 0.424854i \(-0.860325\pi\)
0.683802 + 0.729668i \(0.260325\pi\)
\(48\) 14.6618 + 3.16723i 0.305454 + 0.0659840i
\(49\) 9.08359 27.9564i 0.185379 0.570539i
\(50\) −17.8783 5.80902i −0.357566 0.116180i
\(51\) 3.80068 17.5942i 0.0745231 0.344984i
\(52\) −32.1246 23.3399i −0.617781 0.448844i
\(53\) −21.1805 + 6.88197i −0.399632 + 0.129848i −0.501936 0.864905i \(-0.667379\pi\)
0.102304 + 0.994753i \(0.467379\pi\)
\(54\) 15.6525 + 22.0000i 0.289861 + 0.407407i
\(55\) 0 0
\(56\) 61.9787i 1.10676i
\(57\) −13.7653 + 23.6610i −0.241497 + 0.415105i
\(58\) −21.3541 15.5147i −0.368174 0.267494i
\(59\) −12.8783 17.7254i −0.218276 0.300431i 0.685811 0.727780i \(-0.259448\pi\)
−0.904087 + 0.427349i \(0.859448\pi\)
\(60\) 24.0459 + 54.4928i 0.400765 + 0.908213i
\(61\) 28.8541 88.8038i 0.473018 1.45580i −0.375594 0.926784i \(-0.622561\pi\)
0.848612 0.529016i \(-0.177439\pi\)
\(62\) 3.64522 + 5.01722i 0.0587939 + 0.0809229i
\(63\) 53.7119 58.8646i 0.852570 0.934358i
\(64\) −4.01722 12.3637i −0.0627691 0.193183i
\(65\) 87.5967i 1.34764i
\(66\) 0 0
\(67\) −76.7902 −1.14612 −0.573062 0.819512i \(-0.694244\pi\)
−0.573062 + 0.819512i \(0.694244\pi\)
\(68\) 17.1190 5.56231i 0.251750 0.0817986i
\(69\) 52.3134 5.32332i 0.758166 0.0771496i
\(70\) −47.4058 + 34.4423i −0.677225 + 0.492033i
\(71\) −62.5982 20.3394i −0.881665 0.286470i −0.167017 0.985954i \(-0.553413\pi\)
−0.714648 + 0.699484i \(0.753413\pi\)
\(72\) −26.0049 + 57.3824i −0.361179 + 0.796978i
\(73\) 12.1525 8.82929i 0.166472 0.120949i −0.501430 0.865198i \(-0.667192\pi\)
0.667902 + 0.744249i \(0.267192\pi\)
\(74\) −11.5187 + 15.8541i −0.155658 + 0.214245i
\(75\) −28.3591 + 48.7460i −0.378121 + 0.649947i
\(76\) −27.3738 −0.360182
\(77\) 0 0
\(78\) 29.5967 26.4721i 0.379445 0.339386i
\(79\) −36.4828 112.282i −0.461807 1.42130i −0.862954 0.505283i \(-0.831388\pi\)
0.401146 0.916014i \(-0.368612\pi\)
\(80\) −19.4499 + 26.7705i −0.243124 + 0.334631i
\(81\) 74.4270 31.9629i 0.918851 0.394604i
\(82\) 1.72949 5.32282i 0.0210913 0.0649125i
\(83\) 105.744 + 34.3582i 1.27402 + 0.413954i 0.866470 0.499229i \(-0.166384\pi\)
0.407549 + 0.913183i \(0.366384\pi\)
\(84\) 77.8903 + 16.8258i 0.927265 + 0.200307i
\(85\) 32.1246 + 23.3399i 0.377937 + 0.274587i
\(86\) −25.0050 + 8.12461i −0.290756 + 0.0944722i
\(87\) −59.0213 + 52.7902i −0.678406 + 0.606784i
\(88\) 0 0
\(89\) 97.6656i 1.09737i −0.836030 0.548683i \(-0.815129\pi\)
0.836030 0.548683i \(-0.184871\pi\)
\(90\) −58.3414 + 11.9977i −0.648238 + 0.133307i
\(91\) −94.8115 68.8846i −1.04188 0.756974i
\(92\) 30.9079 + 42.5410i 0.335955 + 0.462402i
\(93\) 17.0214 7.51098i 0.183025 0.0807632i
\(94\) 5.47214 16.8415i 0.0582142 0.179165i
\(95\) −35.4946 48.8541i −0.373627 0.514254i
\(96\) −98.4914 + 10.0223i −1.02595 + 0.104399i
\(97\) −37.4483 115.254i −0.386065 1.18819i −0.935705 0.352785i \(-0.885235\pi\)
0.549639 0.835402i \(-0.314765\pi\)
\(98\) 29.3951i 0.299950i
\(99\) 0 0
\(100\) −56.3951 −0.563951
\(101\) −176.505 + 57.3500i −1.74758 + 0.567822i −0.995797 0.0915916i \(-0.970805\pi\)
−0.751780 + 0.659414i \(0.770805\pi\)
\(102\) 1.82224 + 17.9075i 0.0178651 + 0.175564i
\(103\) −139.627 + 101.445i −1.35560 + 0.984903i −0.356892 + 0.934146i \(0.616164\pi\)
−0.998711 + 0.0507577i \(0.983836\pi\)
\(104\) 88.1177 + 28.6312i 0.847286 + 0.275300i
\(105\) 70.9683 + 160.828i 0.675888 + 1.53170i
\(106\) 18.0172 13.0903i 0.169974 0.123493i
\(107\) 38.6658 53.2188i 0.361362 0.497372i −0.589165 0.808012i \(-0.700543\pi\)
0.950528 + 0.310640i \(0.100543\pi\)
\(108\) 65.0543 + 48.2591i 0.602355 + 0.446843i
\(109\) 107.331 0.984690 0.492345 0.870400i \(-0.336140\pi\)
0.492345 + 0.870400i \(0.336140\pi\)
\(110\) 0 0
\(111\) 39.1935 + 43.8197i 0.353095 + 0.394772i
\(112\) 13.6803 + 42.1038i 0.122146 + 0.375926i
\(113\) −18.6126 + 25.6180i −0.164713 + 0.226708i −0.883393 0.468633i \(-0.844747\pi\)
0.718680 + 0.695341i \(0.244747\pi\)
\(114\) 5.77995 26.7567i 0.0507013 0.234708i
\(115\) −35.8460 + 110.323i −0.311704 + 0.959327i
\(116\) −75.3098 24.4696i −0.649222 0.210945i
\(117\) −58.8779 103.557i −0.503230 0.885103i
\(118\) 17.7254 + 12.8783i 0.150215 + 0.109138i
\(119\) 50.5245 16.4164i 0.424576 0.137953i
\(120\) −92.6525 103.589i −0.772104 0.863238i
\(121\) 0 0
\(122\) 93.3738i 0.765359i
\(123\) −14.5129 8.44321i −0.117991 0.0686440i
\(124\) 15.0517 + 10.9357i 0.121384 + 0.0881909i
\(125\) 24.1242 + 33.2041i 0.192994 + 0.265633i
\(126\) −32.8929 + 72.5814i −0.261055 + 0.576043i
\(127\) −31.3394 + 96.4527i −0.246767 + 0.759470i 0.748574 + 0.663051i \(0.230739\pi\)
−0.995341 + 0.0964190i \(0.969261\pi\)
\(128\) −69.9464 96.2730i −0.546457 0.752133i
\(129\) 7.98498 + 78.4702i 0.0618991 + 0.608296i
\(130\) 27.0689 + 83.3095i 0.208222 + 0.640842i
\(131\) 130.992i 0.999938i 0.866043 + 0.499969i \(0.166655\pi\)
−0.866043 + 0.499969i \(0.833345\pi\)
\(132\) 0 0
\(133\) −80.7902 −0.607445
\(134\) 73.0319 23.7295i 0.545014 0.177086i
\(135\) −1.77467 + 178.678i −0.0131457 + 1.32354i
\(136\) −33.9787 + 24.6870i −0.249843 + 0.181522i
\(137\) 198.531 + 64.5066i 1.44913 + 0.470851i 0.924731 0.380622i \(-0.124290\pi\)
0.524399 + 0.851472i \(0.324290\pi\)
\(138\) −48.1080 + 21.2285i −0.348609 + 0.153830i
\(139\) −66.0000 + 47.9518i −0.474820 + 0.344977i −0.799317 0.600910i \(-0.794805\pi\)
0.324497 + 0.945887i \(0.394805\pi\)
\(140\) −103.327 + 142.217i −0.738049 + 1.01584i
\(141\) −45.9191 26.7145i −0.325667 0.189464i
\(142\) 65.8197 0.463519
\(143\) 0 0
\(144\) −5.00000 + 44.7214i −0.0347222 + 0.310565i
\(145\) −53.9803 166.134i −0.372278 1.14575i
\(146\) −8.82929 + 12.1525i −0.0604746 + 0.0832361i
\(147\) 86.1971 + 18.6202i 0.586375 + 0.126668i
\(148\) −18.1672 + 55.9128i −0.122751 + 0.377789i
\(149\) −6.64966 2.16061i −0.0446286 0.0145007i 0.286618 0.958045i \(-0.407469\pi\)
−0.331246 + 0.943544i \(0.607469\pi\)
\(150\) 11.9078 55.1236i 0.0793851 0.367491i
\(151\) −44.8607 32.5932i −0.297091 0.215849i 0.429247 0.903187i \(-0.358779\pi\)
−0.726337 + 0.687338i \(0.758779\pi\)
\(152\) 60.7462 19.7376i 0.399646 0.129853i
\(153\) 53.6656 + 6.00000i 0.350756 + 0.0392157i
\(154\) 0 0
\(155\) 41.0426i 0.264791i
\(156\) 59.9035 102.967i 0.383997 0.660046i
\(157\) −33.9787 24.6870i −0.216425 0.157242i 0.474291 0.880368i \(-0.342704\pi\)
−0.690716 + 0.723126i \(0.742704\pi\)
\(158\) 69.3944 + 95.5132i 0.439205 + 0.604514i
\(159\) −26.9725 61.1250i −0.169638 0.384434i
\(160\) 67.4878 207.706i 0.421799 1.29816i
\(161\) 91.2204 + 125.554i 0.566587 + 0.779840i
\(162\) −60.9072 + 53.3977i −0.375970 + 0.329616i
\(163\) −49.0689 151.018i −0.301036 0.926494i −0.981127 0.193366i \(-0.938060\pi\)
0.680091 0.733128i \(-0.261940\pi\)
\(164\) 16.7902i 0.102380i
\(165\) 0 0
\(166\) −111.185 −0.669791
\(167\) −271.220 + 88.1246i −1.62407 + 0.527692i −0.972897 0.231237i \(-0.925723\pi\)
−0.651173 + 0.758930i \(0.725723\pi\)
\(168\) −184.981 + 18.8233i −1.10108 + 0.112044i
\(169\) −5.01064 + 3.64045i −0.0296488 + 0.0215411i
\(170\) −37.7647 12.2705i −0.222146 0.0721795i
\(171\) −74.7989 33.8978i −0.437421 0.198233i
\(172\) −63.8115 + 46.3618i −0.370997 + 0.269545i
\(173\) 35.1486 48.3779i 0.203171 0.279641i −0.695257 0.718761i \(-0.744710\pi\)
0.898429 + 0.439120i \(0.144710\pi\)
\(174\) 39.8195 68.4451i 0.228848 0.393363i
\(175\) −166.443 −0.951101
\(176\) 0 0
\(177\) 48.9919 43.8197i 0.276790 0.247569i
\(178\) 30.1803 + 92.8855i 0.169552 + 0.521829i
\(179\) 155.080 213.449i 0.866369 1.19245i −0.113644 0.993521i \(-0.536252\pi\)
0.980013 0.198933i \(-0.0637475\pi\)
\(180\) −155.336 + 88.3169i −0.862975 + 0.490649i
\(181\) 69.8278 214.908i 0.385789 1.18734i −0.550117 0.835087i \(-0.685417\pi\)
0.935906 0.352249i \(-0.114583\pi\)
\(182\) 111.458 + 36.2148i 0.612405 + 0.198982i
\(183\) 273.806 + 59.1473i 1.49621 + 0.323209i
\(184\) −99.2624 72.1183i −0.539469 0.391947i
\(185\) −123.344 + 40.0770i −0.666726 + 0.216633i
\(186\) −13.8673 + 12.4033i −0.0745551 + 0.0666842i
\(187\) 0 0
\(188\) 53.1246i 0.282578i
\(189\) 191.999 + 142.430i 1.01587 + 0.753599i
\(190\) 48.8541 + 35.4946i 0.257127 + 0.186814i
\(191\) −35.3172 48.6099i −0.184907 0.254502i 0.706493 0.707720i \(-0.250276\pi\)
−0.891400 + 0.453218i \(0.850276\pi\)
\(192\) 35.6806 15.7447i 0.185836 0.0820036i
\(193\) −11.0279 + 33.9403i −0.0571392 + 0.175856i −0.975553 0.219765i \(-0.929471\pi\)
0.918414 + 0.395622i \(0.129471\pi\)
\(194\) 71.2310 + 98.0410i 0.367170 + 0.505366i
\(195\) 261.440 26.6037i 1.34072 0.136429i
\(196\) 27.2508 + 83.8693i 0.139035 + 0.427904i
\(197\) 145.605i 0.739111i −0.929209 0.369556i \(-0.879510\pi\)
0.929209 0.369556i \(-0.120490\pi\)
\(198\) 0 0
\(199\) 241.185 1.21199 0.605993 0.795470i \(-0.292776\pi\)
0.605993 + 0.795470i \(0.292776\pi\)
\(200\) 125.148 40.6631i 0.625741 0.203316i
\(201\) −23.3217 229.187i −0.116028 1.14023i
\(202\) 150.144 109.086i 0.743289 0.540031i
\(203\) −222.267 72.2188i −1.09491 0.355758i
\(204\) 21.8003 + 49.4039i 0.106864 + 0.242176i
\(205\) 29.9656 21.7713i 0.146173 0.106201i
\(206\) 101.445 139.627i 0.492452 0.677802i
\(207\) 31.7758 + 154.517i 0.153506 + 0.746461i
\(208\) 66.1803 0.318175
\(209\) 0 0
\(210\) −117.193 131.026i −0.558064 0.623935i
\(211\) −13.2067 40.6459i −0.0625908 0.192635i 0.914871 0.403745i \(-0.132292\pi\)
−0.977462 + 0.211111i \(0.932292\pi\)
\(212\) 39.2708 54.0517i 0.185240 0.254961i
\(213\) 41.6932 193.007i 0.195743 0.906136i
\(214\) −20.3278 + 62.5625i −0.0949897 + 0.292348i
\(215\) −165.484 53.7690i −0.769692 0.250088i
\(216\) −179.161 60.1866i −0.829448 0.278641i
\(217\) 44.4230 + 32.2752i 0.204714 + 0.148734i
\(218\) −102.078 + 33.1672i −0.468248 + 0.152143i
\(219\) 30.0426 + 33.5886i 0.137181 + 0.153373i
\(220\) 0 0
\(221\) 79.4164i 0.359350i
\(222\) −50.8162 29.5635i −0.228902 0.133169i
\(223\) 134.290 + 97.5676i 0.602198 + 0.437523i 0.846659 0.532137i \(-0.178611\pi\)
−0.244460 + 0.969659i \(0.578611\pi\)
\(224\) −171.742 236.383i −0.766706 1.05528i
\(225\) −154.100 69.8357i −0.684887 0.310381i
\(226\) 9.78522 30.1158i 0.0432974 0.133256i
\(227\) −200.771 276.338i −0.884455 1.21735i −0.975167 0.221470i \(-0.928914\pi\)
0.0907125 0.995877i \(-0.471086\pi\)
\(228\) −8.31360 81.6996i −0.0364632 0.358332i
\(229\) 76.2574 + 234.696i 0.333002 + 1.02487i 0.967698 + 0.252112i \(0.0811251\pi\)
−0.634697 + 0.772761i \(0.718875\pi\)
\(230\) 116.000i 0.504348i
\(231\) 0 0
\(232\) 184.766 0.796405
\(233\) 378.873 123.103i 1.62606 0.528340i 0.652703 0.757614i \(-0.273635\pi\)
0.973362 + 0.229274i \(0.0736351\pi\)
\(234\) 87.9971 + 80.2943i 0.376056 + 0.343138i
\(235\) 94.8115 68.8846i 0.403453 0.293126i
\(236\) 62.5125 + 20.3115i 0.264883 + 0.0860658i
\(237\) 324.037 142.987i 1.36724 0.603320i
\(238\) −42.9787 + 31.2259i −0.180583 + 0.131201i
\(239\) 94.7567 130.421i 0.396472 0.545696i −0.563382 0.826196i \(-0.690500\pi\)
0.959854 + 0.280500i \(0.0905002\pi\)
\(240\) −85.8060 49.9196i −0.357525 0.207998i
\(241\) 159.644 0.662425 0.331212 0.943556i \(-0.392542\pi\)
0.331212 + 0.943556i \(0.392542\pi\)
\(242\) 0 0
\(243\) 118.000 + 212.426i 0.485597 + 0.874183i
\(244\) 86.5623 + 266.411i 0.354764 + 1.09185i
\(245\) −114.347 + 157.384i −0.466720 + 0.642386i
\(246\) 16.4117 + 3.54524i 0.0667142 + 0.0144115i
\(247\) −37.3212 + 114.863i −0.151098 + 0.465032i
\(248\) −41.2867 13.4149i −0.166479 0.0540922i
\(249\) −70.4300 + 326.036i −0.282851 + 1.30938i
\(250\) −33.2041 24.1242i −0.132817 0.0964969i
\(251\) −46.4601 + 15.0958i −0.185100 + 0.0601426i −0.400100 0.916471i \(-0.631025\pi\)
0.215000 + 0.976614i \(0.431025\pi\)
\(252\) −26.5623 + 237.580i −0.105406 + 0.942780i
\(253\) 0 0
\(254\) 101.416i 0.399277i
\(255\) −59.9035 + 102.967i −0.234916 + 0.403793i
\(256\) 138.342 + 100.511i 0.540398 + 0.392622i
\(257\) −94.4196 129.957i −0.367391 0.505671i 0.584798 0.811179i \(-0.301174\pi\)
−0.952190 + 0.305508i \(0.901174\pi\)
\(258\) −31.8428 72.1621i −0.123422 0.279698i
\(259\) −53.6180 + 165.019i −0.207019 + 0.637140i
\(260\) 154.464 + 212.602i 0.594093 + 0.817699i
\(261\) −175.482 160.121i −0.672346 0.613492i
\(262\) −40.4787 124.581i −0.154499 0.475499i
\(263\) 140.420i 0.533914i 0.963708 + 0.266957i \(0.0860183\pi\)
−0.963708 + 0.266957i \(0.913982\pi\)
\(264\) 0 0
\(265\) 147.387 0.556177
\(266\) 76.8361 24.9656i 0.288857 0.0938555i
\(267\) 291.492 29.6617i 1.09173 0.111092i
\(268\) 186.374 135.409i 0.695425 0.505256i
\(269\) −393.494 127.854i −1.46280 0.475294i −0.533879 0.845561i \(-0.679266\pi\)
−0.928925 + 0.370267i \(0.879266\pi\)
\(270\) −53.5268 170.481i −0.198247 0.631413i
\(271\) 46.7426 33.9605i 0.172482 0.125316i −0.498195 0.867065i \(-0.666004\pi\)
0.670677 + 0.741749i \(0.266004\pi\)
\(272\) −17.6336 + 24.2705i −0.0648293 + 0.0892298i
\(273\) 176.797 303.894i 0.647609 1.11316i
\(274\) −208.748 −0.761853
\(275\) 0 0
\(276\) −117.580 + 105.167i −0.426016 + 0.381041i
\(277\) 101.708 + 313.026i 0.367178 + 1.13006i 0.948606 + 0.316459i \(0.102494\pi\)
−0.581429 + 0.813597i \(0.697506\pi\)
\(278\) 47.9518 66.0000i 0.172489 0.237410i
\(279\) 27.5867 + 48.5206i 0.0988769 + 0.173909i
\(280\) 126.752 390.102i 0.452685 1.39322i
\(281\) −375.820 122.111i −1.33744 0.434560i −0.448991 0.893536i \(-0.648216\pi\)
−0.888449 + 0.458976i \(0.848216\pi\)
\(282\) 51.9269 + 11.2172i 0.184138 + 0.0397773i
\(283\) 232.254 + 168.743i 0.820686 + 0.596264i 0.916909 0.399096i \(-0.130676\pi\)
−0.0962226 + 0.995360i \(0.530676\pi\)
\(284\) 187.795 61.0182i 0.661249 0.214853i
\(285\) 135.029 120.774i 0.473787 0.423768i
\(286\) 0 0
\(287\) 49.5542i 0.172663i
\(288\) −59.8249 290.912i −0.207725 1.01011i
\(289\) −204.681 148.710i −0.708240 0.514566i
\(290\) 102.677 + 141.322i 0.354057 + 0.487318i
\(291\) 332.613 146.771i 1.14300 0.504369i
\(292\) −13.9255 + 42.8583i −0.0476901 + 0.146775i
\(293\) 42.1829 + 58.0598i 0.143969 + 0.198156i 0.874912 0.484283i \(-0.160919\pi\)
−0.730943 + 0.682439i \(0.760919\pi\)
\(294\) −87.7323 + 8.92748i −0.298409 + 0.0303656i
\(295\) 44.8075 + 137.903i 0.151890 + 0.467468i
\(296\) 137.177i 0.463437i
\(297\) 0 0
\(298\) 6.99187 0.0234626
\(299\) 220.645 71.6919i 0.737944 0.239772i
\(300\) −17.1275 168.316i −0.0570918 0.561054i
\(301\) −188.331 + 136.831i −0.625685 + 0.454587i
\(302\) 52.7369 + 17.1353i 0.174625 + 0.0567393i
\(303\) −224.772 509.378i −0.741822 1.68111i
\(304\) 36.9098 26.8166i 0.121414 0.0882124i
\(305\) −363.223 + 499.933i −1.19089 + 1.63912i
\(306\) −52.8932 + 10.8773i −0.172853 + 0.0355466i
\(307\) −116.961 −0.380979 −0.190489 0.981689i \(-0.561008\pi\)
−0.190489 + 0.981689i \(0.561008\pi\)
\(308\) 0 0
\(309\) −345.177 385.920i −1.11708 1.24893i
\(310\) −12.6829 39.0338i −0.0409124 0.125916i
\(311\) −107.648 + 148.164i −0.346133 + 0.476412i −0.946220 0.323523i \(-0.895133\pi\)
0.600087 + 0.799935i \(0.295133\pi\)
\(312\) −58.6904 + 271.691i −0.188110 + 0.870803i
\(313\) −23.1089 + 71.1220i −0.0738305 + 0.227227i −0.981161 0.193191i \(-0.938116\pi\)
0.907331 + 0.420418i \(0.138116\pi\)
\(314\) 39.9444 + 12.9787i 0.127211 + 0.0413335i
\(315\) −458.452 + 260.656i −1.45540 + 0.827478i
\(316\) 286.539 + 208.183i 0.906770 + 0.658807i
\(317\) −16.8069 + 5.46090i −0.0530187 + 0.0172268i −0.335406 0.942074i \(-0.608874\pi\)
0.282388 + 0.959300i \(0.408874\pi\)
\(318\) 44.5410 + 49.7984i 0.140066 + 0.156599i
\(319\) 0 0
\(320\) 86.0344i 0.268858i
\(321\) 170.579 + 99.2384i 0.531400 + 0.309154i
\(322\) −125.554 91.2204i −0.389920 0.283293i
\(323\) −32.1799 44.2918i −0.0996281 0.137126i
\(324\) −124.276 + 208.817i −0.383568 + 0.644496i
\(325\) −76.8885 + 236.639i −0.236580 + 0.728119i
\(326\) 93.3346 + 128.464i 0.286302 + 0.394061i
\(327\) 32.5972 + 320.340i 0.0996855 + 0.979632i
\(328\) 12.1064 + 37.2598i 0.0369099 + 0.113597i
\(329\) 156.790i 0.476566i
\(330\) 0 0
\(331\) −395.580 −1.19511 −0.597554 0.801829i \(-0.703860\pi\)
−0.597554 + 0.801829i \(0.703860\pi\)
\(332\) −317.231 + 103.075i −0.955514 + 0.310465i
\(333\) −118.880 + 130.285i −0.356998 + 0.391245i
\(334\) 230.713 167.623i 0.690758 0.501865i
\(335\) 483.327 + 157.043i 1.44277 + 0.468784i
\(336\) −121.508 + 53.6173i −0.361630 + 0.159575i
\(337\) 404.753 294.070i 1.20105 0.872611i 0.206659 0.978413i \(-0.433741\pi\)
0.994387 + 0.105802i \(0.0337408\pi\)
\(338\) 3.64045 5.01064i 0.0107705 0.0148244i
\(339\) −82.1120 47.7706i −0.242218 0.140916i
\(340\) −119.125 −0.350367
\(341\) 0 0
\(342\) 81.6130 + 9.12461i 0.238635 + 0.0266802i
\(343\) −53.6403 165.088i −0.156386 0.481306i
\(344\) 108.178 148.894i 0.314470 0.432830i
\(345\) −340.154 73.4798i −0.985954 0.212985i
\(346\) −18.4787 + 56.8716i −0.0534067 + 0.164369i
\(347\) 586.779 + 190.656i 1.69100 + 0.549441i 0.986995 0.160750i \(-0.0513912\pi\)
0.704010 + 0.710190i \(0.251391\pi\)
\(348\) 50.1597 232.200i 0.144137 0.667242i
\(349\) −250.957 182.331i −0.719076 0.522439i 0.167013 0.985955i \(-0.446588\pi\)
−0.886089 + 0.463516i \(0.846588\pi\)
\(350\) 158.296 51.4336i 0.452276 0.146953i
\(351\) 291.193 207.177i 0.829611 0.590249i
\(352\) 0 0
\(353\) 308.577i 0.874157i 0.899423 + 0.437078i \(0.143987\pi\)
−0.899423 + 0.437078i \(0.856013\pi\)
\(354\) −33.0530 + 56.8143i −0.0933701 + 0.160492i
\(355\) 352.405 + 256.037i 0.992691 + 0.721232i
\(356\) 172.219 + 237.039i 0.483762 + 0.665841i
\(357\) 64.3408 + 145.809i 0.180226 + 0.408429i
\(358\) −81.5304 + 250.925i −0.227738 + 0.700907i
\(359\) −80.4033 110.666i −0.223965 0.308261i 0.682217 0.731150i \(-0.261016\pi\)
−0.906181 + 0.422889i \(0.861016\pi\)
\(360\) 281.030 307.990i 0.780639 0.855528i
\(361\) −85.8268 264.148i −0.237747 0.731711i
\(362\) 225.967i 0.624220i
\(363\) 0 0
\(364\) 351.580 0.965880
\(365\) −94.5458 + 30.7198i −0.259030 + 0.0841639i
\(366\) −278.682 + 28.3582i −0.761427 + 0.0774815i
\(367\) 101.956 74.0753i 0.277809 0.201840i −0.440152 0.897923i \(-0.645076\pi\)
0.717961 + 0.696083i \(0.245076\pi\)
\(368\) −83.3499 27.0820i −0.226494 0.0735925i
\(369\) 20.7919 45.8793i 0.0563465 0.124334i
\(370\) 104.923 76.2310i 0.283576 0.206030i
\(371\) 115.903 159.526i 0.312406 0.429990i
\(372\) −28.0672 + 48.2442i −0.0754494 + 0.129689i
\(373\) −347.528 −0.931710 −0.465855 0.884861i \(-0.654253\pi\)
−0.465855 + 0.884861i \(0.654253\pi\)
\(374\) 0 0
\(375\) −91.7740 + 82.0851i −0.244731 + 0.218894i
\(376\) 38.3050 + 117.891i 0.101875 + 0.313539i
\(377\) −205.353 + 282.644i −0.544703 + 0.749720i
\(378\) −226.615 76.1283i −0.599512 0.201398i
\(379\) −146.584 + 451.138i −0.386764 + 1.19034i 0.548428 + 0.836198i \(0.315226\pi\)
−0.935192 + 0.354140i \(0.884774\pi\)
\(380\) 172.294 + 55.9818i 0.453406 + 0.147321i
\(381\) −297.390 64.2419i −0.780550 0.168614i
\(382\) 48.6099 + 35.3172i 0.127251 + 0.0924533i
\(383\) 278.142 90.3738i 0.726219 0.235963i 0.0775019 0.996992i \(-0.475306\pi\)
0.648718 + 0.761029i \(0.275306\pi\)
\(384\) 266.092 238.000i 0.692948 0.619792i
\(385\) 0 0
\(386\) 35.6869i 0.0924532i
\(387\) −231.776 + 47.6638i −0.598904 + 0.123162i
\(388\) 294.123 + 213.693i 0.758049 + 0.550755i
\(389\) −46.1712 63.5492i −0.118692 0.163365i 0.745537 0.666464i \(-0.232193\pi\)
−0.864229 + 0.503099i \(0.832193\pi\)
\(390\) −240.423 + 106.091i −0.616470 + 0.272028i
\(391\) −32.4984 + 100.020i −0.0831162 + 0.255805i
\(392\) −120.946 166.468i −0.308536 0.424663i
\(393\) −390.957 + 39.7830i −0.994801 + 0.101229i
\(394\) 44.9944 + 138.478i 0.114199 + 0.351468i
\(395\) 781.330i 1.97805i
\(396\) 0 0
\(397\) 166.741 0.420004 0.210002 0.977701i \(-0.432653\pi\)
0.210002 + 0.977701i \(0.432653\pi\)
\(398\) −229.381 + 74.5304i −0.576334 + 0.187262i
\(399\) −24.5365 241.126i −0.0614950 0.604325i
\(400\) 76.0410 55.2470i 0.190103 0.138118i
\(401\) −187.280 60.8510i −0.467033 0.151748i 0.0660410 0.997817i \(-0.478963\pi\)
−0.533074 + 0.846069i \(0.678963\pi\)
\(402\) 93.0030 + 210.763i 0.231351 + 0.524287i
\(403\) 66.4083 48.2484i 0.164785 0.119723i
\(404\) 327.259 450.433i 0.810046 1.11493i
\(405\) −533.819 + 48.9690i −1.31807 + 0.120911i
\(406\) 233.705 0.575628
\(407\) 0 0
\(408\) −84.0000 93.9149i −0.205882 0.230183i
\(409\) −222.747 685.545i −0.544614 1.67615i −0.721906 0.691991i \(-0.756734\pi\)
0.177292 0.984158i \(-0.443266\pi\)
\(410\) −21.7713 + 29.9656i −0.0531006 + 0.0730867i
\(411\) −132.230 + 612.124i −0.321729 + 1.48935i
\(412\) 159.998 492.425i 0.388346 1.19521i
\(413\) 184.497 + 59.9468i 0.446725 + 0.145150i
\(414\) −77.9691 137.135i −0.188331 0.331245i
\(415\) −595.298 432.509i −1.43445 1.04219i
\(416\) −415.412 + 134.976i −0.998587 + 0.324461i
\(417\) −163.161 182.420i −0.391273 0.437457i
\(418\) 0 0
\(419\) 267.408i 0.638206i −0.947720 0.319103i \(-0.896618\pi\)
0.947720 0.319103i \(-0.103382\pi\)
\(420\) −455.841 265.196i −1.08534 0.631419i
\(421\) −554.959 403.202i −1.31819 0.957723i −0.999953 0.00971339i \(-0.996908\pi\)
−0.318240 0.948010i \(-0.603092\pi\)
\(422\) 25.1205 + 34.5755i 0.0595274 + 0.0819324i
\(423\) 65.7858 145.163i 0.155522 0.343175i
\(424\) −48.1738 + 148.264i −0.113617 + 0.349678i
\(425\) −66.2964 91.2492i −0.155992 0.214704i
\(426\) 19.9898 + 196.445i 0.0469245 + 0.461137i
\(427\) 255.477 + 786.278i 0.598307 + 1.84140i
\(428\) 197.346i 0.461090i
\(429\) 0 0
\(430\) 174.000 0.404651
\(431\) −525.351 + 170.697i −1.21891 + 0.396049i −0.846686 0.532093i \(-0.821406\pi\)
−0.372227 + 0.928142i \(0.621406\pi\)
\(432\) −134.993 1.34078i −0.312485 0.00310366i
\(433\) 230.263 167.296i 0.531786 0.386365i −0.289239 0.957257i \(-0.593402\pi\)
0.821025 + 0.570892i \(0.193402\pi\)
\(434\) −52.2224 16.9681i −0.120328 0.0390969i
\(435\) 479.448 211.565i 1.10218 0.486356i
\(436\) −260.498 + 189.263i −0.597474 + 0.434090i
\(437\) 94.0074 129.390i 0.215120 0.296087i
\(438\) −38.9516 22.6610i −0.0889307 0.0517375i
\(439\) −532.058 −1.21198 −0.605988 0.795474i \(-0.707222\pi\)
−0.605988 + 0.795474i \(0.707222\pi\)
\(440\) 0 0
\(441\) −29.3951 + 262.918i −0.0666556 + 0.596186i
\(442\) 24.5410 + 75.5295i 0.0555227 + 0.170881i
\(443\) 70.7087 97.3222i 0.159613 0.219689i −0.721719 0.692187i \(-0.756648\pi\)
0.881332 + 0.472498i \(0.156648\pi\)
\(444\) −172.394 37.2405i −0.388275 0.0838749i
\(445\) −199.735 + 614.720i −0.448842 + 1.38139i
\(446\) −157.868 51.2943i −0.353963 0.115010i
\(447\) 4.42898 20.5027i 0.00990822 0.0458673i
\(448\) 93.1205 + 67.6560i 0.207858 + 0.151018i
\(449\) −65.3078 + 21.2198i −0.145452 + 0.0472601i −0.380838 0.924642i \(-0.624364\pi\)
0.235386 + 0.971902i \(0.424364\pi\)
\(450\) 168.138 + 18.7984i 0.373639 + 0.0417742i
\(451\) 0 0
\(452\) 94.9969i 0.210170i
\(453\) 83.6528 143.789i 0.184664 0.317416i
\(454\) 276.338 + 200.771i 0.608674 + 0.442227i
\(455\) 455.881 + 627.466i 1.00194 + 1.37905i
\(456\) 77.3576 + 175.308i 0.169644 + 0.384447i
\(457\) −214.924 + 661.467i −0.470292 + 1.44741i 0.381911 + 0.924199i \(0.375266\pi\)
−0.852203 + 0.523212i \(0.824734\pi\)
\(458\) −145.050 199.644i −0.316703 0.435905i
\(459\) −1.60894 + 161.992i −0.00350531 + 0.352924i
\(460\) −107.538 330.968i −0.233778 0.719495i
\(461\) 824.322i 1.78812i −0.447950 0.894059i \(-0.647846\pi\)
0.447950 0.894059i \(-0.352154\pi\)
\(462\) 0 0
\(463\) −158.137 −0.341548 −0.170774 0.985310i \(-0.554627\pi\)
−0.170774 + 0.985310i \(0.554627\pi\)
\(464\) 125.516 40.7827i 0.270509 0.0878938i
\(465\) −122.495 + 12.4649i −0.263430 + 0.0268062i
\(466\) −322.289 + 234.156i −0.691607 + 0.502482i
\(467\) 725.951 + 235.876i 1.55450 + 0.505087i 0.955331 0.295537i \(-0.0954984\pi\)
0.599167 + 0.800624i \(0.295498\pi\)
\(468\) 325.508 + 147.516i 0.695529 + 0.315204i
\(469\) 550.058 399.640i 1.17283 0.852111i
\(470\) −68.8846 + 94.8115i −0.146563 + 0.201727i
\(471\) 63.3609 108.910i 0.134524 0.231231i
\(472\) −153.369 −0.324934
\(473\) 0 0
\(474\) −263.992 + 236.122i −0.556945 + 0.498147i
\(475\) 53.0050 + 163.133i 0.111590 + 0.343437i
\(476\) −93.6776 + 128.936i −0.196802 + 0.270874i
\(477\) 174.241 99.0658i 0.365286 0.207685i
\(478\) −49.8166 + 153.320i −0.104219 + 0.320752i
\(479\) −71.1607 23.1215i −0.148561 0.0482704i 0.233793 0.972286i \(-0.424886\pi\)
−0.382353 + 0.924016i \(0.624886\pi\)
\(480\) 640.414 + 138.342i 1.33419 + 0.288212i
\(481\) 209.846 + 152.462i 0.436270 + 0.316969i
\(482\) −151.831 + 49.3328i −0.315002 + 0.102350i
\(483\) −347.023 + 310.387i −0.718475 + 0.642623i
\(484\) 0 0
\(485\) 802.009i 1.65363i
\(486\) −177.868 165.566i −0.365984 0.340670i
\(487\) −245.112 178.085i −0.503311 0.365677i 0.306969 0.951719i \(-0.400685\pi\)
−0.810280 + 0.586043i \(0.800685\pi\)
\(488\) −384.186 528.787i −0.787267 1.08358i
\(489\) 435.825 192.316i 0.891258 0.393284i
\(490\) 60.1155 185.017i 0.122685 0.377585i
\(491\) 469.508 + 646.222i 0.956227 + 1.31613i 0.948705 + 0.316162i \(0.102394\pi\)
0.00752206 + 0.999972i \(0.497606\pi\)
\(492\) 50.1120 5.09930i 0.101854 0.0103644i
\(493\) −48.9392 150.620i −0.0992682 0.305516i
\(494\) 120.774i 0.244482i
\(495\) 0 0
\(496\) −31.0081 −0.0625164
\(497\) 554.251 180.087i 1.11519 0.362348i
\(498\) −33.7677 331.842i −0.0678066 0.666350i
\(499\) −473.066 + 343.702i −0.948028 + 0.688782i −0.950340 0.311215i \(-0.899264\pi\)
0.00231194 + 0.999997i \(0.499264\pi\)
\(500\) −117.101 38.0486i −0.234203 0.0760971i
\(501\) −345.387 782.715i −0.689395 1.56231i
\(502\) 39.5213 28.7139i 0.0787277 0.0571990i
\(503\) −325.595 + 448.143i −0.647306 + 0.890940i −0.998979 0.0451830i \(-0.985613\pi\)
0.351673 + 0.936123i \(0.385613\pi\)
\(504\) −112.360 546.375i −0.222936 1.08408i
\(505\) 1228.23 2.43214
\(506\) 0 0
\(507\) −12.3870 13.8491i −0.0244319 0.0273157i
\(508\) −94.0182 289.358i −0.185075 0.569603i
\(509\) −50.4847 + 69.4863i −0.0991841 + 0.136515i −0.855724 0.517432i \(-0.826888\pi\)
0.756540 + 0.653947i \(0.226888\pi\)
\(510\) 25.1530 116.439i 0.0493197 0.228311i
\(511\) −41.0993 + 126.491i −0.0804291 + 0.247535i
\(512\) 290.072 + 94.2502i 0.566547 + 0.184082i
\(513\) 78.4541 233.539i 0.152932 0.455242i
\(514\) 129.957 + 94.4196i 0.252835 + 0.183696i
\(515\) 1086.29 352.958i 2.10931 0.685356i
\(516\) −157.751 176.371i −0.305719 0.341804i
\(517\) 0 0
\(518\) 173.512i 0.334964i
\(519\) 155.063 + 90.2114i 0.298772 + 0.173818i
\(520\) −496.071 360.417i −0.953982 0.693109i
\(521\) 431.206 + 593.503i 0.827650 + 1.13916i 0.988356 + 0.152160i \(0.0486229\pi\)
−0.160706 + 0.987002i \(0.551377\pi\)
\(522\) 216.374 + 98.0576i 0.414509 + 0.187850i
\(523\) 93.0151 286.271i 0.177849 0.547363i −0.821903 0.569627i \(-0.807088\pi\)
0.999752 + 0.0222642i \(0.00708750\pi\)
\(524\) −230.985 317.924i −0.440812 0.606725i
\(525\) −50.5497 496.763i −0.0962851 0.946215i
\(526\) −43.3920 133.547i −0.0824943 0.253891i
\(527\) 37.2098i 0.0706067i
\(528\) 0 0
\(529\) 221.774 0.419232
\(530\) −140.173 + 45.5451i −0.264478 + 0.0859341i
\(531\) 145.663 + 132.912i 0.274318 + 0.250305i
\(532\) 196.082 142.462i 0.368575 0.267786i
\(533\) −70.4533 22.8916i −0.132182 0.0429487i
\(534\) −268.059 + 118.286i −0.501983 + 0.221509i
\(535\) −352.204 + 255.891i −0.658325 + 0.478301i
\(536\) −315.953 + 434.872i −0.589465 + 0.811329i
\(537\) 684.157 + 398.024i 1.27404 + 0.741199i
\(538\) 413.745 0.769042
\(539\) 0 0
\(540\) −310.766 436.790i −0.575492 0.808871i
\(541\) 117.991 + 363.138i 0.218097 + 0.671235i 0.998919 + 0.0464809i \(0.0148007\pi\)
−0.780822 + 0.624754i \(0.785199\pi\)
\(542\) −33.9605 + 46.7426i −0.0626578 + 0.0862410i
\(543\) 662.618 + 143.138i 1.22029 + 0.263606i
\(544\) 61.1854 188.309i 0.112473 0.346157i
\(545\) −675.556 219.502i −1.23955 0.402755i
\(546\) −74.2358 + 343.654i −0.135963 + 0.629402i
\(547\) −150.498 109.344i −0.275134 0.199897i 0.441658 0.897183i \(-0.354390\pi\)
−0.716792 + 0.697287i \(0.754390\pi\)
\(548\) −595.592 + 193.520i −1.08685 + 0.353138i
\(549\) −93.3738 + 835.161i −0.170080 + 1.52124i
\(550\) 0 0
\(551\) 240.845i 0.437106i
\(552\) 185.097 318.160i 0.335320 0.576377i
\(553\) 845.683 + 614.425i 1.52926 + 1.11108i
\(554\) −193.461 266.276i −0.349207 0.480642i
\(555\) −157.074 355.960i −0.283016 0.641370i
\(556\) 75.6293 232.763i 0.136024 0.418638i
\(557\) −256.630 353.221i −0.460736 0.634149i 0.513925 0.857835i \(-0.328191\pi\)
−0.974661 + 0.223686i \(0.928191\pi\)
\(558\) −41.2302 37.6211i −0.0738892 0.0674213i
\(559\) 107.538 + 330.968i 0.192376 + 0.592071i
\(560\) 292.984i 0.523185i
\(561\) 0 0
\(562\) 395.161 0.703133
\(563\) 235.525 76.5267i 0.418339 0.135927i −0.0922811 0.995733i \(-0.529416\pi\)
0.510620 + 0.859806i \(0.329416\pi\)
\(564\) 158.555 16.1343i 0.281126 0.0286069i
\(565\) 169.541 123.179i 0.300073 0.218016i
\(566\) −273.031 88.7132i −0.482387 0.156737i
\(567\) −366.784 + 616.295i −0.646886 + 1.08694i
\(568\) −372.745 + 270.815i −0.656240 + 0.476787i
\(569\) −163.177 + 224.594i −0.286778 + 0.394716i −0.927964 0.372669i \(-0.878443\pi\)
0.641186 + 0.767385i \(0.278443\pi\)
\(570\) −91.0994 + 156.589i −0.159823 + 0.274718i
\(571\) −1010.88 −1.77037 −0.885187 0.465236i \(-0.845969\pi\)
−0.885187 + 0.465236i \(0.845969\pi\)
\(572\) 0 0
\(573\) 134.354 120.170i 0.234476 0.209721i
\(574\) 15.3131 + 47.1288i 0.0266778 + 0.0821060i
\(575\) 193.673 266.567i 0.336822 0.463595i
\(576\) 57.8278 + 101.710i 0.100396 + 0.176580i
\(577\) 80.4017 247.451i 0.139344 0.428858i −0.856896 0.515489i \(-0.827610\pi\)
0.996240 + 0.0866313i \(0.0276102\pi\)
\(578\) 240.617 + 78.1813i 0.416293 + 0.135262i
\(579\) −104.647 22.6058i −0.180737 0.0390428i
\(580\) 423.967 + 308.030i 0.730977 + 0.531086i
\(581\) −936.264 + 304.211i −1.61147 + 0.523598i
\(582\) −270.979 + 242.371i −0.465599 + 0.416445i
\(583\) 0 0
\(584\) 105.149i 0.180050i
\(585\) 158.802 + 772.211i 0.271456 + 1.32002i
\(586\) −58.0598 42.1829i −0.0990781 0.0719845i
\(587\) −592.051 814.889i −1.00861 1.38823i −0.919893 0.392169i \(-0.871725\pi\)
−0.0887124 0.996057i \(-0.528275\pi\)
\(588\) −242.039 + 106.804i −0.411631 + 0.181639i
\(589\) 17.4865 53.8178i 0.0296884 0.0913716i
\(590\) −85.2289 117.307i −0.144456 0.198826i
\(591\) 434.570 44.2211i 0.735314 0.0748242i
\(592\) −30.2786 93.1881i −0.0511464 0.157412i
\(593\) 13.9837i 0.0235813i −0.999930 0.0117907i \(-0.996247\pi\)
0.999930 0.0117907i \(-0.00375317\pi\)
\(594\) 0 0
\(595\) −351.580 −0.590892
\(596\) 19.9490 6.48182i 0.0334715 0.0108755i
\(597\) 73.2495 + 719.839i 0.122696 + 1.20576i
\(598\) −187.692 + 136.366i −0.313866 + 0.228037i
\(599\) −164.882 53.5735i −0.275263 0.0894383i 0.168133 0.985764i \(-0.446226\pi\)
−0.443396 + 0.896326i \(0.646226\pi\)
\(600\) 159.371 + 361.166i 0.265618 + 0.601944i
\(601\) −635.183 + 461.488i −1.05688 + 0.767866i −0.973508 0.228652i \(-0.926568\pi\)
−0.0833691 + 0.996519i \(0.526568\pi\)
\(602\) 136.831 188.331i 0.227293 0.312843i
\(603\) 676.946 139.211i 1.12263 0.230864i
\(604\) 166.353 0.275418
\(605\) 0 0
\(606\) 371.177 + 414.989i 0.612504 + 0.684800i
\(607\) −4.12343 12.6906i −0.00679312 0.0209071i 0.947603 0.319452i \(-0.103499\pi\)
−0.954396 + 0.298545i \(0.903499\pi\)
\(608\) −176.989 + 243.605i −0.291101 + 0.400666i
\(609\) 148.040 685.308i 0.243086 1.12530i
\(610\) 190.957 587.707i 0.313045 0.963453i
\(611\) −222.915 72.4296i −0.364837 0.118543i
\(612\) −140.829 + 80.0693i −0.230113 + 0.130832i
\(613\) −504.890 366.824i −0.823639 0.598408i 0.0941138 0.995561i \(-0.469998\pi\)
−0.917752 + 0.397153i \(0.869998\pi\)
\(614\) 111.236 36.1428i 0.181166 0.0588645i
\(615\) 74.0789 + 82.8228i 0.120454 + 0.134671i
\(616\) 0 0
\(617\) 1103.25i 1.78808i −0.447986 0.894041i \(-0.647859\pi\)
0.447986 0.894041i \(-0.352141\pi\)
\(618\) 447.539 + 260.366i 0.724173 + 0.421304i
\(619\) 148.220 + 107.688i 0.239450 + 0.173971i 0.701038 0.713124i \(-0.252720\pi\)
−0.461588 + 0.887094i \(0.652720\pi\)
\(620\) −72.3727 99.6124i −0.116730 0.160665i
\(621\) −451.520 + 141.766i −0.727085 + 0.228286i
\(622\) 56.5936 174.177i 0.0909866 0.280028i
\(623\) 508.282 + 699.591i 0.815862 + 1.12294i
\(624\) 20.0994 + 197.521i 0.0322105 + 0.316540i
\(625\) −229.161 705.285i −0.366658 1.12846i
\(626\) 74.7821i 0.119460i
\(627\) 0 0
\(628\) 126.000 0.200637
\(629\) −111.826 + 36.3344i −0.177783 + 0.0577653i
\(630\) 355.467 389.568i 0.564233 0.618362i
\(631\) −225.579 + 163.893i −0.357494 + 0.259735i −0.752006 0.659156i \(-0.770914\pi\)
0.394512 + 0.918891i \(0.370914\pi\)
\(632\) −785.977 255.379i −1.24363 0.404081i
\(633\) 117.300 51.7608i 0.185309 0.0817706i
\(634\) 14.2968 10.3872i 0.0225502 0.0163837i
\(635\) 394.508 542.994i 0.621273 0.855108i
\(636\) 173.249 + 100.791i 0.272404 + 0.158477i
\(637\) 389.076 0.610794
\(638\) 0 0
\(639\) 588.709 + 65.8197i 0.921297 + 0.103004i
\(640\) 243.365 + 749.001i 0.380258 + 1.17031i
\(641\) 403.414 555.251i 0.629350 0.866226i −0.368641 0.929572i \(-0.620177\pi\)
0.997992 + 0.0633453i \(0.0201769\pi\)
\(642\) −192.897 41.6694i −0.300463 0.0649057i
\(643\) −41.7670 + 128.546i −0.0649565 + 0.199916i −0.978267 0.207348i \(-0.933517\pi\)
0.913311 + 0.407263i \(0.133517\pi\)
\(644\) −442.793 143.872i −0.687567 0.223404i
\(645\) 110.220 510.231i 0.170883 0.791056i
\(646\) 44.2918 + 32.1799i 0.0685632 + 0.0498140i
\(647\) 87.3625 28.3858i 0.135027 0.0438730i −0.240724 0.970594i \(-0.577385\pi\)
0.375751 + 0.926721i \(0.377385\pi\)
\(648\) 125.220 553.000i 0.193240 0.853395i
\(649\) 0 0
\(650\) 248.817i 0.382795i
\(651\) −82.8366 + 142.386i −0.127245 + 0.218720i
\(652\) 385.392 + 280.004i 0.591092 + 0.429454i
\(653\) −463.947 638.568i −0.710485 0.977898i −0.999787 0.0206605i \(-0.993423\pi\)
0.289302 0.957238i \(-0.406577\pi\)
\(654\) −129.992 294.588i −0.198765 0.450440i
\(655\) 267.890 824.479i 0.408992 1.25875i
\(656\) 16.4484 + 22.6393i 0.0250738 + 0.0345112i
\(657\) −91.1241 + 99.8658i −0.138697 + 0.152003i
\(658\) 48.4508 + 149.116i 0.0736335 + 0.226621i
\(659\) 4.76585i 0.00723194i 0.999993 + 0.00361597i \(0.00115100\pi\)
−0.999993 + 0.00361597i \(0.998849\pi\)
\(660\) 0 0
\(661\) −1267.85 −1.91808 −0.959042 0.283264i \(-0.908583\pi\)
−0.959042 + 0.283264i \(0.908583\pi\)
\(662\) 376.219 122.241i 0.568307 0.184654i
\(663\) 237.025 24.1193i 0.357504 0.0363790i
\(664\) 629.656 457.472i 0.948277 0.688964i
\(665\) 508.504 + 165.223i 0.764667 + 0.248456i
\(666\) 72.8017 160.644i 0.109312 0.241207i
\(667\) 374.292 271.939i 0.561157 0.407705i
\(668\) 502.869 692.140i 0.752798 1.03614i
\(669\) −250.414 + 430.433i −0.374311 + 0.643397i
\(670\) −508.200 −0.758508
\(671\) 0 0
\(672\) 653.346 584.371i 0.972242 0.869599i
\(673\) 56.6882 + 174.468i 0.0842322 + 0.259240i 0.984298 0.176514i \(-0.0564819\pi\)
−0.900066 + 0.435753i \(0.856482\pi\)
\(674\) −294.070 + 404.753i −0.436306 + 0.600523i
\(675\) 161.630 481.133i 0.239452 0.712790i
\(676\) 5.74169 17.6711i 0.00849362 0.0261407i
\(677\) 144.690 + 47.0128i 0.213723 + 0.0694428i 0.413922 0.910313i \(-0.364159\pi\)
−0.200199 + 0.979755i \(0.564159\pi\)
\(678\) 92.8551 + 20.0585i 0.136954 + 0.0295848i
\(679\) 868.065 + 630.686i 1.27845 + 0.928846i
\(680\) 264.353 85.8936i 0.388755 0.126314i
\(681\) 763.779 683.145i 1.12156 1.00315i
\(682\) 0 0
\(683\) 778.746i 1.14019i −0.821580 0.570093i \(-0.806907\pi\)
0.821580 0.570093i \(-0.193093\pi\)
\(684\) 241.315 49.6254i 0.352799 0.0725517i
\(685\) −1117.66 812.025i −1.63162 1.18544i
\(686\) 102.030 + 140.432i 0.148732 + 0.204711i
\(687\) −677.311 + 298.875i −0.985897 + 0.435044i
\(688\) 40.6231 125.025i 0.0590451 0.181722i
\(689\) −173.264 238.477i −0.251471 0.346121i
\(690\) 346.212 35.2299i 0.501757 0.0510579i
\(691\) −139.925 430.645i −0.202496 0.623219i −0.999807 0.0196502i \(-0.993745\pi\)
0.797311 0.603569i \(-0.206255\pi\)
\(692\) 179.395i 0.259242i
\(693\) 0 0
\(694\) −616.976 −0.889014
\(695\) 513.478 166.839i 0.738817 0.240056i
\(696\) 56.1145 + 551.450i 0.0806243 + 0.792313i
\(697\) 27.1672 19.7381i 0.0389773 0.0283187i
\(698\) 295.018 + 95.8572i 0.422662 + 0.137331i
\(699\) 482.479 + 1093.39i 0.690241 + 1.56422i
\(700\) 403.965 293.498i 0.577093 0.419282i
\(701\) −31.2472 + 43.0081i −0.0445752 + 0.0613525i −0.830723 0.556686i \(-0.812073\pi\)
0.786148 + 0.618039i \(0.212073\pi\)
\(702\) −212.920 + 287.021i −0.303305 + 0.408862i
\(703\) 178.813 0.254357
\(704\) 0 0
\(705\) 234.387 + 262.053i 0.332464 + 0.371706i
\(706\) −95.3557 293.475i −0.135065 0.415686i
\(707\) 965.861 1329.39i 1.36614 1.88033i
\(708\) −41.6361 + 192.743i −0.0588081 + 0.272235i
\(709\) 333.942 1027.77i 0.471005 1.44960i −0.380266 0.924877i \(-0.624168\pi\)
0.851271 0.524726i \(-0.175832\pi\)
\(710\) −414.277 134.607i −0.583489 0.189587i
\(711\) 525.169 + 923.690i 0.738634 + 1.29914i
\(712\) −553.092 401.845i −0.776815 0.564389i
\(713\) −103.381 + 33.5905i −0.144994 + 0.0471116i
\(714\) −106.249 118.790i −0.148808 0.166373i
\(715\) 0 0
\(716\) 791.514i 1.10547i
\(717\) 418.032 + 243.200i 0.583030 + 0.339191i
\(718\) 110.666 + 80.4033i 0.154130 + 0.111982i
\(719\) 533.914 + 734.869i 0.742578 + 1.02207i 0.998466 + 0.0553647i \(0.0176322\pi\)
−0.255888 + 0.966706i \(0.582368\pi\)
\(720\) 122.930 271.256i 0.170736 0.376745i
\(721\) 472.214 1453.33i 0.654943 2.01571i
\(722\) 163.252 + 224.698i 0.226111 + 0.311215i
\(723\) 48.4850 + 476.473i 0.0670608 + 0.659021i
\(724\) 209.483 + 644.724i 0.289342 + 0.890502i
\(725\) 496.185i 0.684394i
\(726\) 0 0
\(727\) −64.4195 −0.0886101 −0.0443050 0.999018i \(-0.514107\pi\)
−0.0443050 + 0.999018i \(0.514107\pi\)
\(728\) −780.203 + 253.503i −1.07171 + 0.348219i
\(729\) −598.168 + 416.697i −0.820532 + 0.571600i
\(730\) 80.4255 58.4325i 0.110172 0.0800446i
\(731\) −150.030 48.7477i −0.205239 0.0666863i
\(732\) −768.839 + 339.264i −1.05033 + 0.463475i
\(733\) −857.620 + 623.097i −1.17001 + 0.850065i −0.991011 0.133784i \(-0.957287\pi\)
−0.179003 + 0.983849i \(0.557287\pi\)
\(734\) −74.0753 + 101.956i −0.100920 + 0.138904i
\(735\) −504.455 293.479i −0.686334 0.399291i
\(736\) 578.420 0.785896
\(737\) 0 0
\(738\) −5.59675 + 50.0588i −0.00758367 + 0.0678304i
\(739\) −49.4164 152.088i −0.0668693 0.205803i 0.912039 0.410104i \(-0.134508\pi\)
−0.978908 + 0.204302i \(0.934508\pi\)
\(740\) 228.693 314.769i 0.309045 0.425363i
\(741\) −354.153 76.5039i −0.477939 0.103244i
\(742\) −60.9336 + 187.534i −0.0821208 + 0.252742i
\(743\) −60.0542 19.5128i −0.0808266 0.0262622i 0.268325 0.963329i \(-0.413530\pi\)
−0.349151 + 0.937066i \(0.613530\pi\)
\(744\) 27.4988 127.298i 0.0369607 0.171099i
\(745\) 37.4352 + 27.1983i 0.0502486 + 0.0365077i
\(746\) 330.519 107.392i 0.443054 0.143957i
\(747\) −994.472 111.185i −1.33129 0.148843i
\(748\) 0 0
\(749\) 582.442i 0.777626i
\(750\) 61.9165 106.427i 0.0825554 0.141903i
\(751\) −132.939 96.5860i −0.177016 0.128610i 0.495749 0.868466i \(-0.334894\pi\)
−0.672765 + 0.739856i \(0.734894\pi\)
\(752\) 52.0431 + 71.6312i 0.0692063 + 0.0952542i
\(753\) −59.1649 134.079i −0.0785723 0.178060i
\(754\) 107.961 332.268i 0.143184 0.440674i
\(755\) 215.703 + 296.890i 0.285699 + 0.393231i
\(756\) −717.147 7.12286i −0.948607 0.00942177i
\(757\) −280.054 861.917i −0.369952 1.13860i −0.946821 0.321759i \(-0.895726\pi\)
0.576869 0.816836i \(-0.304274\pi\)
\(758\) 474.354i 0.625797i
\(759\) 0 0
\(760\) −422.709 −0.556196
\(761\) −218.038 + 70.8448i −0.286515 + 0.0930943i −0.448749 0.893658i \(-0.648130\pi\)
0.162234 + 0.986752i \(0.448130\pi\)
\(762\) 302.686 30.8008i 0.397226 0.0404210i
\(763\) −768.827 + 558.585i −1.00764 + 0.732091i
\(764\) 171.433 + 55.7020i 0.224389 + 0.0729084i
\(765\) −325.508 147.516i −0.425500 0.192831i
\(766\) −236.602 + 171.901i −0.308880 + 0.224414i
\(767\) 170.458 234.615i 0.222240 0.305886i
\(768\) −257.969 + 443.419i −0.335898 + 0.577369i
\(769\) −541.254 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(770\) 0 0
\(771\) 359.193 321.272i 0.465880 0.416696i
\(772\) −33.0836 101.821i −0.0428544 0.131892i
\(773\) −440.204 + 605.889i −0.569475 + 0.783815i −0.992492 0.122307i \(-0.960971\pi\)
0.423018 + 0.906122i \(0.360971\pi\)
\(774\) 205.703 116.954i 0.265766 0.151103i
\(775\) 36.0254 110.875i 0.0464843 0.143064i
\(776\) −806.779 262.138i −1.03966 0.337807i
\(777\) −508.799 109.910i −0.654825 0.141455i
\(778\) 63.5492 + 46.1712i 0.0816827 + 0.0593460i
\(779\) −48.5687 + 15.7809i −0.0623475 + 0.0202579i
\(780\) −587.617 + 525.580i −0.753355 + 0.673821i
\(781\) 0 0
\(782\) 105.167i 0.134485i
\(783\) 424.601 572.372i 0.542275 0.730999i
\(784\) −118.906 86.3901i −0.151666 0.110191i
\(785\) 163.379 + 224.872i 0.208126 + 0.286462i
\(786\) 359.528 158.648i 0.457415 0.201842i
\(787\) −76.0971 + 234.203i −0.0966926 + 0.297589i −0.987691 0.156417i \(-0.950006\pi\)
0.890998 + 0.454006i \(0.150006\pi\)
\(788\) 256.753 + 353.390i 0.325829 + 0.448465i
\(789\) −419.094 + 42.6463i −0.531172 + 0.0540510i
\(790\) −241.444 743.089i −0.305626 0.940619i
\(791\) 280.371i 0.354451i
\(792\) 0 0
\(793\) 1235.90 1.55852
\(794\) −158.581 + 51.5259i −0.199724 + 0.0648941i
\(795\) 44.7623 + 439.889i 0.0563048 + 0.553320i
\(796\) −585.369 + 425.296i −0.735388 + 0.534291i
\(797\) −955.181 310.357i −1.19847 0.389407i −0.359273 0.933233i \(-0.616975\pi\)
−0.839198 + 0.543826i \(0.816975\pi\)
\(798\) 97.8475 + 221.742i 0.122616 + 0.277872i
\(799\) 85.9574 62.4517i 0.107581 0.0781624i
\(800\) −364.630 + 501.871i −0.455788 + 0.627338i
\(801\) 177.056 + 860.974i 0.221043 + 1.07487i
\(802\) 196.918 0.245534
\(803\) 0 0
\(804\) 460.741 + 515.125i 0.573062 + 0.640702i
\(805\) −317.384 976.807i −0.394266 1.21343i
\(806\) −48.2484 + 66.4083i −0.0598616 + 0.0823924i
\(807\) 262.085 1213.25i 0.324765 1.50341i
\(808\) −401.450 + 1235.54i −0.496844 + 1.52913i
\(809\) 1261.42 + 409.861i 1.55924 + 0.506627i 0.956604 0.291392i \(-0.0941183\pi\)
0.602633 + 0.798018i \(0.294118\pi\)
\(810\) 492.560 211.532i 0.608099 0.261150i
\(811\) −940.338 683.196i −1.15948 0.842411i −0.169768 0.985484i \(-0.554302\pi\)
−0.989712 + 0.143073i \(0.954302\pi\)
\(812\) 666.800 216.657i 0.821183 0.266818i
\(813\) 115.554 + 129.193i 0.142133 + 0.158910i
\(814\) 0 0
\(815\) 1050.88i 1.28942i
\(816\) −77.7929 45.2578i −0.0953344 0.0554630i
\(817\) 194.085 + 141.011i 0.237558 + 0.172596i
\(818\) 423.690 + 583.159i 0.517959 + 0.712909i
\(819\) 960.693 + 435.372i 1.17301 + 0.531590i
\(820\) −34.3375 + 105.680i −0.0418750 + 0.128878i
\(821\) −557.320 767.085i −0.678830 0.934330i 0.321089 0.947049i \(-0.395951\pi\)
−0.999919 + 0.0127192i \(0.995951\pi\)
\(822\) −63.3980 623.026i −0.0771265 0.757939i
\(823\) 456.674 + 1405.50i 0.554890 + 1.70778i 0.696234 + 0.717815i \(0.254858\pi\)
−0.141344 + 0.989961i \(0.545142\pi\)
\(824\) 1208.12i 1.46617i
\(825\) 0 0
\(826\) −193.992 −0.234857
\(827\) 152.775 49.6397i 0.184734 0.0600238i −0.215189 0.976572i \(-0.569037\pi\)
0.399923 + 0.916549i \(0.369037\pi\)
\(828\) −349.591 318.989i −0.422211 0.385253i
\(829\) −176.026 + 127.891i −0.212336 + 0.154271i −0.688870 0.724885i \(-0.741893\pi\)
0.476534 + 0.879156i \(0.341893\pi\)
\(830\) 699.815 + 227.384i 0.843150 + 0.273956i
\(831\) −903.363 + 398.625i −1.08708 + 0.479693i
\(832\) 139.207 101.140i 0.167316 0.121562i
\(833\) −103.668 + 142.687i −0.124452 + 0.171293i
\(834\) 211.546 + 123.072i 0.253652 + 0.147568i
\(835\) 1887.31 2.26025
\(836\) 0 0
\(837\) −136.436 + 97.0708i −0.163006 + 0.115975i
\(838\) 82.6337 + 254.320i 0.0986082 + 0.303485i
\(839\) −322.053 + 443.267i −0.383853 + 0.528328i −0.956600 0.291404i \(-0.905878\pi\)
0.572747 + 0.819732i \(0.305878\pi\)
\(840\) 1202.79 + 259.825i 1.43189 + 0.309316i
\(841\) 44.5904 137.235i 0.0530207 0.163181i
\(842\) 652.394 + 211.976i 0.774815 + 0.251753i
\(843\) 250.313 1158.75i 0.296932 1.37456i
\(844\) 103.726 + 75.3616i 0.122899 + 0.0892910i
\(845\) 38.9826 12.6662i 0.0461333 0.0149896i
\(846\) −17.7082 + 158.387i −0.0209317 + 0.187219i
\(847\) 0 0
\(848\) 111.353i 0.131312i
\(849\) −433.090 + 744.431i −0.510118 + 0.876833i
\(850\) 91.2492 + 66.2964i 0.107352 + 0.0779958i
\(851\) −201.898 277.889i −0.237248 0.326544i
\(852\) 239.149 + 541.958i 0.280691 + 0.636101i
\(853\) −226.029 + 695.647i −0.264982 + 0.815530i 0.726716 + 0.686938i \(0.241046\pi\)
−0.991698 + 0.128592i \(0.958954\pi\)
\(854\) −485.946 668.848i −0.569024 0.783194i
\(855\) 401.470 + 366.327i 0.469555 + 0.428453i
\(856\) −142.295 437.938i −0.166232 0.511609i
\(857\) 333.112i 0.388696i 0.980933 + 0.194348i \(0.0622590\pi\)
−0.980933 + 0.194348i \(0.937741\pi\)
\(858\) 0 0
\(859\) 146.468 0.170510 0.0852551 0.996359i \(-0.472829\pi\)
0.0852551 + 0.996359i \(0.472829\pi\)
\(860\) 496.452 161.307i 0.577269 0.187566i
\(861\) 147.899 15.0499i 0.171776 0.0174796i
\(862\) 446.890 324.685i 0.518434 0.376665i
\(863\) 605.334 + 196.685i 0.701430 + 0.227908i 0.637954 0.770075i \(-0.279781\pi\)
0.0634766 + 0.997983i \(0.479781\pi\)
\(864\) 850.084 266.905i 0.983894 0.308917i
\(865\) −320.167 + 232.615i −0.370135 + 0.268919i
\(866\) −167.296 + 230.263i −0.193183 + 0.265893i
\(867\) 381.674 656.053i 0.440224 0.756694i
\(868\) −164.729 −0.189781
\(869\) 0 0
\(870\) −390.605 + 349.368i −0.448971 + 0.401572i
\(871\) −314.085 966.655i −0.360603 1.10982i
\(872\) 441.614 607.830i 0.506438 0.697052i
\(873\) 539.068 + 948.137i 0.617489 + 1.08607i
\(874\) −49.4226 + 152.107i −0.0565476 + 0.174036i
\(875\) −345.609 112.295i −0.394982 0.128337i
\(876\) −132.144 28.5455i −0.150849 0.0325862i
\(877\) 1026.53 + 745.817i 1.17050 + 0.850418i 0.991069 0.133352i \(-0.0425742\pi\)
0.179431 + 0.983770i \(0.442574\pi\)
\(878\) 506.017 164.415i 0.576329 0.187261i
\(879\) −160.473 + 143.532i −0.182564 + 0.163290i
\(880\) 0 0
\(881\) 425.862i 0.483385i 0.970353 + 0.241693i \(0.0777025\pi\)
−0.970353 + 0.241693i \(0.922297\pi\)
\(882\) −53.2897 259.133i −0.0604192 0.293802i
\(883\) −562.423 408.624i −0.636946 0.462768i 0.221854 0.975080i \(-0.428789\pi\)
−0.858800 + 0.512312i \(0.828789\pi\)
\(884\) 140.039 + 192.748i 0.158416 + 0.218040i
\(885\) −397.976 + 175.614i −0.449690 + 0.198434i
\(886\) −37.1738 + 114.409i −0.0419568 + 0.129130i
\(887\) −250.832 345.241i −0.282787 0.389223i 0.643867 0.765137i \(-0.277329\pi\)
−0.926655 + 0.375914i \(0.877329\pi\)
\(888\) 409.417 41.6616i 0.461056 0.0469162i
\(889\) −277.482 854.002i −0.312128 0.960633i
\(890\) 646.354i 0.726241i
\(891\) 0 0
\(892\) −497.976 −0.558269
\(893\) −153.672 + 49.9311i −0.172085 + 0.0559139i
\(894\) 2.12347 + 20.8678i 0.00237525 + 0.0233421i
\(895\) −1412.61 + 1026.32i −1.57834 + 1.14673i
\(896\) 1002.07 + 325.592i 1.11838 + 0.363384i
\(897\) 280.982 + 636.761i 0.313247 + 0.709879i
\(898\) 55.5542 40.3625i 0.0618643 0.0449471i
\(899\) 96.2161 132.430i 0.107026 0.147308i
\(900\) 497.153 102.237i 0.552392 0.113597i
\(901\) 133.623 0.148305
\(902\) 0 0
\(903\) −465.580 520.535i −0.515593 0.576451i
\(904\) 68.4965 + 210.811i 0.0757705 + 0.233198i
\(905\) −879.010 + 1209.85i −0.971281 + 1.33685i
\(906\) −35.1251 + 162.602i −0.0387695 + 0.179472i
\(907\) −212.589 + 654.280i −0.234387 + 0.721368i 0.762816 + 0.646616i \(0.223816\pi\)
−0.997202 + 0.0747516i \(0.976184\pi\)
\(908\) 974.564 + 316.655i 1.07331 + 0.348739i
\(909\) 1452.02 825.553i 1.59738 0.908199i
\(910\) −627.466 455.881i −0.689523 0.500968i
\(911\) −1626.87 + 528.602i −1.78581 + 0.580243i −0.999303 0.0373428i \(-0.988111\pi\)
−0.786503 + 0.617586i \(0.788111\pi\)
\(912\) 91.2461 + 102.016i 0.100051 + 0.111860i
\(913\) 0 0
\(914\) 695.507i 0.760949i
\(915\) −1602.41 932.237i −1.75126 1.01884i
\(916\) −598.933 435.150i −0.653857 0.475055i
\(917\) −681.722 938.310i −0.743427 1.02324i
\(918\) −48.5281 154.561i −0.0528628 0.168367i
\(919\) −119.301 + 367.169i −0.129816 + 0.399531i −0.994748 0.102358i \(-0.967361\pi\)
0.864932 + 0.501889i \(0.167361\pi\)
\(920\) 477.282 + 656.922i 0.518784 + 0.714045i
\(921\) −35.5216 349.079i −0.0385686 0.379022i
\(922\) 254.729 + 783.977i 0.276279 + 0.850300i
\(923\) 871.193i 0.943872i
\(924\) 0 0
\(925\) 368.387 0.398256
\(926\) 150.397 48.8669i 0.162416 0.0527720i
\(927\) 1046.98 1147.42i 1.12943 1.23778i
\(928\) −704.685 + 511.984i −0.759359 + 0.551707i
\(929\) 71.0024 + 23.0701i 0.0764288 + 0.0248332i 0.346982 0.937872i \(-0.387207\pi\)
−0.270553 + 0.962705i \(0.587207\pi\)
\(930\) 112.648 49.7079i 0.121127 0.0534493i
\(931\) 216.994 157.655i 0.233076 0.169340i
\(932\) −702.469 + 966.866i −0.753722 + 1.03741i
\(933\) −474.902 276.285i −0.509005 0.296125i
\(934\) −763.310 −0.817248
\(935\) 0 0
\(936\) −828.709 92.6525i −0.885373 0.0989877i
\(937\) 175.615 + 540.488i 0.187423 + 0.576828i 0.999982 0.00605080i \(-0.00192604\pi\)
−0.812559 + 0.582879i \(0.801926\pi\)
\(938\) −399.640 + 550.058i −0.426056 + 0.586415i
\(939\) −219.288 47.3705i −0.233534 0.0504478i
\(940\) −108.644 + 334.373i −0.115579 + 0.355716i
\(941\) 189.720 + 61.6436i 0.201615 + 0.0655086i 0.408084 0.912945i \(-0.366197\pi\)
−0.206469 + 0.978453i \(0.566197\pi\)
\(942\) −26.6048 + 123.159i −0.0282428 + 0.130742i
\(943\) 79.3638 + 57.6612i 0.0841610 + 0.0611465i
\(944\) −104.187 + 33.8525i −0.110368 + 0.0358608i
\(945\) −917.184 1289.13i −0.970565 1.36416i
\(946\) 0 0
\(947\) 984.860i 1.03998i −0.854173 0.519990i \(-0.825936\pi\)
0.854173 0.519990i \(-0.174064\pi\)
\(948\) −534.317 + 918.429i −0.563625 + 0.968807i
\(949\) 160.851 + 116.865i 0.169495 + 0.123146i
\(950\) −100.822 138.769i −0.106128 0.146073i
\(951\) −21.4029 48.5032i −0.0225057 0.0510023i
\(952\) 114.915 353.672i 0.120709 0.371504i
\(953\) 448.110 + 616.771i 0.470210 + 0.647189i 0.976587 0.215124i \(-0.0690155\pi\)
−0.506377 + 0.862312i \(0.669015\pi\)
\(954\) −135.100 + 148.061i −0.141614 + 0.155200i
\(955\) 122.879 + 378.183i 0.128669 + 0.396004i
\(956\) 483.629i 0.505888i
\(957\) 0 0
\(958\) 74.8228 0.0781031
\(959\) −1757.81 + 571.148i −1.83296 + 0.595566i
\(960\) −256.777 + 26.1292i −0.267476 + 0.0272179i
\(961\) 746.350 542.255i 0.776639 0.564262i
\(962\) −246.689 80.1540i −0.256433 0.0833202i
\(963\) −244.380 + 539.248i −0.253769 + 0.559967i
\(964\) −387.465 + 281.510i −0.401935 + 0.292023i
\(965\) 138.821 191.071i 0.143856 0.198001i
\(966\) 234.124 402.432i 0.242364 0.416596i
\(967\) −1466.73 −1.51679 −0.758394 0.651797i \(-0.774015\pi\)
−0.758394 + 0.651797i \(0.774015\pi\)
\(968\) 0 0
\(969\) 122.420 109.495i 0.126336 0.112998i
\(970\) −247.834 762.756i −0.255499 0.786346i
\(971\) −671.579 + 924.349i −0.691637 + 0.951956i 0.308363 + 0.951269i \(0.400219\pi\)
−1.00000 0.000687448i \(0.999781\pi\)
\(972\) −660.975 307.494i −0.680016 0.316352i
\(973\) 223.210 686.969i 0.229404 0.706032i
\(974\) 288.147 + 93.6246i 0.295839 + 0.0961238i
\(975\) −729.620 157.612i −0.748328 0.161653i
\(976\) −377.705 274.419i −0.386993 0.281167i
\(977\) −36.8048 + 11.9586i −0.0376713 + 0.0122401i −0.327792 0.944750i \(-0.606305\pi\)
0.290121 + 0.956990i \(0.406305\pi\)
\(978\) −355.066 + 317.580i −0.363053 + 0.324724i
\(979\) 0 0
\(980\) 583.614i 0.595524i
\(981\) −946.181 + 194.578i −0.964507 + 0.198347i
\(982\) −646.222 469.508i −0.658067 0.478114i
\(983\) 712.747 + 981.012i 0.725073 + 0.997978i 0.999340 + 0.0363240i \(0.0115648\pi\)
−0.274267 + 0.961654i \(0.588435\pi\)
\(984\) −107.528 + 47.4487i −0.109277 + 0.0482202i
\(985\) −297.774 + 916.455i −0.302309 + 0.930411i
\(986\) 93.0880 + 128.125i 0.0944097 + 0.129944i
\(987\) 467.954 47.6182i 0.474118 0.0482454i
\(988\) −111.964 344.589i −0.113324 0.348774i
\(989\) 460.839i 0.465965i
\(990\) 0 0
\(991\) −1413.89 −1.42673 −0.713367 0.700790i \(-0.752831\pi\)
−0.713367 + 0.700790i \(0.752831\pi\)
\(992\) 194.637 63.2415i 0.196207 0.0637515i
\(993\) −120.140 1180.64i −0.120987 1.18897i
\(994\) −471.474 + 342.546i −0.474320 + 0.344614i
\(995\) −1518.05 493.245i −1.52568 0.495723i
\(996\) −403.980 915.498i −0.405602 0.919175i
\(997\) 762.909 554.286i 0.765204 0.555953i −0.135298 0.990805i \(-0.543199\pi\)
0.900502 + 0.434852i \(0.143199\pi\)
\(998\) 343.702 473.066i 0.344391 0.474014i
\(999\) −424.951 315.240i −0.425376 0.315556i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.i.269.1 8
3.2 odd 2 inner 363.3.h.i.269.2 8
11.2 odd 10 363.3.h.h.251.1 8
11.3 even 5 363.3.b.g.122.3 4
11.4 even 5 363.3.h.g.245.1 8
11.5 even 5 363.3.h.g.323.2 8
11.6 odd 10 33.3.h.a.26.1 yes 8
11.7 odd 10 33.3.h.a.14.2 yes 8
11.8 odd 10 363.3.b.f.122.1 4
11.9 even 5 inner 363.3.h.i.251.2 8
11.10 odd 2 363.3.h.h.269.2 8
33.2 even 10 363.3.h.h.251.2 8
33.5 odd 10 363.3.h.g.323.1 8
33.8 even 10 363.3.b.f.122.4 4
33.14 odd 10 363.3.b.g.122.2 4
33.17 even 10 33.3.h.a.26.2 yes 8
33.20 odd 10 inner 363.3.h.i.251.1 8
33.26 odd 10 363.3.h.g.245.2 8
33.29 even 10 33.3.h.a.14.1 8
33.32 even 2 363.3.h.h.269.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.a.14.1 8 33.29 even 10
33.3.h.a.14.2 yes 8 11.7 odd 10
33.3.h.a.26.1 yes 8 11.6 odd 10
33.3.h.a.26.2 yes 8 33.17 even 10
363.3.b.f.122.1 4 11.8 odd 10
363.3.b.f.122.4 4 33.8 even 10
363.3.b.g.122.2 4 33.14 odd 10
363.3.b.g.122.3 4 11.3 even 5
363.3.h.g.245.1 8 11.4 even 5
363.3.h.g.245.2 8 33.26 odd 10
363.3.h.g.323.1 8 33.5 odd 10
363.3.h.g.323.2 8 11.5 even 5
363.3.h.h.251.1 8 11.2 odd 10
363.3.h.h.251.2 8 33.2 even 10
363.3.h.h.269.1 8 33.32 even 2
363.3.h.h.269.2 8 11.10 odd 2
363.3.h.i.251.1 8 33.20 odd 10 inner
363.3.h.i.251.2 8 11.9 even 5 inner
363.3.h.i.269.1 8 1.1 even 1 trivial
363.3.h.i.269.2 8 3.2 odd 2 inner